cpython/Lib/test/test_binop.py
Guido van Rossum 97c1adf393 Anti-registration of various ABC methods.
- Issue #25958: Support "anti-registration" of special methods from
  various ABCs, like __hash__, __iter__ or __len__.  All these (and
  several more) can be set to None in an implementation class and the
  behavior will be as if the method is not defined at all.
  (Previously, this mechanism existed only for __hash__, to make
  mutable classes unhashable.)  Code contributed by Andrew Barnert and
  Ivan Levkivskyi.
2016-08-18 09:22:23 -07:00

441 lines
14 KiB
Python

"""Tests for binary operators on subtypes of built-in types."""
import unittest
from test import support
from operator import eq, le, ne
from abc import ABCMeta
def gcd(a, b):
"""Greatest common divisor using Euclid's algorithm."""
while a:
a, b = b%a, a
return b
def isint(x):
"""Test whether an object is an instance of int."""
return isinstance(x, int)
def isnum(x):
"""Test whether an object is an instance of a built-in numeric type."""
for T in int, float, complex:
if isinstance(x, T):
return 1
return 0
def isRat(x):
"""Test wheter an object is an instance of the Rat class."""
return isinstance(x, Rat)
class Rat(object):
"""Rational number implemented as a normalized pair of ints."""
__slots__ = ['_Rat__num', '_Rat__den']
def __init__(self, num=0, den=1):
"""Constructor: Rat([num[, den]]).
The arguments must be ints, and default to (0, 1)."""
if not isint(num):
raise TypeError("Rat numerator must be int (%r)" % num)
if not isint(den):
raise TypeError("Rat denominator must be int (%r)" % den)
# But the zero is always on
if den == 0:
raise ZeroDivisionError("zero denominator")
g = gcd(den, num)
self.__num = int(num//g)
self.__den = int(den//g)
def _get_num(self):
"""Accessor function for read-only 'num' attribute of Rat."""
return self.__num
num = property(_get_num, None)
def _get_den(self):
"""Accessor function for read-only 'den' attribute of Rat."""
return self.__den
den = property(_get_den, None)
def __repr__(self):
"""Convert a Rat to a string resembling a Rat constructor call."""
return "Rat(%d, %d)" % (self.__num, self.__den)
def __str__(self):
"""Convert a Rat to a string resembling a decimal numeric value."""
return str(float(self))
def __float__(self):
"""Convert a Rat to a float."""
return self.__num*1.0/self.__den
def __int__(self):
"""Convert a Rat to an int; self.den must be 1."""
if self.__den == 1:
try:
return int(self.__num)
except OverflowError:
raise OverflowError("%s too large to convert to int" %
repr(self))
raise ValueError("can't convert %s to int" % repr(self))
def __add__(self, other):
"""Add two Rats, or a Rat and a number."""
if isint(other):
other = Rat(other)
if isRat(other):
return Rat(self.__num*other.__den + other.__num*self.__den,
self.__den*other.__den)
if isnum(other):
return float(self) + other
return NotImplemented
__radd__ = __add__
def __sub__(self, other):
"""Subtract two Rats, or a Rat and a number."""
if isint(other):
other = Rat(other)
if isRat(other):
return Rat(self.__num*other.__den - other.__num*self.__den,
self.__den*other.__den)
if isnum(other):
return float(self) - other
return NotImplemented
def __rsub__(self, other):
"""Subtract two Rats, or a Rat and a number (reversed args)."""
if isint(other):
other = Rat(other)
if isRat(other):
return Rat(other.__num*self.__den - self.__num*other.__den,
self.__den*other.__den)
if isnum(other):
return other - float(self)
return NotImplemented
def __mul__(self, other):
"""Multiply two Rats, or a Rat and a number."""
if isRat(other):
return Rat(self.__num*other.__num, self.__den*other.__den)
if isint(other):
return Rat(self.__num*other, self.__den)
if isnum(other):
return float(self)*other
return NotImplemented
__rmul__ = __mul__
def __truediv__(self, other):
"""Divide two Rats, or a Rat and a number."""
if isRat(other):
return Rat(self.__num*other.__den, self.__den*other.__num)
if isint(other):
return Rat(self.__num, self.__den*other)
if isnum(other):
return float(self) / other
return NotImplemented
def __rtruediv__(self, other):
"""Divide two Rats, or a Rat and a number (reversed args)."""
if isRat(other):
return Rat(other.__num*self.__den, other.__den*self.__num)
if isint(other):
return Rat(other*self.__den, self.__num)
if isnum(other):
return other / float(self)
return NotImplemented
def __floordiv__(self, other):
"""Divide two Rats, returning the floored result."""
if isint(other):
other = Rat(other)
elif not isRat(other):
return NotImplemented
x = self/other
return x.__num // x.__den
def __rfloordiv__(self, other):
"""Divide two Rats, returning the floored result (reversed args)."""
x = other/self
return x.__num // x.__den
def __divmod__(self, other):
"""Divide two Rats, returning quotient and remainder."""
if isint(other):
other = Rat(other)
elif not isRat(other):
return NotImplemented
x = self//other
return (x, self - other * x)
def __rdivmod__(self, other):
"""Divide two Rats, returning quotient and remainder (reversed args)."""
if isint(other):
other = Rat(other)
elif not isRat(other):
return NotImplemented
return divmod(other, self)
def __mod__(self, other):
"""Take one Rat modulo another."""
return divmod(self, other)[1]
def __rmod__(self, other):
"""Take one Rat modulo another (reversed args)."""
return divmod(other, self)[1]
def __eq__(self, other):
"""Compare two Rats for equality."""
if isint(other):
return self.__den == 1 and self.__num == other
if isRat(other):
return self.__num == other.__num and self.__den == other.__den
if isnum(other):
return float(self) == other
return NotImplemented
class RatTestCase(unittest.TestCase):
"""Unit tests for Rat class and its support utilities."""
def test_gcd(self):
self.assertEqual(gcd(10, 12), 2)
self.assertEqual(gcd(10, 15), 5)
self.assertEqual(gcd(10, 11), 1)
self.assertEqual(gcd(100, 15), 5)
self.assertEqual(gcd(-10, 2), -2)
self.assertEqual(gcd(10, -2), 2)
self.assertEqual(gcd(-10, -2), -2)
for i in range(1, 20):
for j in range(1, 20):
self.assertTrue(gcd(i, j) > 0)
self.assertTrue(gcd(-i, j) < 0)
self.assertTrue(gcd(i, -j) > 0)
self.assertTrue(gcd(-i, -j) < 0)
def test_constructor(self):
a = Rat(10, 15)
self.assertEqual(a.num, 2)
self.assertEqual(a.den, 3)
a = Rat(10, -15)
self.assertEqual(a.num, -2)
self.assertEqual(a.den, 3)
a = Rat(-10, 15)
self.assertEqual(a.num, -2)
self.assertEqual(a.den, 3)
a = Rat(-10, -15)
self.assertEqual(a.num, 2)
self.assertEqual(a.den, 3)
a = Rat(7)
self.assertEqual(a.num, 7)
self.assertEqual(a.den, 1)
try:
a = Rat(1, 0)
except ZeroDivisionError:
pass
else:
self.fail("Rat(1, 0) didn't raise ZeroDivisionError")
for bad in "0", 0.0, 0j, (), [], {}, None, Rat, unittest:
try:
a = Rat(bad)
except TypeError:
pass
else:
self.fail("Rat(%r) didn't raise TypeError" % bad)
try:
a = Rat(1, bad)
except TypeError:
pass
else:
self.fail("Rat(1, %r) didn't raise TypeError" % bad)
def test_add(self):
self.assertEqual(Rat(2, 3) + Rat(1, 3), 1)
self.assertEqual(Rat(2, 3) + 1, Rat(5, 3))
self.assertEqual(1 + Rat(2, 3), Rat(5, 3))
self.assertEqual(1.0 + Rat(1, 2), 1.5)
self.assertEqual(Rat(1, 2) + 1.0, 1.5)
def test_sub(self):
self.assertEqual(Rat(7, 2) - Rat(7, 5), Rat(21, 10))
self.assertEqual(Rat(7, 5) - 1, Rat(2, 5))
self.assertEqual(1 - Rat(3, 5), Rat(2, 5))
self.assertEqual(Rat(3, 2) - 1.0, 0.5)
self.assertEqual(1.0 - Rat(1, 2), 0.5)
def test_mul(self):
self.assertEqual(Rat(2, 3) * Rat(5, 7), Rat(10, 21))
self.assertEqual(Rat(10, 3) * 3, 10)
self.assertEqual(3 * Rat(10, 3), 10)
self.assertEqual(Rat(10, 5) * 0.5, 1.0)
self.assertEqual(0.5 * Rat(10, 5), 1.0)
def test_div(self):
self.assertEqual(Rat(10, 3) / Rat(5, 7), Rat(14, 3))
self.assertEqual(Rat(10, 3) / 3, Rat(10, 9))
self.assertEqual(2 / Rat(5), Rat(2, 5))
self.assertEqual(3.0 * Rat(1, 2), 1.5)
self.assertEqual(Rat(1, 2) * 3.0, 1.5)
def test_floordiv(self):
self.assertEqual(Rat(10) // Rat(4), 2)
self.assertEqual(Rat(10, 3) // Rat(4, 3), 2)
self.assertEqual(Rat(10) // 4, 2)
self.assertEqual(10 // Rat(4), 2)
def test_eq(self):
self.assertEqual(Rat(10), Rat(20, 2))
self.assertEqual(Rat(10), 10)
self.assertEqual(10, Rat(10))
self.assertEqual(Rat(10), 10.0)
self.assertEqual(10.0, Rat(10))
def test_true_div(self):
self.assertEqual(Rat(10, 3) / Rat(5, 7), Rat(14, 3))
self.assertEqual(Rat(10, 3) / 3, Rat(10, 9))
self.assertEqual(2 / Rat(5), Rat(2, 5))
self.assertEqual(3.0 * Rat(1, 2), 1.5)
self.assertEqual(Rat(1, 2) * 3.0, 1.5)
self.assertEqual(eval('1/2'), 0.5)
# XXX Ran out of steam; TO DO: divmod, div, future division
class OperationLogger:
"""Base class for classes with operation logging."""
def __init__(self, logger):
self.logger = logger
def log_operation(self, *args):
self.logger(*args)
def op_sequence(op, *classes):
"""Return the sequence of operations that results from applying
the operation `op` to instances of the given classes."""
log = []
instances = []
for c in classes:
instances.append(c(log.append))
try:
op(*instances)
except TypeError:
pass
return log
class A(OperationLogger):
def __eq__(self, other):
self.log_operation('A.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('A.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('A.__ge__')
return NotImplemented
class B(OperationLogger, metaclass=ABCMeta):
def __eq__(self, other):
self.log_operation('B.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('B.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('B.__ge__')
return NotImplemented
class C(B):
def __eq__(self, other):
self.log_operation('C.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('C.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('C.__ge__')
return NotImplemented
class V(OperationLogger):
"""Virtual subclass of B"""
def __eq__(self, other):
self.log_operation('V.__eq__')
return NotImplemented
def __le__(self, other):
self.log_operation('V.__le__')
return NotImplemented
def __ge__(self, other):
self.log_operation('V.__ge__')
return NotImplemented
B.register(V)
class OperationOrderTests(unittest.TestCase):
def test_comparison_orders(self):
self.assertEqual(op_sequence(eq, A, A), ['A.__eq__', 'A.__eq__'])
self.assertEqual(op_sequence(eq, A, B), ['A.__eq__', 'B.__eq__'])
self.assertEqual(op_sequence(eq, B, A), ['B.__eq__', 'A.__eq__'])
# C is a subclass of B, so C.__eq__ is called first
self.assertEqual(op_sequence(eq, B, C), ['C.__eq__', 'B.__eq__'])
self.assertEqual(op_sequence(eq, C, B), ['C.__eq__', 'B.__eq__'])
self.assertEqual(op_sequence(le, A, A), ['A.__le__', 'A.__ge__'])
self.assertEqual(op_sequence(le, A, B), ['A.__le__', 'B.__ge__'])
self.assertEqual(op_sequence(le, B, A), ['B.__le__', 'A.__ge__'])
self.assertEqual(op_sequence(le, B, C), ['C.__ge__', 'B.__le__'])
self.assertEqual(op_sequence(le, C, B), ['C.__le__', 'B.__ge__'])
self.assertTrue(issubclass(V, B))
self.assertEqual(op_sequence(eq, B, V), ['B.__eq__', 'V.__eq__'])
self.assertEqual(op_sequence(le, B, V), ['B.__le__', 'V.__ge__'])
class SupEq(object):
"""Class that can test equality"""
def __eq__(self, other):
return True
class S(SupEq):
"""Subclass of SupEq that should fail"""
__eq__ = None
class F(object):
"""Independent class that should fall back"""
class X(object):
"""Independent class that should fail"""
__eq__ = None
class SN(SupEq):
"""Subclass of SupEq that can test equality, but not non-equality"""
__ne__ = None
class XN:
"""Independent class that can test equality, but not non-equality"""
def __eq__(self, other):
return True
__ne__ = None
class FallbackBlockingTests(unittest.TestCase):
"""Unit tests for None method blocking"""
def test_fallback_rmethod_blocking(self):
e, f, s, x = SupEq(), F(), S(), X()
self.assertEqual(e, e)
self.assertEqual(e, f)
self.assertEqual(f, e)
# left operand is checked first
self.assertEqual(e, x)
self.assertRaises(TypeError, eq, x, e)
# S is a subclass, so it's always checked first
self.assertRaises(TypeError, eq, e, s)
self.assertRaises(TypeError, eq, s, e)
def test_fallback_ne_blocking(self):
e, sn, xn = SupEq(), SN(), XN()
self.assertFalse(e != e)
self.assertRaises(TypeError, ne, e, sn)
self.assertRaises(TypeError, ne, sn, e)
self.assertFalse(e != xn)
self.assertRaises(TypeError, ne, xn, e)
if __name__ == "__main__":
unittest.main()