mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 02:15:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			260 lines
		
	
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			260 lines
		
	
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #	R A N D O M   V A R I A B L E   G E N E R A T O R S
 | |
| #
 | |
| #	distributions on the real line:
 | |
| #	------------------------------
 | |
| #	       normal (Gaussian)
 | |
| #	       lognormal
 | |
| #	       negative exponential
 | |
| #	       gamma
 | |
| #	       beta
 | |
| #
 | |
| #	distributions on the circle (angles 0 to 2pi)
 | |
| #	---------------------------------------------
 | |
| #	       circular uniform
 | |
| #	       von Mises
 | |
| 
 | |
| # Translated from anonymously contributed C/C++ source.
 | |
| 
 | |
| from whrandom import random, uniform, randint, choice # Also for export!
 | |
| from math import log, exp, pi, e, sqrt, acos, cos, sin
 | |
| 
 | |
| # Housekeeping function to verify that magic constants have been
 | |
| # computed correctly
 | |
| 
 | |
| def verify(name, expected):
 | |
| 	computed = eval(name)
 | |
| 	if abs(computed - expected) > 1e-7:
 | |
| 		raise ValueError, \
 | |
|   'computed value for %s deviates too much (computed %g, expected %g)' % \
 | |
|   (name, computed, expected)
 | |
| 
 | |
| # -------------------- normal distribution --------------------
 | |
| 
 | |
| NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
 | |
| verify('NV_MAGICCONST', 1.71552776992141)
 | |
| def normalvariate(mu, sigma):
 | |
| 	# mu = mean, sigma = standard deviation
 | |
| 
 | |
| 	# Uses Kinderman and Monahan method. Reference: Kinderman,
 | |
| 	# A.J. and Monahan, J.F., "Computer generation of random
 | |
| 	# variables using the ratio of uniform deviates", ACM Trans
 | |
| 	# Math Software, 3, (1977), pp257-260.
 | |
| 
 | |
| 	while 1:
 | |
| 		u1 = random()
 | |
| 		u2 = random()
 | |
| 		z = NV_MAGICCONST*(u1-0.5)/u2
 | |
| 		zz = z*z/4.0
 | |
| 		if zz <= -log(u2):
 | |
| 			break
 | |
| 	return mu+z*sigma
 | |
| 
 | |
| # -------------------- lognormal distribution --------------------
 | |
| 
 | |
| def lognormvariate(mu, sigma):
 | |
| 	return exp(normalvariate(mu, sigma))
 | |
| 
 | |
| # -------------------- circular uniform --------------------
 | |
| 
 | |
| def cunifvariate(mean, arc):
 | |
| 	# mean: mean angle (in radians between 0 and pi)
 | |
| 	# arc:  range of distribution (in radians between 0 and pi)
 | |
| 
 | |
| 	return (mean + arc * (random() - 0.5)) % pi
 | |
| 
 | |
| # -------------------- exponential distribution --------------------
 | |
| 
 | |
| def expovariate(lambd):
 | |
| 	# lambd: rate lambd = 1/mean
 | |
| 	# ('lambda' is a Python reserved word)
 | |
| 
 | |
| 	u = random()
 | |
| 	while u <= 1e-7:
 | |
| 		u = random()
 | |
| 	return -log(u)/lambd
 | |
| 
 | |
| # -------------------- von Mises distribution --------------------
 | |
| 
 | |
| TWOPI = 2.0*pi
 | |
| verify('TWOPI', 6.28318530718)
 | |
| 
 | |
| def vonmisesvariate(mu, kappa):
 | |
| 	# mu:    mean angle (in radians between 0 and 180 degrees)
 | |
| 	# kappa: concentration parameter kappa (>= 0)
 | |
| 	
 | |
| 	# if kappa = 0 generate uniform random angle
 | |
| 	if kappa <= 1e-6:
 | |
| 		return TWOPI * random()
 | |
| 
 | |
| 	a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
 | |
| 	b = (a - sqrt(2.0 * a))/(2.0 * kappa)
 | |
| 	r = (1.0 + b * b)/(2.0 * b)
 | |
| 
 | |
| 	while 1:
 | |
| 		u1 = random()
 | |
| 
 | |
| 		z = cos(pi * u1)
 | |
| 		f = (1.0 + r * z)/(r + z)
 | |
| 		c = kappa * (r - f)
 | |
| 
 | |
| 		u2 = random()
 | |
| 
 | |
| 		if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
 | |
| 			break
 | |
| 
 | |
| 	u3 = random()
 | |
| 	if u3 > 0.5:
 | |
| 		theta = mu + 0.5*acos(f)
 | |
| 	else:
 | |
| 		theta = mu - 0.5*acos(f)
 | |
| 
 | |
| 	return theta % pi
 | |
| 
 | |
| # -------------------- gamma distribution --------------------
 | |
| 
 | |
| LOG4 = log(4.0)
 | |
| verify('LOG4', 1.38629436111989)
 | |
| 
 | |
| def gammavariate(alpha, beta):
 | |
|         # beta times standard gamma
 | |
| 	ainv = sqrt(2.0 * alpha - 1.0)
 | |
| 	return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
 | |
| 
 | |
| SG_MAGICCONST = 1.0 + log(4.5)
 | |
| verify('SG_MAGICCONST', 2.50407739677627)
 | |
| 
 | |
| def stdgamma(alpha, ainv, bbb, ccc):
 | |
| 	# ainv = sqrt(2 * alpha - 1)
 | |
| 	# bbb = alpha - log(4)
 | |
| 	# ccc = alpha + ainv
 | |
| 
 | |
| 	if alpha <= 0.0:
 | |
| 		raise ValueError, 'stdgamma: alpha must be > 0.0'
 | |
| 
 | |
| 	if alpha > 1.0:
 | |
| 
 | |
| 		# Uses R.C.H. Cheng, "The generation of Gamma
 | |
| 		# variables with non-integral shape parameters",
 | |
| 		# Applied Statistics, (1977), 26, No. 1, p71-74
 | |
| 
 | |
| 		while 1:
 | |
| 			u1 = random()
 | |
| 			u2 = random()
 | |
| 			v = log(u1/(1.0-u1))/ainv
 | |
| 			x = alpha*exp(v)
 | |
| 			z = u1*u1*u2
 | |
| 			r = bbb+ccc*v-x
 | |
| 			if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
 | |
| 				return x
 | |
| 
 | |
| 	elif alpha == 1.0:
 | |
| 		# expovariate(1)
 | |
| 		u = random()
 | |
| 		while u <= 1e-7:
 | |
| 			u = random()
 | |
| 		return -log(u)
 | |
| 
 | |
| 	else:	# alpha is between 0 and 1 (exclusive)
 | |
| 
 | |
| 		# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
 | |
| 
 | |
| 		while 1:
 | |
| 			u = random()
 | |
| 			b = (e + alpha)/e
 | |
| 			p = b*u
 | |
| 			if p <= 1.0:
 | |
| 				x = pow(p, 1.0/alpha)
 | |
| 			else:
 | |
| 				# p > 1
 | |
| 				x = -log((b-p)/alpha)
 | |
| 			u1 = random()
 | |
| 			if not (((p <= 1.0) and (u1 > exp(-x))) or
 | |
| 				  ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
 | |
| 				break
 | |
| 		return x
 | |
| 
 | |
| 
 | |
| # -------------------- Gauss (faster alternative) --------------------
 | |
| 
 | |
| gauss_next = None
 | |
| def gauss(mu, sigma):
 | |
| 
 | |
| 	# When x and y are two variables from [0, 1), uniformly
 | |
| 	# distributed, then
 | |
| 	#
 | |
| 	#    cos(2*pi*x)*log(1-y)
 | |
| 	#    sin(2*pi*x)*log(1-y)
 | |
| 	#
 | |
| 	# are two *independent* variables with normal distribution
 | |
| 	# (mu = 0, sigma = 1).
 | |
| 	# (Lambert Meertens)
 | |
| 
 | |
| 	global gauss_next
 | |
| 
 | |
| 	if gauss_next != None:
 | |
| 		z = gauss_next
 | |
| 		gauss_next = None
 | |
| 	else:
 | |
| 		x2pi = random() * TWOPI
 | |
| 		log1_y = log(1.0 - random())
 | |
| 		z = cos(x2pi) * log1_y
 | |
| 		gauss_next = sin(x2pi) * log1_y
 | |
| 
 | |
| 	return mu + z*sigma
 | |
| 
 | |
| # -------------------- beta --------------------
 | |
| 
 | |
| def betavariate(alpha, beta):
 | |
| 
 | |
| 	# Discrete Event Simulation in C, pp 87-88.
 | |
| 
 | |
| 	y = expovariate(alpha)
 | |
| 	z = expovariate(1.0/beta)
 | |
| 	return z/(y+z)
 | |
| 
 | |
| # -------------------- test program --------------------
 | |
| 
 | |
| def test(N = 200):
 | |
| 	print 'TWOPI         =', TWOPI
 | |
| 	print 'LOG4          =', LOG4
 | |
| 	print 'NV_MAGICCONST =', NV_MAGICCONST
 | |
| 	print 'SG_MAGICCONST =', SG_MAGICCONST
 | |
| 	test_generator(N, 'random()')
 | |
| 	test_generator(N, 'normalvariate(0.0, 1.0)')
 | |
| 	test_generator(N, 'lognormvariate(0.0, 1.0)')
 | |
| 	test_generator(N, 'cunifvariate(0.0, 1.0)')
 | |
| 	test_generator(N, 'expovariate(1.0)')
 | |
| 	test_generator(N, 'vonmisesvariate(0.0, 1.0)')
 | |
| 	test_generator(N, 'gammavariate(0.5, 1.0)')
 | |
| 	test_generator(N, 'gammavariate(0.9, 1.0)')
 | |
| 	test_generator(N, 'gammavariate(1.0, 1.0)')
 | |
| 	test_generator(N, 'gammavariate(2.0, 1.0)')
 | |
| 	test_generator(N, 'gammavariate(20.0, 1.0)')
 | |
| 	test_generator(N, 'gammavariate(200.0, 1.0)')
 | |
| 	test_generator(N, 'gauss(0.0, 1.0)')
 | |
| 	test_generator(N, 'betavariate(3.0, 3.0)')
 | |
| 
 | |
| def test_generator(n, funccall):
 | |
| 	import time
 | |
| 	print n, 'times', funccall
 | |
| 	code = compile(funccall, funccall, 'eval')
 | |
| 	sum = 0.0
 | |
| 	sqsum = 0.0
 | |
| 	smallest = 1e10
 | |
| 	largest = -1e10
 | |
| 	t0 = time.time()
 | |
| 	for i in range(n):
 | |
| 		x = eval(code)
 | |
| 		sum = sum + x
 | |
| 		sqsum = sqsum + x*x
 | |
| 		smallest = min(x, smallest)
 | |
| 		largest = max(x, largest)
 | |
| 	t1 = time.time()
 | |
| 	print round(t1-t0, 3), 'sec,', 
 | |
| 	avg = sum/n
 | |
| 	stddev = sqrt(sqsum/n - avg*avg)
 | |
| 	print 'avg %g, stddev %g, min %g, max %g' % \
 | |
| 		  (avg, stddev, smallest, largest)
 | |
| 
 | |
| if __name__ == '__main__':
 | |
| 	test()
 | 
