mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			363 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			363 lines
		
	
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#	R A N D O M   V A R I A B L E   G E N E R A T O R S
 | 
						|
#
 | 
						|
#	distributions on the real line:
 | 
						|
#	------------------------------
 | 
						|
#	       normal (Gaussian)
 | 
						|
#	       lognormal
 | 
						|
#	       negative exponential
 | 
						|
#	       gamma
 | 
						|
#	       beta
 | 
						|
#
 | 
						|
#	distributions on the circle (angles 0 to 2pi)
 | 
						|
#	---------------------------------------------
 | 
						|
#	       circular uniform
 | 
						|
#	       von Mises
 | 
						|
 | 
						|
# Translated from anonymously contributed C/C++ source.
 | 
						|
 | 
						|
# Multi-threading note: the random number generator used here is not
 | 
						|
# thread-safe; it is possible that two calls return the same random
 | 
						|
# value.  See whrandom.py for more info.
 | 
						|
 | 
						|
import whrandom
 | 
						|
from whrandom import random, uniform, randint, choice, randrange # For export!
 | 
						|
from math import log, exp, pi, e, sqrt, acos, cos, sin
 | 
						|
 | 
						|
# Interfaces to replace remaining needs for importing whrandom
 | 
						|
# XXX TO DO: make the distribution functions below into methods.
 | 
						|
 | 
						|
def makeseed(a=None):
 | 
						|
	"""Turn a hashable value into three seed values for whrandom.seed().
 | 
						|
 | 
						|
	None or no argument returns (0, 0, 0), to seed from current time.
 | 
						|
 | 
						|
	"""
 | 
						|
	if a is None:
 | 
						|
		return (0, 0, 0)
 | 
						|
	a = hash(a)
 | 
						|
	a, x = divmod(a, 256)
 | 
						|
	a, y = divmod(a, 256)
 | 
						|
	a, z = divmod(a, 256)
 | 
						|
	x = (x + a) % 256 or 1
 | 
						|
	y = (y + a) % 256 or 1
 | 
						|
	z = (z + a) % 256 or 1
 | 
						|
	return (x, y, z)
 | 
						|
 | 
						|
def seed(a=None):
 | 
						|
	"""Seed the default generator from any hashable value.
 | 
						|
 | 
						|
	None or no argument returns (0, 0, 0) to seed from current time.
 | 
						|
 | 
						|
	"""
 | 
						|
	x, y, z = makeseed(a)
 | 
						|
	whrandom.seed(x, y, z)
 | 
						|
 | 
						|
class generator(whrandom.whrandom):
 | 
						|
	"""Random generator class."""
 | 
						|
 | 
						|
	def __init__(self, a=None):
 | 
						|
		"""Constructor.  Seed from current time or hashable value."""
 | 
						|
		self.seed(a)
 | 
						|
 | 
						|
	def seed(self, a=None):
 | 
						|
		"""Seed the generator from current time or hashable value."""
 | 
						|
		x, y, z = makeseed(a)
 | 
						|
		whrandom.whrandom.seed(self, x, y, z)
 | 
						|
 | 
						|
def new_generator(a=None):
 | 
						|
	"""Return a new random generator instance."""
 | 
						|
	return generator(a)
 | 
						|
 | 
						|
# Housekeeping function to verify that magic constants have been
 | 
						|
# computed correctly
 | 
						|
 | 
						|
def verify(name, expected):
 | 
						|
	computed = eval(name)
 | 
						|
	if abs(computed - expected) > 1e-7:
 | 
						|
		raise ValueError, \
 | 
						|
  'computed value for %s deviates too much (computed %g, expected %g)' % \
 | 
						|
  (name, computed, expected)
 | 
						|
 | 
						|
# -------------------- normal distribution --------------------
 | 
						|
 | 
						|
NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
 | 
						|
verify('NV_MAGICCONST', 1.71552776992141)
 | 
						|
def normalvariate(mu, sigma):
 | 
						|
	# mu = mean, sigma = standard deviation
 | 
						|
 | 
						|
	# Uses Kinderman and Monahan method. Reference: Kinderman,
 | 
						|
	# A.J. and Monahan, J.F., "Computer generation of random
 | 
						|
	# variables using the ratio of uniform deviates", ACM Trans
 | 
						|
	# Math Software, 3, (1977), pp257-260.
 | 
						|
 | 
						|
	while 1:
 | 
						|
		u1 = random()
 | 
						|
		u2 = random()
 | 
						|
		z = NV_MAGICCONST*(u1-0.5)/u2
 | 
						|
		zz = z*z/4.0
 | 
						|
		if zz <= -log(u2):
 | 
						|
			break
 | 
						|
	return mu+z*sigma
 | 
						|
 | 
						|
# -------------------- lognormal distribution --------------------
 | 
						|
 | 
						|
def lognormvariate(mu, sigma):
 | 
						|
	return exp(normalvariate(mu, sigma))
 | 
						|
 | 
						|
# -------------------- circular uniform --------------------
 | 
						|
 | 
						|
def cunifvariate(mean, arc):
 | 
						|
	# mean: mean angle (in radians between 0 and pi)
 | 
						|
	# arc:  range of distribution (in radians between 0 and pi)
 | 
						|
 | 
						|
	return (mean + arc * (random() - 0.5)) % pi
 | 
						|
 | 
						|
# -------------------- exponential distribution --------------------
 | 
						|
 | 
						|
def expovariate(lambd):
 | 
						|
	# lambd: rate lambd = 1/mean
 | 
						|
	# ('lambda' is a Python reserved word)
 | 
						|
 | 
						|
	u = random()
 | 
						|
	while u <= 1e-7:
 | 
						|
		u = random()
 | 
						|
	return -log(u)/lambd
 | 
						|
 | 
						|
# -------------------- von Mises distribution --------------------
 | 
						|
 | 
						|
TWOPI = 2.0*pi
 | 
						|
verify('TWOPI', 6.28318530718)
 | 
						|
 | 
						|
def vonmisesvariate(mu, kappa):
 | 
						|
	# mu:    mean angle (in radians between 0 and 2*pi)
 | 
						|
	# kappa: concentration parameter kappa (>= 0)
 | 
						|
	# if kappa = 0 generate uniform random angle
 | 
						|
 | 
						|
	# Based upon an algorithm published in: Fisher, N.I.,
 | 
						|
	# "Statistical Analysis of Circular Data", Cambridge
 | 
						|
	# University Press, 1993.
 | 
						|
 | 
						|
	# Thanks to Magnus Kessler for a correction to the
 | 
						|
	# implementation of step 4.
 | 
						|
 | 
						|
	if kappa <= 1e-6:
 | 
						|
		return TWOPI * random()
 | 
						|
 | 
						|
	a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
 | 
						|
	b = (a - sqrt(2.0 * a))/(2.0 * kappa)
 | 
						|
	r = (1.0 + b * b)/(2.0 * b)
 | 
						|
 | 
						|
	while 1:
 | 
						|
		u1 = random()
 | 
						|
 | 
						|
		z = cos(pi * u1)
 | 
						|
		f = (1.0 + r * z)/(r + z)
 | 
						|
		c = kappa * (r - f)
 | 
						|
 | 
						|
		u2 = random()
 | 
						|
 | 
						|
		if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
 | 
						|
			break
 | 
						|
 | 
						|
	u3 = random()
 | 
						|
	if u3 > 0.5:
 | 
						|
		theta = (mu % TWOPI) + acos(f)
 | 
						|
	else:
 | 
						|
		theta = (mu % TWOPI) - acos(f)
 | 
						|
 | 
						|
	return theta
 | 
						|
 | 
						|
# -------------------- gamma distribution --------------------
 | 
						|
 | 
						|
LOG4 = log(4.0)
 | 
						|
verify('LOG4', 1.38629436111989)
 | 
						|
 | 
						|
def gammavariate(alpha, beta):
 | 
						|
        # beta times standard gamma
 | 
						|
	ainv = sqrt(2.0 * alpha - 1.0)
 | 
						|
	return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
 | 
						|
 | 
						|
SG_MAGICCONST = 1.0 + log(4.5)
 | 
						|
verify('SG_MAGICCONST', 2.50407739677627)
 | 
						|
 | 
						|
def stdgamma(alpha, ainv, bbb, ccc):
 | 
						|
	# ainv = sqrt(2 * alpha - 1)
 | 
						|
	# bbb = alpha - log(4)
 | 
						|
	# ccc = alpha + ainv
 | 
						|
 | 
						|
	if alpha <= 0.0:
 | 
						|
		raise ValueError, 'stdgamma: alpha must be > 0.0'
 | 
						|
 | 
						|
	if alpha > 1.0:
 | 
						|
 | 
						|
		# Uses R.C.H. Cheng, "The generation of Gamma
 | 
						|
		# variables with non-integral shape parameters",
 | 
						|
		# Applied Statistics, (1977), 26, No. 1, p71-74
 | 
						|
 | 
						|
		while 1:
 | 
						|
			u1 = random()
 | 
						|
			u2 = random()
 | 
						|
			v = log(u1/(1.0-u1))/ainv
 | 
						|
			x = alpha*exp(v)
 | 
						|
			z = u1*u1*u2
 | 
						|
			r = bbb+ccc*v-x
 | 
						|
			if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
 | 
						|
				return x
 | 
						|
 | 
						|
	elif alpha == 1.0:
 | 
						|
		# expovariate(1)
 | 
						|
		u = random()
 | 
						|
		while u <= 1e-7:
 | 
						|
			u = random()
 | 
						|
		return -log(u)
 | 
						|
 | 
						|
	else:	# alpha is between 0 and 1 (exclusive)
 | 
						|
 | 
						|
		# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
 | 
						|
 | 
						|
		while 1:
 | 
						|
			u = random()
 | 
						|
			b = (e + alpha)/e
 | 
						|
			p = b*u
 | 
						|
			if p <= 1.0:
 | 
						|
				x = pow(p, 1.0/alpha)
 | 
						|
			else:
 | 
						|
				# p > 1
 | 
						|
				x = -log((b-p)/alpha)
 | 
						|
			u1 = random()
 | 
						|
			if not (((p <= 1.0) and (u1 > exp(-x))) or
 | 
						|
				  ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
 | 
						|
				break
 | 
						|
		return x
 | 
						|
 | 
						|
 | 
						|
# -------------------- Gauss (faster alternative) --------------------
 | 
						|
 | 
						|
gauss_next = None
 | 
						|
def gauss(mu, sigma):
 | 
						|
 | 
						|
	# When x and y are two variables from [0, 1), uniformly
 | 
						|
	# distributed, then
 | 
						|
	#
 | 
						|
	#    cos(2*pi*x)*sqrt(-2*log(1-y))
 | 
						|
	#    sin(2*pi*x)*sqrt(-2*log(1-y))
 | 
						|
	#
 | 
						|
	# are two *independent* variables with normal distribution
 | 
						|
	# (mu = 0, sigma = 1).
 | 
						|
	# (Lambert Meertens)
 | 
						|
	# (corrected version; bug discovered by Mike Miller, fixed by LM)
 | 
						|
 | 
						|
	# Multithreading note: When two threads call this function
 | 
						|
	# simultaneously, it is possible that they will receive the
 | 
						|
	# same return value.  The window is very small though.  To
 | 
						|
	# avoid this, you have to use a lock around all calls.  (I
 | 
						|
	# didn't want to slow this down in the serial case by using a
 | 
						|
	# lock here.)
 | 
						|
 | 
						|
	global gauss_next
 | 
						|
 | 
						|
	z = gauss_next
 | 
						|
	gauss_next = None
 | 
						|
	if z is None:
 | 
						|
		x2pi = random() * TWOPI
 | 
						|
		g2rad = sqrt(-2.0 * log(1.0 - random()))
 | 
						|
		z = cos(x2pi) * g2rad
 | 
						|
		gauss_next = sin(x2pi) * g2rad
 | 
						|
 | 
						|
	return mu + z*sigma
 | 
						|
 | 
						|
# -------------------- beta --------------------
 | 
						|
 | 
						|
def betavariate(alpha, beta):
 | 
						|
 | 
						|
	# Discrete Event Simulation in C, pp 87-88.
 | 
						|
 | 
						|
	y = expovariate(alpha)
 | 
						|
	z = expovariate(1.0/beta)
 | 
						|
	return z/(y+z)
 | 
						|
 | 
						|
# -------------------- Pareto --------------------
 | 
						|
 | 
						|
def paretovariate(alpha):
 | 
						|
	# Jain, pg. 495
 | 
						|
 | 
						|
	u = random()
 | 
						|
	return 1.0 / pow(u, 1.0/alpha)
 | 
						|
 | 
						|
# -------------------- Weibull --------------------
 | 
						|
 | 
						|
def weibullvariate(alpha, beta):
 | 
						|
	# Jain, pg. 499; bug fix courtesy Bill Arms
 | 
						|
 | 
						|
	u = random()
 | 
						|
	return alpha * pow(-log(u), 1.0/beta)
 | 
						|
 | 
						|
# -------------------- shuffle --------------------
 | 
						|
# Not quite a random distribution, but a standard algorithm.
 | 
						|
# This implementation due to Tim Peters.
 | 
						|
 | 
						|
def shuffle(x, random=random, int=int):
 | 
						|
    """x, random=random.random -> shuffle list x in place; return None.
 | 
						|
 | 
						|
    Optional arg random is a 0-argument function returning a random
 | 
						|
    float in [0.0, 1.0); by default, the standard random.random.
 | 
						|
 | 
						|
    Note that for even rather small len(x), the total number of
 | 
						|
    permutations of x is larger than the period of most random number
 | 
						|
    generators; this implies that "most" permutations of a long
 | 
						|
    sequence can never be generated.
 | 
						|
    """
 | 
						|
 | 
						|
    for i in xrange(len(x)-1, 0, -1):
 | 
						|
        # pick an element in x[:i+1] with which to exchange x[i]
 | 
						|
        j = int(random() * (i+1))
 | 
						|
        x[i], x[j] = x[j], x[i]
 | 
						|
 | 
						|
# -------------------- test program --------------------
 | 
						|
 | 
						|
def test(N = 200):
 | 
						|
	print 'TWOPI         =', TWOPI
 | 
						|
	print 'LOG4          =', LOG4
 | 
						|
	print 'NV_MAGICCONST =', NV_MAGICCONST
 | 
						|
	print 'SG_MAGICCONST =', SG_MAGICCONST
 | 
						|
	test_generator(N, 'random()')
 | 
						|
	test_generator(N, 'normalvariate(0.0, 1.0)')
 | 
						|
	test_generator(N, 'lognormvariate(0.0, 1.0)')
 | 
						|
	test_generator(N, 'cunifvariate(0.0, 1.0)')
 | 
						|
	test_generator(N, 'expovariate(1.0)')
 | 
						|
	test_generator(N, 'vonmisesvariate(0.0, 1.0)')
 | 
						|
	test_generator(N, 'gammavariate(0.5, 1.0)')
 | 
						|
	test_generator(N, 'gammavariate(0.9, 1.0)')
 | 
						|
	test_generator(N, 'gammavariate(1.0, 1.0)')
 | 
						|
	test_generator(N, 'gammavariate(2.0, 1.0)')
 | 
						|
	test_generator(N, 'gammavariate(20.0, 1.0)')
 | 
						|
	test_generator(N, 'gammavariate(200.0, 1.0)')
 | 
						|
	test_generator(N, 'gauss(0.0, 1.0)')
 | 
						|
	test_generator(N, 'betavariate(3.0, 3.0)')
 | 
						|
	test_generator(N, 'paretovariate(1.0)')
 | 
						|
	test_generator(N, 'weibullvariate(1.0, 1.0)')
 | 
						|
 | 
						|
def test_generator(n, funccall):
 | 
						|
	import time
 | 
						|
	print n, 'times', funccall
 | 
						|
	code = compile(funccall, funccall, 'eval')
 | 
						|
	sum = 0.0
 | 
						|
	sqsum = 0.0
 | 
						|
	smallest = 1e10
 | 
						|
	largest = -1e10
 | 
						|
	t0 = time.time()
 | 
						|
	for i in range(n):
 | 
						|
		x = eval(code)
 | 
						|
		sum = sum + x
 | 
						|
		sqsum = sqsum + x*x
 | 
						|
		smallest = min(x, smallest)
 | 
						|
		largest = max(x, largest)
 | 
						|
	t1 = time.time()
 | 
						|
	print round(t1-t0, 3), 'sec,', 
 | 
						|
	avg = sum/n
 | 
						|
	stddev = sqrt(sqsum/n - avg*avg)
 | 
						|
	print 'avg %g, stddev %g, min %g, max %g' % \
 | 
						|
		  (avg, stddev, smallest, largest)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
	test()
 |