mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1843 lines
		
	
	
	
		
			69 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1843 lines
		
	
	
	
		
			69 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Test suite for statistics module, including helper NumericTestCase and
 | 
						|
approx_equal function.
 | 
						|
 | 
						|
"""
 | 
						|
 | 
						|
import collections
 | 
						|
import decimal
 | 
						|
import doctest
 | 
						|
import math
 | 
						|
import random
 | 
						|
import sys
 | 
						|
import unittest
 | 
						|
 | 
						|
from decimal import Decimal
 | 
						|
from fractions import Fraction
 | 
						|
 | 
						|
 | 
						|
# Module to be tested.
 | 
						|
import statistics
 | 
						|
 | 
						|
 | 
						|
# === Helper functions and class ===
 | 
						|
 | 
						|
def _nan_equal(a, b):
 | 
						|
    """Return True if a and b are both the same kind of NAN.
 | 
						|
 | 
						|
    >>> _nan_equal(Decimal('NAN'), Decimal('NAN'))
 | 
						|
    True
 | 
						|
    >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN'))
 | 
						|
    True
 | 
						|
    >>> _nan_equal(Decimal('NAN'), Decimal('sNAN'))
 | 
						|
    False
 | 
						|
    >>> _nan_equal(Decimal(42), Decimal('NAN'))
 | 
						|
    False
 | 
						|
 | 
						|
    >>> _nan_equal(float('NAN'), float('NAN'))
 | 
						|
    True
 | 
						|
    >>> _nan_equal(float('NAN'), 0.5)
 | 
						|
    False
 | 
						|
 | 
						|
    >>> _nan_equal(float('NAN'), Decimal('NAN'))
 | 
						|
    False
 | 
						|
 | 
						|
    NAN payloads are not compared.
 | 
						|
    """
 | 
						|
    if type(a) is not type(b):
 | 
						|
        return False
 | 
						|
    if isinstance(a, float):
 | 
						|
        return math.isnan(a) and math.isnan(b)
 | 
						|
    aexp = a.as_tuple()[2]
 | 
						|
    bexp = b.as_tuple()[2]
 | 
						|
    return (aexp == bexp) and (aexp in ('n', 'N'))  # Both NAN or both sNAN.
 | 
						|
 | 
						|
 | 
						|
def _calc_errors(actual, expected):
 | 
						|
    """Return the absolute and relative errors between two numbers.
 | 
						|
 | 
						|
    >>> _calc_errors(100, 75)
 | 
						|
    (25, 0.25)
 | 
						|
    >>> _calc_errors(100, 100)
 | 
						|
    (0, 0.0)
 | 
						|
 | 
						|
    Returns the (absolute error, relative error) between the two arguments.
 | 
						|
    """
 | 
						|
    base = max(abs(actual), abs(expected))
 | 
						|
    abs_err = abs(actual - expected)
 | 
						|
    rel_err = abs_err/base if base else float('inf')
 | 
						|
    return (abs_err, rel_err)
 | 
						|
 | 
						|
 | 
						|
def approx_equal(x, y, tol=1e-12, rel=1e-7):
 | 
						|
    """approx_equal(x, y [, tol [, rel]]) => True|False
 | 
						|
 | 
						|
    Return True if numbers x and y are approximately equal, to within some
 | 
						|
    margin of error, otherwise return False. Numbers which compare equal
 | 
						|
    will also compare approximately equal.
 | 
						|
 | 
						|
    x is approximately equal to y if the difference between them is less than
 | 
						|
    an absolute error tol or a relative error rel, whichever is bigger.
 | 
						|
 | 
						|
    If given, both tol and rel must be finite, non-negative numbers. If not
 | 
						|
    given, default values are tol=1e-12 and rel=1e-7.
 | 
						|
 | 
						|
    >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
 | 
						|
    True
 | 
						|
    >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
 | 
						|
    False
 | 
						|
 | 
						|
    Absolute error is defined as abs(x-y); if that is less than or equal to
 | 
						|
    tol, x and y are considered approximately equal.
 | 
						|
 | 
						|
    Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
 | 
						|
    smaller, provided x or y are not zero. If that figure is less than or
 | 
						|
    equal to rel, x and y are considered approximately equal.
 | 
						|
 | 
						|
    Complex numbers are not directly supported. If you wish to compare to
 | 
						|
    complex numbers, extract their real and imaginary parts and compare them
 | 
						|
    individually.
 | 
						|
 | 
						|
    NANs always compare unequal, even with themselves. Infinities compare
 | 
						|
    approximately equal if they have the same sign (both positive or both
 | 
						|
    negative). Infinities with different signs compare unequal; so do
 | 
						|
    comparisons of infinities with finite numbers.
 | 
						|
    """
 | 
						|
    if tol < 0 or rel < 0:
 | 
						|
        raise ValueError('error tolerances must be non-negative')
 | 
						|
    # NANs are never equal to anything, approximately or otherwise.
 | 
						|
    if math.isnan(x) or math.isnan(y):
 | 
						|
        return False
 | 
						|
    # Numbers which compare equal also compare approximately equal.
 | 
						|
    if x == y:
 | 
						|
        # This includes the case of two infinities with the same sign.
 | 
						|
        return True
 | 
						|
    if math.isinf(x) or math.isinf(y):
 | 
						|
        # This includes the case of two infinities of opposite sign, or
 | 
						|
        # one infinity and one finite number.
 | 
						|
        return False
 | 
						|
    # Two finite numbers.
 | 
						|
    actual_error = abs(x - y)
 | 
						|
    allowed_error = max(tol, rel*max(abs(x), abs(y)))
 | 
						|
    return actual_error <= allowed_error
 | 
						|
 | 
						|
 | 
						|
# This class exists only as somewhere to stick a docstring containing
 | 
						|
# doctests. The following docstring and tests were originally in a separate
 | 
						|
# module. Now that it has been merged in here, I need somewhere to hang the.
 | 
						|
# docstring. Ultimately, this class will die, and the information below will
 | 
						|
# either become redundant, or be moved into more appropriate places.
 | 
						|
class _DoNothing:
 | 
						|
    """
 | 
						|
    When doing numeric work, especially with floats, exact equality is often
 | 
						|
    not what you want. Due to round-off error, it is often a bad idea to try
 | 
						|
    to compare floats with equality. Instead the usual procedure is to test
 | 
						|
    them with some (hopefully small!) allowance for error.
 | 
						|
 | 
						|
    The ``approx_equal`` function allows you to specify either an absolute
 | 
						|
    error tolerance, or a relative error, or both.
 | 
						|
 | 
						|
    Absolute error tolerances are simple, but you need to know the magnitude
 | 
						|
    of the quantities being compared:
 | 
						|
 | 
						|
    >>> approx_equal(12.345, 12.346, tol=1e-3)
 | 
						|
    True
 | 
						|
    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small.
 | 
						|
    False
 | 
						|
 | 
						|
    Relative errors are more suitable when the values you are comparing can
 | 
						|
    vary in magnitude:
 | 
						|
 | 
						|
    >>> approx_equal(12.345, 12.346, rel=1e-4)
 | 
						|
    True
 | 
						|
    >>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
 | 
						|
    True
 | 
						|
 | 
						|
    but a naive implementation of relative error testing can run into trouble
 | 
						|
    around zero.
 | 
						|
 | 
						|
    If you supply both an absolute tolerance and a relative error, the
 | 
						|
    comparison succeeds if either individual test succeeds:
 | 
						|
 | 
						|
    >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
 | 
						|
    True
 | 
						|
 | 
						|
    """
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
 | 
						|
# We prefer this for testing numeric values that may not be exactly equal,
 | 
						|
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)
 | 
						|
 | 
						|
class NumericTestCase(unittest.TestCase):
 | 
						|
    """Unit test class for numeric work.
 | 
						|
 | 
						|
    This subclasses TestCase. In addition to the standard method
 | 
						|
    ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided.
 | 
						|
    """
 | 
						|
    # By default, we expect exact equality, unless overridden.
 | 
						|
    tol = rel = 0
 | 
						|
 | 
						|
    def assertApproxEqual(
 | 
						|
            self, first, second, tol=None, rel=None, msg=None
 | 
						|
            ):
 | 
						|
        """Test passes if ``first`` and ``second`` are approximately equal.
 | 
						|
 | 
						|
        This test passes if ``first`` and ``second`` are equal to
 | 
						|
        within ``tol``, an absolute error, or ``rel``, a relative error.
 | 
						|
 | 
						|
        If either ``tol`` or ``rel`` are None or not given, they default to
 | 
						|
        test attributes of the same name (by default, 0).
 | 
						|
 | 
						|
        The objects may be either numbers, or sequences of numbers. Sequences
 | 
						|
        are tested element-by-element.
 | 
						|
 | 
						|
        >>> class MyTest(NumericTestCase):
 | 
						|
        ...     def test_number(self):
 | 
						|
        ...         x = 1.0/6
 | 
						|
        ...         y = sum([x]*6)
 | 
						|
        ...         self.assertApproxEqual(y, 1.0, tol=1e-15)
 | 
						|
        ...     def test_sequence(self):
 | 
						|
        ...         a = [1.001, 1.001e-10, 1.001e10]
 | 
						|
        ...         b = [1.0, 1e-10, 1e10]
 | 
						|
        ...         self.assertApproxEqual(a, b, rel=1e-3)
 | 
						|
        ...
 | 
						|
        >>> import unittest
 | 
						|
        >>> from io import StringIO  # Suppress test runner output.
 | 
						|
        >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
 | 
						|
        >>> unittest.TextTestRunner(stream=StringIO()).run(suite)
 | 
						|
        <unittest.runner.TextTestResult run=2 errors=0 failures=0>
 | 
						|
 | 
						|
        """
 | 
						|
        if tol is None:
 | 
						|
            tol = self.tol
 | 
						|
        if rel is None:
 | 
						|
            rel = self.rel
 | 
						|
        if (
 | 
						|
                isinstance(first, collections.Sequence) and
 | 
						|
                isinstance(second, collections.Sequence)
 | 
						|
            ):
 | 
						|
            check = self._check_approx_seq
 | 
						|
        else:
 | 
						|
            check = self._check_approx_num
 | 
						|
        check(first, second, tol, rel, msg)
 | 
						|
 | 
						|
    def _check_approx_seq(self, first, second, tol, rel, msg):
 | 
						|
        if len(first) != len(second):
 | 
						|
            standardMsg = (
 | 
						|
                "sequences differ in length: %d items != %d items"
 | 
						|
                % (len(first), len(second))
 | 
						|
                )
 | 
						|
            msg = self._formatMessage(msg, standardMsg)
 | 
						|
            raise self.failureException(msg)
 | 
						|
        for i, (a,e) in enumerate(zip(first, second)):
 | 
						|
            self._check_approx_num(a, e, tol, rel, msg, i)
 | 
						|
 | 
						|
    def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
 | 
						|
        if approx_equal(first, second, tol, rel):
 | 
						|
            # Test passes. Return early, we are done.
 | 
						|
            return None
 | 
						|
        # Otherwise we failed.
 | 
						|
        standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
 | 
						|
        msg = self._formatMessage(msg, standardMsg)
 | 
						|
        raise self.failureException(msg)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _make_std_err_msg(first, second, tol, rel, idx):
 | 
						|
        # Create the standard error message for approx_equal failures.
 | 
						|
        assert first != second
 | 
						|
        template = (
 | 
						|
            '  %r != %r\n'
 | 
						|
            '  values differ by more than tol=%r and rel=%r\n'
 | 
						|
            '  -> absolute error = %r\n'
 | 
						|
            '  -> relative error = %r'
 | 
						|
            )
 | 
						|
        if idx is not None:
 | 
						|
            header = 'numeric sequences first differ at index %d.\n' % idx
 | 
						|
            template = header + template
 | 
						|
        # Calculate actual errors:
 | 
						|
        abs_err, rel_err = _calc_errors(first, second)
 | 
						|
        return template % (first, second, tol, rel, abs_err, rel_err)
 | 
						|
 | 
						|
 | 
						|
# ========================
 | 
						|
# === Test the helpers ===
 | 
						|
# ========================
 | 
						|
 | 
						|
 | 
						|
# --- Tests for approx_equal ---
 | 
						|
 | 
						|
class ApproxEqualSymmetryTest(unittest.TestCase):
 | 
						|
    # Test symmetry of approx_equal.
 | 
						|
 | 
						|
    def test_relative_symmetry(self):
 | 
						|
        # Check that approx_equal treats relative error symmetrically.
 | 
						|
        # (a-b)/a is usually not equal to (a-b)/b. Ensure that this
 | 
						|
        # doesn't matter.
 | 
						|
        #
 | 
						|
        #   Note: the reason for this test is that an early version
 | 
						|
        #   of approx_equal was not symmetric. A relative error test
 | 
						|
        #   would pass, or fail, depending on which value was passed
 | 
						|
        #   as the first argument.
 | 
						|
        #
 | 
						|
        args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
 | 
						|
        args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
 | 
						|
        assert len(args1) == len(args2)
 | 
						|
        for a, b in zip(args1, args2):
 | 
						|
            self.do_relative_symmetry(a, b)
 | 
						|
 | 
						|
    def do_relative_symmetry(self, a, b):
 | 
						|
        a, b = min(a, b), max(a, b)
 | 
						|
        assert a < b
 | 
						|
        delta = b - a  # The absolute difference between the values.
 | 
						|
        rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
 | 
						|
        # Choose an error margin halfway between the two.
 | 
						|
        rel = (rel_err1 + rel_err2)/2
 | 
						|
        # Now see that values a and b compare approx equal regardless of
 | 
						|
        # which is given first.
 | 
						|
        self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
 | 
						|
        self.assertTrue(approx_equal(b, a, tol=0, rel=rel))
 | 
						|
 | 
						|
    def test_symmetry(self):
 | 
						|
        # Test that approx_equal(a, b) == approx_equal(b, a)
 | 
						|
        args = [-23, -2, 5, 107, 93568]
 | 
						|
        delta = 2
 | 
						|
        for a in args:
 | 
						|
            for type_ in (int, float, Decimal, Fraction):
 | 
						|
                x = type_(a)*100
 | 
						|
                y = x + delta
 | 
						|
                r = abs(delta/max(x, y))
 | 
						|
                # There are five cases to check:
 | 
						|
                # 1) actual error <= tol, <= rel
 | 
						|
                self.do_symmetry_test(x, y, tol=delta, rel=r)
 | 
						|
                self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
 | 
						|
                # 2) actual error > tol, > rel
 | 
						|
                self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
 | 
						|
                # 3) actual error <= tol, > rel
 | 
						|
                self.do_symmetry_test(x, y, tol=delta, rel=r/2)
 | 
						|
                # 4) actual error > tol, <= rel
 | 
						|
                self.do_symmetry_test(x, y, tol=delta-1, rel=r)
 | 
						|
                self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
 | 
						|
                # 5) exact equality test
 | 
						|
                self.do_symmetry_test(x, x, tol=0, rel=0)
 | 
						|
                self.do_symmetry_test(x, y, tol=0, rel=0)
 | 
						|
 | 
						|
    def do_symmetry_test(self, a, b, tol, rel):
 | 
						|
        template = "approx_equal comparisons don't match for %r"
 | 
						|
        flag1 = approx_equal(a, b, tol, rel)
 | 
						|
        flag2 = approx_equal(b, a, tol, rel)
 | 
						|
        self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))
 | 
						|
 | 
						|
 | 
						|
class ApproxEqualExactTest(unittest.TestCase):
 | 
						|
    # Test the approx_equal function with exactly equal values.
 | 
						|
    # Equal values should compare as approximately equal.
 | 
						|
    # Test cases for exactly equal values, which should compare approx
 | 
						|
    # equal regardless of the error tolerances given.
 | 
						|
 | 
						|
    def do_exactly_equal_test(self, x, tol, rel):
 | 
						|
        result = approx_equal(x, x, tol=tol, rel=rel)
 | 
						|
        self.assertTrue(result, 'equality failure for x=%r' % x)
 | 
						|
        result = approx_equal(-x, -x, tol=tol, rel=rel)
 | 
						|
        self.assertTrue(result, 'equality failure for x=%r' % -x)
 | 
						|
 | 
						|
    def test_exactly_equal_ints(self):
 | 
						|
        # Test that equal int values are exactly equal.
 | 
						|
        for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
 | 
						|
            self.do_exactly_equal_test(n, 0, 0)
 | 
						|
 | 
						|
    def test_exactly_equal_floats(self):
 | 
						|
        # Test that equal float values are exactly equal.
 | 
						|
        for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
 | 
						|
            self.do_exactly_equal_test(x, 0, 0)
 | 
						|
 | 
						|
    def test_exactly_equal_fractions(self):
 | 
						|
        # Test that equal Fraction values are exactly equal.
 | 
						|
        F = Fraction
 | 
						|
        for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
 | 
						|
            self.do_exactly_equal_test(f, 0, 0)
 | 
						|
 | 
						|
    def test_exactly_equal_decimals(self):
 | 
						|
        # Test that equal Decimal values are exactly equal.
 | 
						|
        D = Decimal
 | 
						|
        for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
 | 
						|
            self.do_exactly_equal_test(d, 0, 0)
 | 
						|
 | 
						|
    def test_exactly_equal_absolute(self):
 | 
						|
        # Test that equal values are exactly equal with an absolute error.
 | 
						|
        for n in [16, 1013, 1372, 1198, 971, 4]:
 | 
						|
            # Test as ints.
 | 
						|
            self.do_exactly_equal_test(n, 0.01, 0)
 | 
						|
            # Test as floats.
 | 
						|
            self.do_exactly_equal_test(n/10, 0.01, 0)
 | 
						|
            # Test as Fractions.
 | 
						|
            f = Fraction(n, 1234)
 | 
						|
            self.do_exactly_equal_test(f, 0.01, 0)
 | 
						|
 | 
						|
    def test_exactly_equal_absolute_decimals(self):
 | 
						|
        # Test equal Decimal values are exactly equal with an absolute error.
 | 
						|
        self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
 | 
						|
        self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)
 | 
						|
 | 
						|
    def test_exactly_equal_relative(self):
 | 
						|
        # Test that equal values are exactly equal with a relative error.
 | 
						|
        for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
 | 
						|
            self.do_exactly_equal_test(x, 0, 0.01)
 | 
						|
        self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))
 | 
						|
 | 
						|
    def test_exactly_equal_both(self):
 | 
						|
        # Test that equal values are equal when both tol and rel are given.
 | 
						|
        for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
 | 
						|
            self.do_exactly_equal_test(x, 0.1, 0.01)
 | 
						|
        D = Decimal
 | 
						|
        self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))
 | 
						|
 | 
						|
 | 
						|
class ApproxEqualUnequalTest(unittest.TestCase):
 | 
						|
    # Unequal values should compare unequal with zero error tolerances.
 | 
						|
    # Test cases for unequal values, with exact equality test.
 | 
						|
 | 
						|
    def do_exactly_unequal_test(self, x):
 | 
						|
        for a in (x, -x):
 | 
						|
            result = approx_equal(a, a+1, tol=0, rel=0)
 | 
						|
            self.assertFalse(result, 'inequality failure for x=%r' % a)
 | 
						|
 | 
						|
    def test_exactly_unequal_ints(self):
 | 
						|
        # Test unequal int values are unequal with zero error tolerance.
 | 
						|
        for n in [951, 572305, 478, 917, 17240]:
 | 
						|
            self.do_exactly_unequal_test(n)
 | 
						|
 | 
						|
    def test_exactly_unequal_floats(self):
 | 
						|
        # Test unequal float values are unequal with zero error tolerance.
 | 
						|
        for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
 | 
						|
            self.do_exactly_unequal_test(x)
 | 
						|
 | 
						|
    def test_exactly_unequal_fractions(self):
 | 
						|
        # Test that unequal Fractions are unequal with zero error tolerance.
 | 
						|
        F = Fraction
 | 
						|
        for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
 | 
						|
            self.do_exactly_unequal_test(f)
 | 
						|
 | 
						|
    def test_exactly_unequal_decimals(self):
 | 
						|
        # Test that unequal Decimals are unequal with zero error tolerance.
 | 
						|
        for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
 | 
						|
            self.do_exactly_unequal_test(d)
 | 
						|
 | 
						|
 | 
						|
class ApproxEqualInexactTest(unittest.TestCase):
 | 
						|
    # Inexact test cases for approx_error.
 | 
						|
    # Test cases when comparing two values that are not exactly equal.
 | 
						|
 | 
						|
    # === Absolute error tests ===
 | 
						|
 | 
						|
    def do_approx_equal_abs_test(self, x, delta):
 | 
						|
        template = "Test failure for x={!r}, y={!r}"
 | 
						|
        for y in (x + delta, x - delta):
 | 
						|
            msg = template.format(x, y)
 | 
						|
            self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
 | 
						|
            self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)
 | 
						|
 | 
						|
    def test_approx_equal_absolute_ints(self):
 | 
						|
        # Test approximate equality of ints with an absolute error.
 | 
						|
        for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
 | 
						|
            self.do_approx_equal_abs_test(n, 10)
 | 
						|
            self.do_approx_equal_abs_test(n, 2)
 | 
						|
 | 
						|
    def test_approx_equal_absolute_floats(self):
 | 
						|
        # Test approximate equality of floats with an absolute error.
 | 
						|
        for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
 | 
						|
            self.do_approx_equal_abs_test(x, 1.5)
 | 
						|
            self.do_approx_equal_abs_test(x, 0.01)
 | 
						|
            self.do_approx_equal_abs_test(x, 0.0001)
 | 
						|
 | 
						|
    def test_approx_equal_absolute_fractions(self):
 | 
						|
        # Test approximate equality of Fractions with an absolute error.
 | 
						|
        delta = Fraction(1, 29)
 | 
						|
        numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
 | 
						|
        for f in (Fraction(n, 29) for n in numerators):
 | 
						|
            self.do_approx_equal_abs_test(f, delta)
 | 
						|
            self.do_approx_equal_abs_test(f, float(delta))
 | 
						|
 | 
						|
    def test_approx_equal_absolute_decimals(self):
 | 
						|
        # Test approximate equality of Decimals with an absolute error.
 | 
						|
        delta = Decimal("0.01")
 | 
						|
        for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
 | 
						|
            self.do_approx_equal_abs_test(d, delta)
 | 
						|
            self.do_approx_equal_abs_test(-d, delta)
 | 
						|
 | 
						|
    def test_cross_zero(self):
 | 
						|
        # Test for the case of the two values having opposite signs.
 | 
						|
        self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))
 | 
						|
 | 
						|
    # === Relative error tests ===
 | 
						|
 | 
						|
    def do_approx_equal_rel_test(self, x, delta):
 | 
						|
        template = "Test failure for x={!r}, y={!r}"
 | 
						|
        for y in (x*(1+delta), x*(1-delta)):
 | 
						|
            msg = template.format(x, y)
 | 
						|
            self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
 | 
						|
            self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)
 | 
						|
 | 
						|
    def test_approx_equal_relative_ints(self):
 | 
						|
        # Test approximate equality of ints with a relative error.
 | 
						|
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
 | 
						|
        self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
 | 
						|
        # ---
 | 
						|
        self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
 | 
						|
        self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
 | 
						|
        self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))
 | 
						|
 | 
						|
    def test_approx_equal_relative_floats(self):
 | 
						|
        # Test approximate equality of floats with a relative error.
 | 
						|
        for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
 | 
						|
            self.do_approx_equal_rel_test(x, 0.02)
 | 
						|
            self.do_approx_equal_rel_test(x, 0.0001)
 | 
						|
 | 
						|
    def test_approx_equal_relative_fractions(self):
 | 
						|
        # Test approximate equality of Fractions with a relative error.
 | 
						|
        F = Fraction
 | 
						|
        delta = Fraction(3, 8)
 | 
						|
        for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
 | 
						|
            for d in (delta, float(delta)):
 | 
						|
                self.do_approx_equal_rel_test(f, d)
 | 
						|
                self.do_approx_equal_rel_test(-f, d)
 | 
						|
 | 
						|
    def test_approx_equal_relative_decimals(self):
 | 
						|
        # Test approximate equality of Decimals with a relative error.
 | 
						|
        for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
 | 
						|
            self.do_approx_equal_rel_test(d, Decimal("0.001"))
 | 
						|
            self.do_approx_equal_rel_test(-d, Decimal("0.05"))
 | 
						|
 | 
						|
    # === Both absolute and relative error tests ===
 | 
						|
 | 
						|
    # There are four cases to consider:
 | 
						|
    #   1) actual error <= both absolute and relative error
 | 
						|
    #   2) actual error <= absolute error but > relative error
 | 
						|
    #   3) actual error <= relative error but > absolute error
 | 
						|
    #   4) actual error > both absolute and relative error
 | 
						|
 | 
						|
    def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
 | 
						|
        check = self.assertTrue if tol_flag else self.assertFalse
 | 
						|
        check(approx_equal(a, b, tol=tol, rel=0))
 | 
						|
        check = self.assertTrue if rel_flag else self.assertFalse
 | 
						|
        check(approx_equal(a, b, tol=0, rel=rel))
 | 
						|
        check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
 | 
						|
        check(approx_equal(a, b, tol=tol, rel=rel))
 | 
						|
 | 
						|
    def test_approx_equal_both1(self):
 | 
						|
        # Test actual error <= both absolute and relative error.
 | 
						|
        self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
 | 
						|
        self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)
 | 
						|
 | 
						|
    def test_approx_equal_both2(self):
 | 
						|
        # Test actual error <= absolute error but > relative error.
 | 
						|
        self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)
 | 
						|
 | 
						|
    def test_approx_equal_both3(self):
 | 
						|
        # Test actual error <= relative error but > absolute error.
 | 
						|
        self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)
 | 
						|
 | 
						|
    def test_approx_equal_both4(self):
 | 
						|
        # Test actual error > both absolute and relative error.
 | 
						|
        self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
 | 
						|
        self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)
 | 
						|
 | 
						|
 | 
						|
class ApproxEqualSpecialsTest(unittest.TestCase):
 | 
						|
    # Test approx_equal with NANs and INFs and zeroes.
 | 
						|
 | 
						|
    def test_inf(self):
 | 
						|
        for type_ in (float, Decimal):
 | 
						|
            inf = type_('inf')
 | 
						|
            self.assertTrue(approx_equal(inf, inf))
 | 
						|
            self.assertTrue(approx_equal(inf, inf, 0, 0))
 | 
						|
            self.assertTrue(approx_equal(inf, inf, 1, 0.01))
 | 
						|
            self.assertTrue(approx_equal(-inf, -inf))
 | 
						|
            self.assertFalse(approx_equal(inf, -inf))
 | 
						|
            self.assertFalse(approx_equal(inf, 1000))
 | 
						|
 | 
						|
    def test_nan(self):
 | 
						|
        for type_ in (float, Decimal):
 | 
						|
            nan = type_('nan')
 | 
						|
            for other in (nan, type_('inf'), 1000):
 | 
						|
                self.assertFalse(approx_equal(nan, other))
 | 
						|
 | 
						|
    def test_float_zeroes(self):
 | 
						|
        nzero = math.copysign(0.0, -1)
 | 
						|
        self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))
 | 
						|
 | 
						|
    def test_decimal_zeroes(self):
 | 
						|
        nzero = Decimal("-0.0")
 | 
						|
        self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))
 | 
						|
 | 
						|
 | 
						|
class TestApproxEqualErrors(unittest.TestCase):
 | 
						|
    # Test error conditions of approx_equal.
 | 
						|
 | 
						|
    def test_bad_tol(self):
 | 
						|
        # Test negative tol raises.
 | 
						|
        self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)
 | 
						|
 | 
						|
    def test_bad_rel(self):
 | 
						|
        # Test negative rel raises.
 | 
						|
        self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)
 | 
						|
 | 
						|
 | 
						|
# --- Tests for NumericTestCase ---
 | 
						|
 | 
						|
# The formatting routine that generates the error messages is complex enough
 | 
						|
# that it too needs testing.
 | 
						|
 | 
						|
class TestNumericTestCase(unittest.TestCase):
 | 
						|
    # The exact wording of NumericTestCase error messages is *not* guaranteed,
 | 
						|
    # but we need to give them some sort of test to ensure that they are
 | 
						|
    # generated correctly. As a compromise, we look for specific substrings
 | 
						|
    # that are expected to be found even if the overall error message changes.
 | 
						|
 | 
						|
    def do_test(self, args):
 | 
						|
        actual_msg = NumericTestCase._make_std_err_msg(*args)
 | 
						|
        expected = self.generate_substrings(*args)
 | 
						|
        for substring in expected:
 | 
						|
            self.assertIn(substring, actual_msg)
 | 
						|
 | 
						|
    def test_numerictestcase_is_testcase(self):
 | 
						|
        # Ensure that NumericTestCase actually is a TestCase.
 | 
						|
        self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))
 | 
						|
 | 
						|
    def test_error_msg_numeric(self):
 | 
						|
        # Test the error message generated for numeric comparisons.
 | 
						|
        args = (2.5, 4.0, 0.5, 0.25, None)
 | 
						|
        self.do_test(args)
 | 
						|
 | 
						|
    def test_error_msg_sequence(self):
 | 
						|
        # Test the error message generated for sequence comparisons.
 | 
						|
        args = (3.75, 8.25, 1.25, 0.5, 7)
 | 
						|
        self.do_test(args)
 | 
						|
 | 
						|
    def generate_substrings(self, first, second, tol, rel, idx):
 | 
						|
        """Return substrings we expect to see in error messages."""
 | 
						|
        abs_err, rel_err = _calc_errors(first, second)
 | 
						|
        substrings = [
 | 
						|
                'tol=%r' % tol,
 | 
						|
                'rel=%r' % rel,
 | 
						|
                'absolute error = %r' % abs_err,
 | 
						|
                'relative error = %r' % rel_err,
 | 
						|
                ]
 | 
						|
        if idx is not None:
 | 
						|
            substrings.append('differ at index %d' % idx)
 | 
						|
        return substrings
 | 
						|
 | 
						|
 | 
						|
# =======================================
 | 
						|
# === Tests for the statistics module ===
 | 
						|
# =======================================
 | 
						|
 | 
						|
 | 
						|
class GlobalsTest(unittest.TestCase):
 | 
						|
    module = statistics
 | 
						|
    expected_metadata = ["__doc__", "__all__"]
 | 
						|
 | 
						|
    def test_meta(self):
 | 
						|
        # Test for the existence of metadata.
 | 
						|
        for meta in self.expected_metadata:
 | 
						|
            self.assertTrue(hasattr(self.module, meta),
 | 
						|
                            "%s not present" % meta)
 | 
						|
 | 
						|
    def test_check_all(self):
 | 
						|
        # Check everything in __all__ exists and is public.
 | 
						|
        module = self.module
 | 
						|
        for name in module.__all__:
 | 
						|
            # No private names in __all__:
 | 
						|
            self.assertFalse(name.startswith("_"),
 | 
						|
                             'private name "%s" in __all__' % name)
 | 
						|
            # And anything in __all__ must exist:
 | 
						|
            self.assertTrue(hasattr(module, name),
 | 
						|
                            'missing name "%s" in __all__' % name)
 | 
						|
 | 
						|
 | 
						|
class DocTests(unittest.TestCase):
 | 
						|
    @unittest.skipIf(sys.flags.optimize >= 2,
 | 
						|
                     "Docstrings are omitted with -OO and above")
 | 
						|
    def test_doc_tests(self):
 | 
						|
        failed, tried = doctest.testmod(statistics)
 | 
						|
        self.assertGreater(tried, 0)
 | 
						|
        self.assertEqual(failed, 0)
 | 
						|
 | 
						|
class StatisticsErrorTest(unittest.TestCase):
 | 
						|
    def test_has_exception(self):
 | 
						|
        errmsg = (
 | 
						|
                "Expected StatisticsError to be a ValueError, but got a"
 | 
						|
                " subclass of %r instead."
 | 
						|
                )
 | 
						|
        self.assertTrue(hasattr(statistics, 'StatisticsError'))
 | 
						|
        self.assertTrue(
 | 
						|
                issubclass(statistics.StatisticsError, ValueError),
 | 
						|
                errmsg % statistics.StatisticsError.__base__
 | 
						|
                )
 | 
						|
 | 
						|
 | 
						|
# === Tests for private utility functions ===
 | 
						|
 | 
						|
class ExactRatioTest(unittest.TestCase):
 | 
						|
    # Test _exact_ratio utility.
 | 
						|
 | 
						|
    def test_int(self):
 | 
						|
        for i in (-20, -3, 0, 5, 99, 10**20):
 | 
						|
            self.assertEqual(statistics._exact_ratio(i), (i, 1))
 | 
						|
 | 
						|
    def test_fraction(self):
 | 
						|
        numerators = (-5, 1, 12, 38)
 | 
						|
        for n in numerators:
 | 
						|
            f = Fraction(n, 37)
 | 
						|
            self.assertEqual(statistics._exact_ratio(f), (n, 37))
 | 
						|
 | 
						|
    def test_float(self):
 | 
						|
        self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
 | 
						|
        self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
 | 
						|
        data = [random.uniform(-100, 100) for _ in range(100)]
 | 
						|
        for x in data:
 | 
						|
            num, den = statistics._exact_ratio(x)
 | 
						|
            self.assertEqual(x, num/den)
 | 
						|
 | 
						|
    @unittest.skipIf(True, "temporarily disabled: see #25928")
 | 
						|
    def test_decimal(self):
 | 
						|
        D = Decimal
 | 
						|
        _exact_ratio = statistics._exact_ratio
 | 
						|
        self.assertEqual(_exact_ratio(D("0.125")), (125, 1000))
 | 
						|
        self.assertEqual(_exact_ratio(D("12.345")), (12345, 1000))
 | 
						|
        self.assertEqual(_exact_ratio(D("-1.98")), (-198, 100))
 | 
						|
 | 
						|
    def test_inf(self):
 | 
						|
        INF = float("INF")
 | 
						|
        class MyFloat(float):
 | 
						|
            pass
 | 
						|
        class MyDecimal(Decimal):
 | 
						|
            pass
 | 
						|
        for inf in (INF, -INF):
 | 
						|
            for type_ in (float, MyFloat, Decimal, MyDecimal):
 | 
						|
                x = type_(inf)
 | 
						|
                ratio = statistics._exact_ratio(x)
 | 
						|
                self.assertEqual(ratio, (x, None))
 | 
						|
                self.assertEqual(type(ratio[0]), type_)
 | 
						|
                self.assertTrue(math.isinf(ratio[0]))
 | 
						|
 | 
						|
    def test_float_nan(self):
 | 
						|
        NAN = float("NAN")
 | 
						|
        class MyFloat(float):
 | 
						|
            pass
 | 
						|
        for nan in (NAN, MyFloat(NAN)):
 | 
						|
            ratio = statistics._exact_ratio(nan)
 | 
						|
            self.assertTrue(math.isnan(ratio[0]))
 | 
						|
            self.assertIs(ratio[1], None)
 | 
						|
            self.assertEqual(type(ratio[0]), type(nan))
 | 
						|
 | 
						|
    @unittest.skipIf(True, "temporarily disabled: see #25928")
 | 
						|
    def test_decimal_nan(self):
 | 
						|
        NAN = Decimal("NAN")
 | 
						|
        sNAN = Decimal("sNAN")
 | 
						|
        class MyDecimal(Decimal):
 | 
						|
            pass
 | 
						|
        for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)):
 | 
						|
            ratio = statistics._exact_ratio(nan)
 | 
						|
            self.assertTrue(_nan_equal(ratio[0], nan))
 | 
						|
            self.assertIs(ratio[1], None)
 | 
						|
            self.assertEqual(type(ratio[0]), type(nan))
 | 
						|
 | 
						|
 | 
						|
class DecimalToRatioTest(unittest.TestCase):
 | 
						|
    # Test _decimal_to_ratio private function.
 | 
						|
 | 
						|
    def test_infinity(self):
 | 
						|
        # Test that INFs are handled correctly.
 | 
						|
        inf = Decimal('INF')
 | 
						|
        self.assertEqual(statistics._decimal_to_ratio(inf), (inf, None))
 | 
						|
        self.assertEqual(statistics._decimal_to_ratio(-inf), (-inf, None))
 | 
						|
 | 
						|
    def test_nan(self):
 | 
						|
        # Test that NANs are handled correctly.
 | 
						|
        for nan in (Decimal('NAN'), Decimal('sNAN')):
 | 
						|
            num, den = statistics._decimal_to_ratio(nan)
 | 
						|
            # Because NANs always compare non-equal, we cannot use assertEqual.
 | 
						|
            # Nor can we use an identity test, as we don't guarantee anything
 | 
						|
            # about the object identity.
 | 
						|
            self.assertTrue(_nan_equal(num, nan))
 | 
						|
            self.assertIs(den, None)
 | 
						|
 | 
						|
    def test_sign(self):
 | 
						|
        # Test sign is calculated correctly.
 | 
						|
        numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
 | 
						|
        for d in numbers:
 | 
						|
            # First test positive decimals.
 | 
						|
            assert d > 0
 | 
						|
            num, den = statistics._decimal_to_ratio(d)
 | 
						|
            self.assertGreaterEqual(num, 0)
 | 
						|
            self.assertGreater(den, 0)
 | 
						|
            # Then test negative decimals.
 | 
						|
            num, den = statistics._decimal_to_ratio(-d)
 | 
						|
            self.assertLessEqual(num, 0)
 | 
						|
            self.assertGreater(den, 0)
 | 
						|
 | 
						|
    def test_negative_exponent(self):
 | 
						|
        # Test result when the exponent is negative.
 | 
						|
        t = statistics._decimal_to_ratio(Decimal("0.1234"))
 | 
						|
        self.assertEqual(t, (1234, 10000))
 | 
						|
 | 
						|
    def test_positive_exponent(self):
 | 
						|
        # Test results when the exponent is positive.
 | 
						|
        t = statistics._decimal_to_ratio(Decimal("1.234e7"))
 | 
						|
        self.assertEqual(t, (12340000, 1))
 | 
						|
 | 
						|
    def test_regression_20536(self):
 | 
						|
        # Regression test for issue 20536.
 | 
						|
        # See http://bugs.python.org/issue20536
 | 
						|
        t = statistics._decimal_to_ratio(Decimal("1e2"))
 | 
						|
        self.assertEqual(t, (100, 1))
 | 
						|
        t = statistics._decimal_to_ratio(Decimal("1.47e5"))
 | 
						|
        self.assertEqual(t, (147000, 1))
 | 
						|
 | 
						|
 | 
						|
class IsFiniteTest(unittest.TestCase):
 | 
						|
    # Test _isfinite private function.
 | 
						|
 | 
						|
    def test_finite(self):
 | 
						|
        # Test that finite numbers are recognised as finite.
 | 
						|
        for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")):
 | 
						|
            self.assertTrue(statistics._isfinite(x))
 | 
						|
 | 
						|
    def test_infinity(self):
 | 
						|
        # Test that INFs are not recognised as finite.
 | 
						|
        for x in (float("inf"), Decimal("inf")):
 | 
						|
            self.assertFalse(statistics._isfinite(x))
 | 
						|
 | 
						|
    def test_nan(self):
 | 
						|
        # Test that NANs are not recognised as finite.
 | 
						|
        for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")):
 | 
						|
            self.assertFalse(statistics._isfinite(x))
 | 
						|
 | 
						|
 | 
						|
class CoerceTest(unittest.TestCase):
 | 
						|
    # Test that private function _coerce correctly deals with types.
 | 
						|
 | 
						|
    # The coercion rules are currently an implementation detail, although at
 | 
						|
    # some point that should change. The tests and comments here define the
 | 
						|
    # correct implementation.
 | 
						|
 | 
						|
    # Pre-conditions of _coerce:
 | 
						|
    #
 | 
						|
    #   - The first time _sum calls _coerce, the
 | 
						|
    #   - coerce(T, S) will never be called with bool as the first argument;
 | 
						|
    #     this is a pre-condition, guarded with an assertion.
 | 
						|
 | 
						|
    #
 | 
						|
    #   - coerce(T, T) will always return T; we assume T is a valid numeric
 | 
						|
    #     type. Violate this assumption at your own risk.
 | 
						|
    #
 | 
						|
    #   - Apart from as above, bool is treated as if it were actually int.
 | 
						|
    #
 | 
						|
    #   - coerce(int, X) and coerce(X, int) return X.
 | 
						|
    #   -
 | 
						|
    def test_bool(self):
 | 
						|
        # bool is somewhat special, due to the pre-condition that it is
 | 
						|
        # never given as the first argument to _coerce, and that it cannot
 | 
						|
        # be subclassed. So we test it specially.
 | 
						|
        for T in (int, float, Fraction, Decimal):
 | 
						|
            self.assertIs(statistics._coerce(T, bool), T)
 | 
						|
            class MyClass(T): pass
 | 
						|
            self.assertIs(statistics._coerce(MyClass, bool), MyClass)
 | 
						|
 | 
						|
    def assertCoerceTo(self, A, B):
 | 
						|
        """Assert that type A coerces to B."""
 | 
						|
        self.assertIs(statistics._coerce(A, B), B)
 | 
						|
        self.assertIs(statistics._coerce(B, A), B)
 | 
						|
 | 
						|
    def check_coerce_to(self, A, B):
 | 
						|
        """Checks that type A coerces to B, including subclasses."""
 | 
						|
        # Assert that type A is coerced to B.
 | 
						|
        self.assertCoerceTo(A, B)
 | 
						|
        # Subclasses of A are also coerced to B.
 | 
						|
        class SubclassOfA(A): pass
 | 
						|
        self.assertCoerceTo(SubclassOfA, B)
 | 
						|
        # A, and subclasses of A, are coerced to subclasses of B.
 | 
						|
        class SubclassOfB(B): pass
 | 
						|
        self.assertCoerceTo(A, SubclassOfB)
 | 
						|
        self.assertCoerceTo(SubclassOfA, SubclassOfB)
 | 
						|
 | 
						|
    def assertCoerceRaises(self, A, B):
 | 
						|
        """Assert that coercing A to B, or vice versa, raises TypeError."""
 | 
						|
        self.assertRaises(TypeError, statistics._coerce, (A, B))
 | 
						|
        self.assertRaises(TypeError, statistics._coerce, (B, A))
 | 
						|
 | 
						|
    def check_type_coercions(self, T):
 | 
						|
        """Check that type T coerces correctly with subclasses of itself."""
 | 
						|
        assert T is not bool
 | 
						|
        # Coercing a type with itself returns the same type.
 | 
						|
        self.assertIs(statistics._coerce(T, T), T)
 | 
						|
        # Coercing a type with a subclass of itself returns the subclass.
 | 
						|
        class U(T): pass
 | 
						|
        class V(T): pass
 | 
						|
        class W(U): pass
 | 
						|
        for typ in (U, V, W):
 | 
						|
            self.assertCoerceTo(T, typ)
 | 
						|
        self.assertCoerceTo(U, W)
 | 
						|
        # Coercing two subclasses that aren't parent/child is an error.
 | 
						|
        self.assertCoerceRaises(U, V)
 | 
						|
        self.assertCoerceRaises(V, W)
 | 
						|
 | 
						|
    def test_int(self):
 | 
						|
        # Check that int coerces correctly.
 | 
						|
        self.check_type_coercions(int)
 | 
						|
        for typ in (float, Fraction, Decimal):
 | 
						|
            self.check_coerce_to(int, typ)
 | 
						|
 | 
						|
    def test_fraction(self):
 | 
						|
        # Check that Fraction coerces correctly.
 | 
						|
        self.check_type_coercions(Fraction)
 | 
						|
        self.check_coerce_to(Fraction, float)
 | 
						|
 | 
						|
    def test_decimal(self):
 | 
						|
        # Check that Decimal coerces correctly.
 | 
						|
        self.check_type_coercions(Decimal)
 | 
						|
 | 
						|
    def test_float(self):
 | 
						|
        # Check that float coerces correctly.
 | 
						|
        self.check_type_coercions(float)
 | 
						|
 | 
						|
    def test_non_numeric_types(self):
 | 
						|
        for bad_type in (str, list, type(None), tuple, dict):
 | 
						|
            for good_type in (int, float, Fraction, Decimal):
 | 
						|
                self.assertCoerceRaises(good_type, bad_type)
 | 
						|
 | 
						|
    def test_incompatible_types(self):
 | 
						|
        # Test that incompatible types raise.
 | 
						|
        for T in (float, Fraction):
 | 
						|
            class MySubclass(T): pass
 | 
						|
            self.assertCoerceRaises(T, Decimal)
 | 
						|
            self.assertCoerceRaises(MySubclass, Decimal)
 | 
						|
 | 
						|
 | 
						|
class ConvertTest(unittest.TestCase):
 | 
						|
    # Test private _convert function.
 | 
						|
 | 
						|
    def check_exact_equal(self, x, y):
 | 
						|
        """Check that x equals y, and has the same type as well."""
 | 
						|
        self.assertEqual(x, y)
 | 
						|
        self.assertIs(type(x), type(y))
 | 
						|
 | 
						|
    def test_int(self):
 | 
						|
        # Test conversions to int.
 | 
						|
        x = statistics._convert(Fraction(71), int)
 | 
						|
        self.check_exact_equal(x, 71)
 | 
						|
        class MyInt(int): pass
 | 
						|
        x = statistics._convert(Fraction(17), MyInt)
 | 
						|
        self.check_exact_equal(x, MyInt(17))
 | 
						|
 | 
						|
    def test_fraction(self):
 | 
						|
        # Test conversions to Fraction.
 | 
						|
        x = statistics._convert(Fraction(95, 99), Fraction)
 | 
						|
        self.check_exact_equal(x, Fraction(95, 99))
 | 
						|
        class MyFraction(Fraction):
 | 
						|
            def __truediv__(self, other):
 | 
						|
                return self.__class__(super().__truediv__(other))
 | 
						|
        x = statistics._convert(Fraction(71, 13), MyFraction)
 | 
						|
        self.check_exact_equal(x, MyFraction(71, 13))
 | 
						|
 | 
						|
    def test_float(self):
 | 
						|
        # Test conversions to float.
 | 
						|
        x = statistics._convert(Fraction(-1, 2), float)
 | 
						|
        self.check_exact_equal(x, -0.5)
 | 
						|
        class MyFloat(float):
 | 
						|
            def __truediv__(self, other):
 | 
						|
                return self.__class__(super().__truediv__(other))
 | 
						|
        x = statistics._convert(Fraction(9, 8), MyFloat)
 | 
						|
        self.check_exact_equal(x, MyFloat(1.125))
 | 
						|
 | 
						|
    def test_decimal(self):
 | 
						|
        # Test conversions to Decimal.
 | 
						|
        x = statistics._convert(Fraction(1, 40), Decimal)
 | 
						|
        self.check_exact_equal(x, Decimal("0.025"))
 | 
						|
        class MyDecimal(Decimal):
 | 
						|
            def __truediv__(self, other):
 | 
						|
                return self.__class__(super().__truediv__(other))
 | 
						|
        x = statistics._convert(Fraction(-15, 16), MyDecimal)
 | 
						|
        self.check_exact_equal(x, MyDecimal("-0.9375"))
 | 
						|
 | 
						|
    def test_inf(self):
 | 
						|
        for INF in (float('inf'), Decimal('inf')):
 | 
						|
            for inf in (INF, -INF):
 | 
						|
                x = statistics._convert(inf, type(inf))
 | 
						|
                self.check_exact_equal(x, inf)
 | 
						|
 | 
						|
    def test_nan(self):
 | 
						|
        for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')):
 | 
						|
            x = statistics._convert(nan, type(nan))
 | 
						|
            self.assertTrue(_nan_equal(x, nan))
 | 
						|
 | 
						|
 | 
						|
# === Tests for public functions ===
 | 
						|
 | 
						|
class UnivariateCommonMixin:
 | 
						|
    # Common tests for most univariate functions that take a data argument.
 | 
						|
 | 
						|
    def test_no_args(self):
 | 
						|
        # Fail if given no arguments.
 | 
						|
        self.assertRaises(TypeError, self.func)
 | 
						|
 | 
						|
    def test_empty_data(self):
 | 
						|
        # Fail when the data argument (first argument) is empty.
 | 
						|
        for empty in ([], (), iter([])):
 | 
						|
            self.assertRaises(statistics.StatisticsError, self.func, empty)
 | 
						|
 | 
						|
    def prepare_data(self):
 | 
						|
        """Return int data for various tests."""
 | 
						|
        data = list(range(10))
 | 
						|
        while data == sorted(data):
 | 
						|
            random.shuffle(data)
 | 
						|
        return data
 | 
						|
 | 
						|
    def test_no_inplace_modifications(self):
 | 
						|
        # Test that the function does not modify its input data.
 | 
						|
        data = self.prepare_data()
 | 
						|
        assert len(data) != 1  # Necessary to avoid infinite loop.
 | 
						|
        assert data != sorted(data)
 | 
						|
        saved = data[:]
 | 
						|
        assert data is not saved
 | 
						|
        _ = self.func(data)
 | 
						|
        self.assertListEqual(data, saved, "data has been modified")
 | 
						|
 | 
						|
    def test_order_doesnt_matter(self):
 | 
						|
        # Test that the order of data points doesn't change the result.
 | 
						|
 | 
						|
        # CAUTION: due to floating point rounding errors, the result actually
 | 
						|
        # may depend on the order. Consider this test representing an ideal.
 | 
						|
        # To avoid this test failing, only test with exact values such as ints
 | 
						|
        # or Fractions.
 | 
						|
        data = [1, 2, 3, 3, 3, 4, 5, 6]*100
 | 
						|
        expected = self.func(data)
 | 
						|
        random.shuffle(data)
 | 
						|
        actual = self.func(data)
 | 
						|
        self.assertEqual(expected, actual)
 | 
						|
 | 
						|
    def test_type_of_data_collection(self):
 | 
						|
        # Test that the type of iterable data doesn't effect the result.
 | 
						|
        class MyList(list):
 | 
						|
            pass
 | 
						|
        class MyTuple(tuple):
 | 
						|
            pass
 | 
						|
        def generator(data):
 | 
						|
            return (obj for obj in data)
 | 
						|
        data = self.prepare_data()
 | 
						|
        expected = self.func(data)
 | 
						|
        for kind in (list, tuple, iter, MyList, MyTuple, generator):
 | 
						|
            result = self.func(kind(data))
 | 
						|
            self.assertEqual(result, expected)
 | 
						|
 | 
						|
    def test_range_data(self):
 | 
						|
        # Test that functions work with range objects.
 | 
						|
        data = range(20, 50, 3)
 | 
						|
        expected = self.func(list(data))
 | 
						|
        self.assertEqual(self.func(data), expected)
 | 
						|
 | 
						|
    def test_bad_arg_types(self):
 | 
						|
        # Test that function raises when given data of the wrong type.
 | 
						|
 | 
						|
        # Don't roll the following into a loop like this:
 | 
						|
        #   for bad in list_of_bad:
 | 
						|
        #       self.check_for_type_error(bad)
 | 
						|
        #
 | 
						|
        # Since assertRaises doesn't show the arguments that caused the test
 | 
						|
        # failure, it is very difficult to debug these test failures when the
 | 
						|
        # following are in a loop.
 | 
						|
        self.check_for_type_error(None)
 | 
						|
        self.check_for_type_error(23)
 | 
						|
        self.check_for_type_error(42.0)
 | 
						|
        self.check_for_type_error(object())
 | 
						|
 | 
						|
    def check_for_type_error(self, *args):
 | 
						|
        self.assertRaises(TypeError, self.func, *args)
 | 
						|
 | 
						|
    def test_type_of_data_element(self):
 | 
						|
        # Check the type of data elements doesn't affect the numeric result.
 | 
						|
        # This is a weaker test than UnivariateTypeMixin.testTypesConserved,
 | 
						|
        # because it checks the numeric result by equality, but not by type.
 | 
						|
        class MyFloat(float):
 | 
						|
            def __truediv__(self, other):
 | 
						|
                return type(self)(super().__truediv__(other))
 | 
						|
            def __add__(self, other):
 | 
						|
                return type(self)(super().__add__(other))
 | 
						|
            __radd__ = __add__
 | 
						|
 | 
						|
        raw = self.prepare_data()
 | 
						|
        expected = self.func(raw)
 | 
						|
        for kind in (float, MyFloat, Decimal, Fraction):
 | 
						|
            data = [kind(x) for x in raw]
 | 
						|
            result = type(expected)(self.func(data))
 | 
						|
            self.assertEqual(result, expected)
 | 
						|
 | 
						|
 | 
						|
class UnivariateTypeMixin:
 | 
						|
    """Mixin class for type-conserving functions.
 | 
						|
 | 
						|
    This mixin class holds test(s) for functions which conserve the type of
 | 
						|
    individual data points. E.g. the mean of a list of Fractions should itself
 | 
						|
    be a Fraction.
 | 
						|
 | 
						|
    Not all tests to do with types need go in this class. Only those that
 | 
						|
    rely on the function returning the same type as its input data.
 | 
						|
    """
 | 
						|
    def test_types_conserved(self):
 | 
						|
        # Test that functions keeps the same type as their data points.
 | 
						|
        # (Excludes mixed data types.) This only tests the type of the return
 | 
						|
        # result, not the value.
 | 
						|
        class MyFloat(float):
 | 
						|
            def __truediv__(self, other):
 | 
						|
                return type(self)(super().__truediv__(other))
 | 
						|
            def __sub__(self, other):
 | 
						|
                return type(self)(super().__sub__(other))
 | 
						|
            def __rsub__(self, other):
 | 
						|
                return type(self)(super().__rsub__(other))
 | 
						|
            def __pow__(self, other):
 | 
						|
                return type(self)(super().__pow__(other))
 | 
						|
            def __add__(self, other):
 | 
						|
                return type(self)(super().__add__(other))
 | 
						|
            __radd__ = __add__
 | 
						|
 | 
						|
        data = self.prepare_data()
 | 
						|
        for kind in (float, Decimal, Fraction, MyFloat):
 | 
						|
            d = [kind(x) for x in data]
 | 
						|
            result = self.func(d)
 | 
						|
            self.assertIs(type(result), kind)
 | 
						|
 | 
						|
 | 
						|
class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin):
 | 
						|
    # Common test cases for statistics._sum() function.
 | 
						|
 | 
						|
    # This test suite looks only at the numeric value returned by _sum,
 | 
						|
    # after conversion to the appropriate type.
 | 
						|
    def setUp(self):
 | 
						|
        def simplified_sum(*args):
 | 
						|
            T, value, n = statistics._sum(*args)
 | 
						|
            return statistics._coerce(value, T)
 | 
						|
        self.func = simplified_sum
 | 
						|
 | 
						|
 | 
						|
class TestSum(NumericTestCase):
 | 
						|
    # Test cases for statistics._sum() function.
 | 
						|
 | 
						|
    # These tests look at the entire three value tuple returned by _sum.
 | 
						|
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics._sum
 | 
						|
 | 
						|
    def test_empty_data(self):
 | 
						|
        # Override test for empty data.
 | 
						|
        for data in ([], (), iter([])):
 | 
						|
            self.assertEqual(self.func(data), (int, Fraction(0), 0))
 | 
						|
            self.assertEqual(self.func(data, 23), (int, Fraction(23), 0))
 | 
						|
            self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0))
 | 
						|
 | 
						|
    def test_ints(self):
 | 
						|
        self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]),
 | 
						|
                         (int, Fraction(60), 8))
 | 
						|
        self.assertEqual(self.func([4, 2, 3, -8, 7], 1000),
 | 
						|
                         (int, Fraction(1008), 5))
 | 
						|
 | 
						|
    def test_floats(self):
 | 
						|
        self.assertEqual(self.func([0.25]*20),
 | 
						|
                         (float, Fraction(5.0), 20))
 | 
						|
        self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5),
 | 
						|
                         (float, Fraction(3.125), 4))
 | 
						|
 | 
						|
    def test_fractions(self):
 | 
						|
        self.assertEqual(self.func([Fraction(1, 1000)]*500),
 | 
						|
                         (Fraction, Fraction(1, 2), 500))
 | 
						|
 | 
						|
    def test_decimals(self):
 | 
						|
        D = Decimal
 | 
						|
        data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
 | 
						|
                D("3.974"), D("2.328"), D("4.617"), D("2.843"),
 | 
						|
                ]
 | 
						|
        self.assertEqual(self.func(data),
 | 
						|
                         (Decimal, Decimal("20.686"), 8))
 | 
						|
 | 
						|
    def test_compare_with_math_fsum(self):
 | 
						|
        # Compare with the math.fsum function.
 | 
						|
        # Ideally we ought to get the exact same result, but sometimes
 | 
						|
        # we differ by a very slight amount :-(
 | 
						|
        data = [random.uniform(-100, 1000) for _ in range(1000)]
 | 
						|
        self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16)
 | 
						|
 | 
						|
    def test_start_argument(self):
 | 
						|
        # Test that the optional start argument works correctly.
 | 
						|
        data = [random.uniform(1, 1000) for _ in range(100)]
 | 
						|
        t = self.func(data)[1]
 | 
						|
        self.assertEqual(t+42, self.func(data, 42)[1])
 | 
						|
        self.assertEqual(t-23, self.func(data, -23)[1])
 | 
						|
        self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1])
 | 
						|
 | 
						|
    def test_strings_fail(self):
 | 
						|
        # Sum of strings should fail.
 | 
						|
        self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
 | 
						|
        self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])
 | 
						|
 | 
						|
    def test_bytes_fail(self):
 | 
						|
        # Sum of bytes should fail.
 | 
						|
        self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
 | 
						|
        self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])
 | 
						|
 | 
						|
    def test_mixed_sum(self):
 | 
						|
        # Mixed input types are not (currently) allowed.
 | 
						|
        # Check that mixed data types fail.
 | 
						|
        self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)])
 | 
						|
        # And so does mixed start argument.
 | 
						|
        self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))
 | 
						|
 | 
						|
 | 
						|
class SumTortureTest(NumericTestCase):
 | 
						|
    def test_torture(self):
 | 
						|
        # Tim Peters' torture test for sum, and variants of same.
 | 
						|
        self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
 | 
						|
                         (float, Fraction(20000.0), 40000))
 | 
						|
        self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
 | 
						|
                         (float, Fraction(20000.0), 40000))
 | 
						|
        T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
 | 
						|
        self.assertIs(T, float)
 | 
						|
        self.assertEqual(count, 40000)
 | 
						|
        self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16)
 | 
						|
 | 
						|
 | 
						|
class SumSpecialValues(NumericTestCase):
 | 
						|
    # Test that sum works correctly with IEEE-754 special values.
 | 
						|
 | 
						|
    def test_nan(self):
 | 
						|
        for type_ in (float, Decimal):
 | 
						|
            nan = type_('nan')
 | 
						|
            result = statistics._sum([1, nan, 2])[1]
 | 
						|
            self.assertIs(type(result), type_)
 | 
						|
            self.assertTrue(math.isnan(result))
 | 
						|
 | 
						|
    def check_infinity(self, x, inf):
 | 
						|
        """Check x is an infinity of the same type and sign as inf."""
 | 
						|
        self.assertTrue(math.isinf(x))
 | 
						|
        self.assertIs(type(x), type(inf))
 | 
						|
        self.assertEqual(x > 0, inf > 0)
 | 
						|
        assert x == inf
 | 
						|
 | 
						|
    def do_test_inf(self, inf):
 | 
						|
        # Adding a single infinity gives infinity.
 | 
						|
        result = statistics._sum([1, 2, inf, 3])[1]
 | 
						|
        self.check_infinity(result, inf)
 | 
						|
        # Adding two infinities of the same sign also gives infinity.
 | 
						|
        result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
 | 
						|
        self.check_infinity(result, inf)
 | 
						|
 | 
						|
    def test_float_inf(self):
 | 
						|
        inf = float('inf')
 | 
						|
        for sign in (+1, -1):
 | 
						|
            self.do_test_inf(sign*inf)
 | 
						|
 | 
						|
    def test_decimal_inf(self):
 | 
						|
        inf = Decimal('inf')
 | 
						|
        for sign in (+1, -1):
 | 
						|
            self.do_test_inf(sign*inf)
 | 
						|
 | 
						|
    def test_float_mismatched_infs(self):
 | 
						|
        # Test that adding two infinities of opposite sign gives a NAN.
 | 
						|
        inf = float('inf')
 | 
						|
        result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
 | 
						|
        self.assertTrue(math.isnan(result))
 | 
						|
 | 
						|
    def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
 | 
						|
        # Test adding Decimal INFs with opposite sign returns NAN.
 | 
						|
        inf = Decimal('inf')
 | 
						|
        data = [1, 2, inf, 3, -inf, 4]
 | 
						|
        with decimal.localcontext(decimal.ExtendedContext):
 | 
						|
            self.assertTrue(math.isnan(statistics._sum(data)[1]))
 | 
						|
 | 
						|
    def test_decimal_basiccontext_mismatched_infs_to_nan(self):
 | 
						|
        # Test adding Decimal INFs with opposite sign raises InvalidOperation.
 | 
						|
        inf = Decimal('inf')
 | 
						|
        data = [1, 2, inf, 3, -inf, 4]
 | 
						|
        with decimal.localcontext(decimal.BasicContext):
 | 
						|
            self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
 | 
						|
 | 
						|
    @unittest.skipIf(True, "temporarily disabled: see #25928")
 | 
						|
    def test_decimal_snan_raises(self):
 | 
						|
        # Adding sNAN should raise InvalidOperation.
 | 
						|
        sNAN = Decimal('sNAN')
 | 
						|
        data = [1, sNAN, 2]
 | 
						|
        self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
 | 
						|
 | 
						|
 | 
						|
# === Tests for averages ===
 | 
						|
 | 
						|
class AverageMixin(UnivariateCommonMixin):
 | 
						|
    # Mixin class holding common tests for averages.
 | 
						|
 | 
						|
    def test_single_value(self):
 | 
						|
        # Average of a single value is the value itself.
 | 
						|
        for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
 | 
						|
            self.assertEqual(self.func([x]), x)
 | 
						|
 | 
						|
    def test_repeated_single_value(self):
 | 
						|
        # The average of a single repeated value is the value itself.
 | 
						|
        for x in (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')):
 | 
						|
            for count in (2, 5, 10, 20):
 | 
						|
                data = [x]*count
 | 
						|
                self.assertEqual(self.func(data), x)
 | 
						|
 | 
						|
 | 
						|
class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.mean
 | 
						|
 | 
						|
    def test_torture_pep(self):
 | 
						|
        # "Torture Test" from PEP-450.
 | 
						|
        self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)
 | 
						|
 | 
						|
    def test_ints(self):
 | 
						|
        # Test mean with ints.
 | 
						|
        data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), 4.8125)
 | 
						|
 | 
						|
    def test_floats(self):
 | 
						|
        # Test mean with floats.
 | 
						|
        data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), 22.015625)
 | 
						|
 | 
						|
    def test_decimals(self):
 | 
						|
        # Test mean with ints.
 | 
						|
        D = Decimal
 | 
						|
        data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), D("3.5896"))
 | 
						|
 | 
						|
    def test_fractions(self):
 | 
						|
        # Test mean with Fractions.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), F(1479, 1960))
 | 
						|
 | 
						|
    def test_inf(self):
 | 
						|
        # Test mean with infinities.
 | 
						|
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
 | 
						|
        for kind in (float, Decimal):
 | 
						|
            for sign in (1, -1):
 | 
						|
                inf = kind("inf")*sign
 | 
						|
                data = raw + [inf]
 | 
						|
                result = self.func(data)
 | 
						|
                self.assertTrue(math.isinf(result))
 | 
						|
                self.assertEqual(result, inf)
 | 
						|
 | 
						|
    def test_mismatched_infs(self):
 | 
						|
        # Test mean with infinities of opposite sign.
 | 
						|
        data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
 | 
						|
        result = self.func(data)
 | 
						|
        self.assertTrue(math.isnan(result))
 | 
						|
 | 
						|
    def test_nan(self):
 | 
						|
        # Test mean with NANs.
 | 
						|
        raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
 | 
						|
        for kind in (float, Decimal):
 | 
						|
            inf = kind("nan")
 | 
						|
            data = raw + [inf]
 | 
						|
            result = self.func(data)
 | 
						|
            self.assertTrue(math.isnan(result))
 | 
						|
 | 
						|
    def test_big_data(self):
 | 
						|
        # Test adding a large constant to every data point.
 | 
						|
        c = 1e9
 | 
						|
        data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
 | 
						|
        expected = self.func(data) + c
 | 
						|
        assert expected != c
 | 
						|
        result = self.func([x+c for x in data])
 | 
						|
        self.assertEqual(result, expected)
 | 
						|
 | 
						|
    def test_doubled_data(self):
 | 
						|
        # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
 | 
						|
        data = [random.uniform(-3, 5) for _ in range(1000)]
 | 
						|
        expected = self.func(data)
 | 
						|
        actual = self.func(data*2)
 | 
						|
        self.assertApproxEqual(actual, expected)
 | 
						|
 | 
						|
    def test_regression_20561(self):
 | 
						|
        # Regression test for issue 20561.
 | 
						|
        # See http://bugs.python.org/issue20561
 | 
						|
        d = Decimal('1e4')
 | 
						|
        self.assertEqual(statistics.mean([d]), d)
 | 
						|
 | 
						|
    def test_regression_25177(self):
 | 
						|
        # Regression test for issue 25177.
 | 
						|
        # Ensure very big and very small floats don't overflow.
 | 
						|
        # See http://bugs.python.org/issue25177.
 | 
						|
        self.assertEqual(statistics.mean(
 | 
						|
            [8.988465674311579e+307, 8.98846567431158e+307]),
 | 
						|
            8.98846567431158e+307)
 | 
						|
        big = 8.98846567431158e+307
 | 
						|
        tiny = 5e-324
 | 
						|
        for n in (2, 3, 5, 200):
 | 
						|
            self.assertEqual(statistics.mean([big]*n), big)
 | 
						|
            self.assertEqual(statistics.mean([tiny]*n), tiny)
 | 
						|
 | 
						|
 | 
						|
class TestMedian(NumericTestCase, AverageMixin):
 | 
						|
    # Common tests for median and all median.* functions.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.median
 | 
						|
 | 
						|
    def prepare_data(self):
 | 
						|
        """Overload method from UnivariateCommonMixin."""
 | 
						|
        data = super().prepare_data()
 | 
						|
        if len(data)%2 != 1:
 | 
						|
            data.append(2)
 | 
						|
        return data
 | 
						|
 | 
						|
    def test_even_ints(self):
 | 
						|
        # Test median with an even number of int data points.
 | 
						|
        data = [1, 2, 3, 4, 5, 6]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        self.assertEqual(self.func(data), 3.5)
 | 
						|
 | 
						|
    def test_odd_ints(self):
 | 
						|
        # Test median with an odd number of int data points.
 | 
						|
        data = [1, 2, 3, 4, 5, 6, 9]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        self.assertEqual(self.func(data), 4)
 | 
						|
 | 
						|
    def test_odd_fractions(self):
 | 
						|
        # Test median works with an odd number of Fractions.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), F(3, 7))
 | 
						|
 | 
						|
    def test_even_fractions(self):
 | 
						|
        # Test median works with an even number of Fractions.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), F(1, 2))
 | 
						|
 | 
						|
    def test_odd_decimals(self):
 | 
						|
        # Test median works with an odd number of Decimals.
 | 
						|
        D = Decimal
 | 
						|
        data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), D('4.2'))
 | 
						|
 | 
						|
    def test_even_decimals(self):
 | 
						|
        # Test median works with an even number of Decimals.
 | 
						|
        D = Decimal
 | 
						|
        data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), D('3.65'))
 | 
						|
 | 
						|
 | 
						|
class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
 | 
						|
    # Test conservation of data element type for median.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.median
 | 
						|
 | 
						|
    def prepare_data(self):
 | 
						|
        data = list(range(15))
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        while data == sorted(data):
 | 
						|
            random.shuffle(data)
 | 
						|
        return data
 | 
						|
 | 
						|
 | 
						|
class TestMedianLow(TestMedian, UnivariateTypeMixin):
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.median_low
 | 
						|
 | 
						|
    def test_even_ints(self):
 | 
						|
        # Test median_low with an even number of ints.
 | 
						|
        data = [1, 2, 3, 4, 5, 6]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        self.assertEqual(self.func(data), 3)
 | 
						|
 | 
						|
    def test_even_fractions(self):
 | 
						|
        # Test median_low works with an even number of Fractions.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), F(3, 7))
 | 
						|
 | 
						|
    def test_even_decimals(self):
 | 
						|
        # Test median_low works with an even number of Decimals.
 | 
						|
        D = Decimal
 | 
						|
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), D('3.3'))
 | 
						|
 | 
						|
 | 
						|
class TestMedianHigh(TestMedian, UnivariateTypeMixin):
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.median_high
 | 
						|
 | 
						|
    def test_even_ints(self):
 | 
						|
        # Test median_high with an even number of ints.
 | 
						|
        data = [1, 2, 3, 4, 5, 6]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        self.assertEqual(self.func(data), 4)
 | 
						|
 | 
						|
    def test_even_fractions(self):
 | 
						|
        # Test median_high works with an even number of Fractions.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), F(4, 7))
 | 
						|
 | 
						|
    def test_even_decimals(self):
 | 
						|
        # Test median_high works with an even number of Decimals.
 | 
						|
        D = Decimal
 | 
						|
        data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), D('4.4'))
 | 
						|
 | 
						|
 | 
						|
class TestMedianGrouped(TestMedian):
 | 
						|
    # Test median_grouped.
 | 
						|
    # Doesn't conserve data element types, so don't use TestMedianType.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.median_grouped
 | 
						|
 | 
						|
    def test_odd_number_repeated(self):
 | 
						|
        # Test median.grouped with repeated median values.
 | 
						|
        data = [12, 13, 14, 14, 14, 15, 15]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        self.assertEqual(self.func(data), 14)
 | 
						|
        #---
 | 
						|
        data = [12, 13, 14, 14, 14, 14, 15]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        self.assertEqual(self.func(data), 13.875)
 | 
						|
        #---
 | 
						|
        data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        self.assertEqual(self.func(data, 5), 19.375)
 | 
						|
        #---
 | 
						|
        data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
 | 
						|
 | 
						|
    def test_even_number_repeated(self):
 | 
						|
        # Test median.grouped with repeated median values.
 | 
						|
        data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
 | 
						|
        #---
 | 
						|
        data = [2, 3, 4, 4, 4, 5]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
 | 
						|
        #---
 | 
						|
        data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        self.assertEqual(self.func(data), 4.5)
 | 
						|
        #---
 | 
						|
        data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        self.assertEqual(self.func(data), 4.75)
 | 
						|
 | 
						|
    def test_repeated_single_value(self):
 | 
						|
        # Override method from AverageMixin.
 | 
						|
        # Yet again, failure of median_grouped to conserve the data type
 | 
						|
        # causes me headaches :-(
 | 
						|
        for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
 | 
						|
            for count in (2, 5, 10, 20):
 | 
						|
                data = [x]*count
 | 
						|
                self.assertEqual(self.func(data), float(x))
 | 
						|
 | 
						|
    def test_odd_fractions(self):
 | 
						|
        # Test median_grouped works with an odd number of Fractions.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), 3.0)
 | 
						|
 | 
						|
    def test_even_fractions(self):
 | 
						|
        # Test median_grouped works with an even number of Fractions.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), 3.25)
 | 
						|
 | 
						|
    def test_odd_decimals(self):
 | 
						|
        # Test median_grouped works with an odd number of Decimals.
 | 
						|
        D = Decimal
 | 
						|
        data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
 | 
						|
        assert len(data)%2 == 1
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), 6.75)
 | 
						|
 | 
						|
    def test_even_decimals(self):
 | 
						|
        # Test median_grouped works with an even number of Decimals.
 | 
						|
        D = Decimal
 | 
						|
        data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), 6.5)
 | 
						|
        #---
 | 
						|
        data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
 | 
						|
        assert len(data)%2 == 0
 | 
						|
        random.shuffle(data)
 | 
						|
        self.assertEqual(self.func(data), 7.0)
 | 
						|
 | 
						|
    def test_interval(self):
 | 
						|
        # Test median_grouped with interval argument.
 | 
						|
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
 | 
						|
        self.assertEqual(self.func(data, 0.25), 2.875)
 | 
						|
        data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
 | 
						|
        self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
 | 
						|
        data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
 | 
						|
        self.assertEqual(self.func(data, 20), 265.0)
 | 
						|
 | 
						|
 | 
						|
class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
 | 
						|
    # Test cases for the discrete version of mode.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.mode
 | 
						|
 | 
						|
    def prepare_data(self):
 | 
						|
        """Overload method from UnivariateCommonMixin."""
 | 
						|
        # Make sure test data has exactly one mode.
 | 
						|
        return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]
 | 
						|
 | 
						|
    def test_range_data(self):
 | 
						|
        # Override test from UnivariateCommonMixin.
 | 
						|
        data = range(20, 50, 3)
 | 
						|
        self.assertRaises(statistics.StatisticsError, self.func, data)
 | 
						|
 | 
						|
    def test_nominal_data(self):
 | 
						|
        # Test mode with nominal data.
 | 
						|
        data = 'abcbdb'
 | 
						|
        self.assertEqual(self.func(data), 'b')
 | 
						|
        data = 'fe fi fo fum fi fi'.split()
 | 
						|
        self.assertEqual(self.func(data), 'fi')
 | 
						|
 | 
						|
    def test_discrete_data(self):
 | 
						|
        # Test mode with discrete numeric data.
 | 
						|
        data = list(range(10))
 | 
						|
        for i in range(10):
 | 
						|
            d = data + [i]
 | 
						|
            random.shuffle(d)
 | 
						|
            self.assertEqual(self.func(d), i)
 | 
						|
 | 
						|
    def test_bimodal_data(self):
 | 
						|
        # Test mode with bimodal data.
 | 
						|
        data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
 | 
						|
        assert data.count(2) == data.count(6) == 4
 | 
						|
        # Check for an exception.
 | 
						|
        self.assertRaises(statistics.StatisticsError, self.func, data)
 | 
						|
 | 
						|
    def test_unique_data_failure(self):
 | 
						|
        # Test mode exception when data points are all unique.
 | 
						|
        data = list(range(10))
 | 
						|
        self.assertRaises(statistics.StatisticsError, self.func, data)
 | 
						|
 | 
						|
    def test_none_data(self):
 | 
						|
        # Test that mode raises TypeError if given None as data.
 | 
						|
 | 
						|
        # This test is necessary because the implementation of mode uses
 | 
						|
        # collections.Counter, which accepts None and returns an empty dict.
 | 
						|
        self.assertRaises(TypeError, self.func, None)
 | 
						|
 | 
						|
    def test_counter_data(self):
 | 
						|
        # Test that a Counter is treated like any other iterable.
 | 
						|
        data = collections.Counter([1, 1, 1, 2])
 | 
						|
        # Since the keys of the counter are treated as data points, not the
 | 
						|
        # counts, this should raise.
 | 
						|
        self.assertRaises(statistics.StatisticsError, self.func, data)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
# === Tests for variances and standard deviations ===
 | 
						|
 | 
						|
class VarianceStdevMixin(UnivariateCommonMixin):
 | 
						|
    # Mixin class holding common tests for variance and std dev.
 | 
						|
 | 
						|
    # Subclasses should inherit from this before NumericTestClass, in order
 | 
						|
    # to see the rel attribute below. See testShiftData for an explanation.
 | 
						|
 | 
						|
    rel = 1e-12
 | 
						|
 | 
						|
    def test_single_value(self):
 | 
						|
        # Deviation of a single value is zero.
 | 
						|
        for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
 | 
						|
            self.assertEqual(self.func([x]), 0)
 | 
						|
 | 
						|
    def test_repeated_single_value(self):
 | 
						|
        # The deviation of a single repeated value is zero.
 | 
						|
        for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
 | 
						|
            for count in (2, 3, 5, 15):
 | 
						|
                data = [x]*count
 | 
						|
                self.assertEqual(self.func(data), 0)
 | 
						|
 | 
						|
    def test_domain_error_regression(self):
 | 
						|
        # Regression test for a domain error exception.
 | 
						|
        # (Thanks to Geremy Condra.)
 | 
						|
        data = [0.123456789012345]*10000
 | 
						|
        # All the items are identical, so variance should be exactly zero.
 | 
						|
        # We allow some small round-off error, but not much.
 | 
						|
        result = self.func(data)
 | 
						|
        self.assertApproxEqual(result, 0.0, tol=5e-17)
 | 
						|
        self.assertGreaterEqual(result, 0)  # A negative result must fail.
 | 
						|
 | 
						|
    def test_shift_data(self):
 | 
						|
        # Test that shifting the data by a constant amount does not affect
 | 
						|
        # the variance or stdev. Or at least not much.
 | 
						|
 | 
						|
        # Due to rounding, this test should be considered an ideal. We allow
 | 
						|
        # some tolerance away from "no change at all" by setting tol and/or rel
 | 
						|
        # attributes. Subclasses may set tighter or looser error tolerances.
 | 
						|
        raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
 | 
						|
        expected = self.func(raw)
 | 
						|
        # Don't set shift too high, the bigger it is, the more rounding error.
 | 
						|
        shift = 1e5
 | 
						|
        data = [x + shift for x in raw]
 | 
						|
        self.assertApproxEqual(self.func(data), expected)
 | 
						|
 | 
						|
    def test_shift_data_exact(self):
 | 
						|
        # Like test_shift_data, but result is always exact.
 | 
						|
        raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
 | 
						|
        assert all(x==int(x) for x in raw)
 | 
						|
        expected = self.func(raw)
 | 
						|
        shift = 10**9
 | 
						|
        data = [x + shift for x in raw]
 | 
						|
        self.assertEqual(self.func(data), expected)
 | 
						|
 | 
						|
    def test_iter_list_same(self):
 | 
						|
        # Test that iter data and list data give the same result.
 | 
						|
 | 
						|
        # This is an explicit test that iterators and lists are treated the
 | 
						|
        # same; justification for this test over and above the similar test
 | 
						|
        # in UnivariateCommonMixin is that an earlier design had variance and
 | 
						|
        # friends swap between one- and two-pass algorithms, which would
 | 
						|
        # sometimes give different results.
 | 
						|
        data = [random.uniform(-3, 8) for _ in range(1000)]
 | 
						|
        expected = self.func(data)
 | 
						|
        self.assertEqual(self.func(iter(data)), expected)
 | 
						|
 | 
						|
 | 
						|
class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
 | 
						|
    # Tests for population variance.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.pvariance
 | 
						|
 | 
						|
    def test_exact_uniform(self):
 | 
						|
        # Test the variance against an exact result for uniform data.
 | 
						|
        data = list(range(10000))
 | 
						|
        random.shuffle(data)
 | 
						|
        expected = (10000**2 - 1)/12  # Exact value.
 | 
						|
        self.assertEqual(self.func(data), expected)
 | 
						|
 | 
						|
    def test_ints(self):
 | 
						|
        # Test population variance with int data.
 | 
						|
        data = [4, 7, 13, 16]
 | 
						|
        exact = 22.5
 | 
						|
        self.assertEqual(self.func(data), exact)
 | 
						|
 | 
						|
    def test_fractions(self):
 | 
						|
        # Test population variance with Fraction data.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
 | 
						|
        exact = F(3, 8)
 | 
						|
        result = self.func(data)
 | 
						|
        self.assertEqual(result, exact)
 | 
						|
        self.assertIsInstance(result, Fraction)
 | 
						|
 | 
						|
    def test_decimals(self):
 | 
						|
        # Test population variance with Decimal data.
 | 
						|
        D = Decimal
 | 
						|
        data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
 | 
						|
        exact = D('0.096875')
 | 
						|
        result = self.func(data)
 | 
						|
        self.assertEqual(result, exact)
 | 
						|
        self.assertIsInstance(result, Decimal)
 | 
						|
 | 
						|
 | 
						|
class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
 | 
						|
    # Tests for sample variance.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.variance
 | 
						|
 | 
						|
    def test_single_value(self):
 | 
						|
        # Override method from VarianceStdevMixin.
 | 
						|
        for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
 | 
						|
            self.assertRaises(statistics.StatisticsError, self.func, [x])
 | 
						|
 | 
						|
    def test_ints(self):
 | 
						|
        # Test sample variance with int data.
 | 
						|
        data = [4, 7, 13, 16]
 | 
						|
        exact = 30
 | 
						|
        self.assertEqual(self.func(data), exact)
 | 
						|
 | 
						|
    def test_fractions(self):
 | 
						|
        # Test sample variance with Fraction data.
 | 
						|
        F = Fraction
 | 
						|
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
 | 
						|
        exact = F(1, 2)
 | 
						|
        result = self.func(data)
 | 
						|
        self.assertEqual(result, exact)
 | 
						|
        self.assertIsInstance(result, Fraction)
 | 
						|
 | 
						|
    def test_decimals(self):
 | 
						|
        # Test sample variance with Decimal data.
 | 
						|
        D = Decimal
 | 
						|
        data = [D(2), D(2), D(7), D(9)]
 | 
						|
        exact = 4*D('9.5')/D(3)
 | 
						|
        result = self.func(data)
 | 
						|
        self.assertEqual(result, exact)
 | 
						|
        self.assertIsInstance(result, Decimal)
 | 
						|
 | 
						|
 | 
						|
class TestPStdev(VarianceStdevMixin, NumericTestCase):
 | 
						|
    # Tests for population standard deviation.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.pstdev
 | 
						|
 | 
						|
    def test_compare_to_variance(self):
 | 
						|
        # Test that stdev is, in fact, the square root of variance.
 | 
						|
        data = [random.uniform(-17, 24) for _ in range(1000)]
 | 
						|
        expected = math.sqrt(statistics.pvariance(data))
 | 
						|
        self.assertEqual(self.func(data), expected)
 | 
						|
 | 
						|
 | 
						|
class TestStdev(VarianceStdevMixin, NumericTestCase):
 | 
						|
    # Tests for sample standard deviation.
 | 
						|
    def setUp(self):
 | 
						|
        self.func = statistics.stdev
 | 
						|
 | 
						|
    def test_single_value(self):
 | 
						|
        # Override method from VarianceStdevMixin.
 | 
						|
        for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
 | 
						|
            self.assertRaises(statistics.StatisticsError, self.func, [x])
 | 
						|
 | 
						|
    def test_compare_to_variance(self):
 | 
						|
        # Test that stdev is, in fact, the square root of variance.
 | 
						|
        data = [random.uniform(-2, 9) for _ in range(1000)]
 | 
						|
        expected = math.sqrt(statistics.variance(data))
 | 
						|
        self.assertEqual(self.func(data), expected)
 | 
						|
 | 
						|
 | 
						|
# === Run tests ===
 | 
						|
 | 
						|
def load_tests(loader, tests, ignore):
 | 
						|
    """Used for doctest/unittest integration."""
 | 
						|
    tests.addTests(doctest.DocTestSuite())
 | 
						|
    return tests
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    unittest.main()
 |