mirror of
https://github.com/python/cpython.git
synced 2025-08-03 16:39:00 +00:00

instead of testing whether the list changed size after each comparison, temporarily set the type of the list to an immutable list type. This should allow continued use of the list for legitimate purposes but disallows all operations that can change it in any way. (Changes to the internals of list items are not caught, of cause; that's not possible to detect, and it's not necessary to protect the sort code, either.)
1404 lines
34 KiB
C
1404 lines
34 KiB
C
/***********************************************************
|
|
Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
|
|
The Netherlands.
|
|
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and its
|
|
documentation for any purpose and without fee is hereby granted,
|
|
provided that the above copyright notice appear in all copies and that
|
|
both that copyright notice and this permission notice appear in
|
|
supporting documentation, and that the names of Stichting Mathematisch
|
|
Centrum or CWI or Corporation for National Research Initiatives or
|
|
CNRI not be used in advertising or publicity pertaining to
|
|
distribution of the software without specific, written prior
|
|
permission.
|
|
|
|
While CWI is the initial source for this software, a modified version
|
|
is made available by the Corporation for National Research Initiatives
|
|
(CNRI) at the Internet address ftp://ftp.python.org.
|
|
|
|
STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
|
|
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
|
|
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
|
|
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
|
|
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
|
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
|
PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
******************************************************************/
|
|
|
|
/* List object implementation */
|
|
|
|
#include "Python.h"
|
|
|
|
#ifdef STDC_HEADERS
|
|
#include <stddef.h>
|
|
#else
|
|
#include <sys/types.h> /* For size_t */
|
|
#endif
|
|
|
|
#define ROUNDUP(n, PyTryBlock) \
|
|
((((n)+(PyTryBlock)-1)/(PyTryBlock))*(PyTryBlock))
|
|
|
|
static int
|
|
roundupsize(n)
|
|
int n;
|
|
{
|
|
if (n < 500)
|
|
return ROUNDUP(n, 10);
|
|
else
|
|
return ROUNDUP(n, 100);
|
|
}
|
|
|
|
#define NRESIZE(var, type, nitems) PyMem_RESIZE(var, type, roundupsize(nitems))
|
|
|
|
PyObject *
|
|
PyList_New(size)
|
|
int size;
|
|
{
|
|
int i;
|
|
PyListObject *op;
|
|
size_t nbytes;
|
|
if (size < 0) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
nbytes = size * sizeof(PyObject *);
|
|
/* Check for overflow */
|
|
if (nbytes / sizeof(PyObject *) != (size_t)size) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
op = (PyListObject *) malloc(sizeof(PyListObject));
|
|
if (op == NULL) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
if (size <= 0) {
|
|
op->ob_item = NULL;
|
|
}
|
|
else {
|
|
op->ob_item = (PyObject **) malloc(nbytes);
|
|
if (op->ob_item == NULL) {
|
|
free((ANY *)op);
|
|
return PyErr_NoMemory();
|
|
}
|
|
}
|
|
op->ob_type = &PyList_Type;
|
|
op->ob_size = size;
|
|
for (i = 0; i < size; i++)
|
|
op->ob_item[i] = NULL;
|
|
_Py_NewReference(op);
|
|
return (PyObject *) op;
|
|
}
|
|
|
|
int
|
|
PyList_Size(op)
|
|
PyObject *op;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
else
|
|
return ((PyListObject *)op) -> ob_size;
|
|
}
|
|
|
|
static PyObject *indexerr;
|
|
|
|
PyObject *
|
|
PyList_GetItem(op, i)
|
|
PyObject *op;
|
|
int i;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
|
|
if (indexerr == NULL)
|
|
indexerr = PyString_FromString(
|
|
"list index out of range");
|
|
PyErr_SetObject(PyExc_IndexError, indexerr);
|
|
return NULL;
|
|
}
|
|
return ((PyListObject *)op) -> ob_item[i];
|
|
}
|
|
|
|
int
|
|
PyList_SetItem(op, i, newitem)
|
|
register PyObject *op;
|
|
register int i;
|
|
register PyObject *newitem;
|
|
{
|
|
register PyObject *olditem;
|
|
register PyObject **p;
|
|
if (!PyList_Check(op)) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_SetString(PyExc_IndexError,
|
|
"list assignment index out of range");
|
|
return -1;
|
|
}
|
|
p = ((PyListObject *)op) -> ob_item + i;
|
|
olditem = *p;
|
|
*p = newitem;
|
|
Py_XDECREF(olditem);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ins1(self, where, v)
|
|
PyListObject *self;
|
|
int where;
|
|
PyObject *v;
|
|
{
|
|
int i;
|
|
PyObject **items;
|
|
if (v == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
items = self->ob_item;
|
|
NRESIZE(items, PyObject *, self->ob_size+1);
|
|
if (items == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
if (where < 0)
|
|
where = 0;
|
|
if (where > self->ob_size)
|
|
where = self->ob_size;
|
|
for (i = self->ob_size; --i >= where; )
|
|
items[i+1] = items[i];
|
|
Py_INCREF(v);
|
|
items[where] = v;
|
|
self->ob_item = items;
|
|
self->ob_size++;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyList_Insert(op, where, newitem)
|
|
PyObject *op;
|
|
int where;
|
|
PyObject *newitem;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return ins1((PyListObject *)op, where, newitem);
|
|
}
|
|
|
|
int
|
|
PyList_Append(op, newitem)
|
|
PyObject *op;
|
|
PyObject *newitem;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return ins1((PyListObject *)op,
|
|
(int) ((PyListObject *)op)->ob_size, newitem);
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
list_dealloc(op)
|
|
PyListObject *op;
|
|
{
|
|
int i;
|
|
if (op->ob_item != NULL) {
|
|
for (i = 0; i < op->ob_size; i++) {
|
|
Py_XDECREF(op->ob_item[i]);
|
|
}
|
|
free((ANY *)op->ob_item);
|
|
}
|
|
free((ANY *)op);
|
|
}
|
|
|
|
static int
|
|
list_print(op, fp, flags)
|
|
PyListObject *op;
|
|
FILE *fp;
|
|
int flags;
|
|
{
|
|
int i;
|
|
|
|
i = Py_ReprEnter((PyObject*)op);
|
|
if (i != 0) {
|
|
if (i < 0)
|
|
return i;
|
|
fprintf(fp, "[...]");
|
|
return 0;
|
|
}
|
|
fprintf(fp, "[");
|
|
for (i = 0; i < op->ob_size; i++) {
|
|
if (i > 0)
|
|
fprintf(fp, ", ");
|
|
if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
|
|
Py_ReprLeave((PyObject *)op);
|
|
return -1;
|
|
}
|
|
}
|
|
fprintf(fp, "]");
|
|
Py_ReprLeave((PyObject *)op);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
list_repr(v)
|
|
PyListObject *v;
|
|
{
|
|
PyObject *s, *comma;
|
|
int i;
|
|
|
|
i = Py_ReprEnter((PyObject*)v);
|
|
if (i != 0) {
|
|
if (i > 0)
|
|
return PyString_FromString("[...]");
|
|
return NULL;
|
|
}
|
|
s = PyString_FromString("[");
|
|
comma = PyString_FromString(", ");
|
|
for (i = 0; i < v->ob_size && s != NULL; i++) {
|
|
if (i > 0)
|
|
PyString_Concat(&s, comma);
|
|
PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i]));
|
|
}
|
|
Py_XDECREF(comma);
|
|
PyString_ConcatAndDel(&s, PyString_FromString("]"));
|
|
Py_ReprLeave((PyObject *)v);
|
|
return s;
|
|
}
|
|
|
|
static int
|
|
list_compare(v, w)
|
|
PyListObject *v, *w;
|
|
{
|
|
int i;
|
|
for (i = 0; i < v->ob_size && i < w->ob_size; i++) {
|
|
int cmp = PyObject_Compare(v->ob_item[i], w->ob_item[i]);
|
|
if (cmp != 0)
|
|
return cmp;
|
|
}
|
|
return v->ob_size - w->ob_size;
|
|
}
|
|
|
|
static int
|
|
list_length(a)
|
|
PyListObject *a;
|
|
{
|
|
return a->ob_size;
|
|
}
|
|
|
|
static PyObject *
|
|
list_item(a, i)
|
|
PyListObject *a;
|
|
int i;
|
|
{
|
|
if (i < 0 || i >= a->ob_size) {
|
|
if (indexerr == NULL)
|
|
indexerr = PyString_FromString(
|
|
"list index out of range");
|
|
PyErr_SetObject(PyExc_IndexError, indexerr);
|
|
return NULL;
|
|
}
|
|
Py_INCREF(a->ob_item[i]);
|
|
return a->ob_item[i];
|
|
}
|
|
|
|
static PyObject *
|
|
list_slice(a, ilow, ihigh)
|
|
PyListObject *a;
|
|
int ilow, ihigh;
|
|
{
|
|
PyListObject *np;
|
|
int i;
|
|
if (ilow < 0)
|
|
ilow = 0;
|
|
else if (ilow > a->ob_size)
|
|
ilow = a->ob_size;
|
|
if (ihigh < 0)
|
|
ihigh = 0;
|
|
if (ihigh < ilow)
|
|
ihigh = ilow;
|
|
else if (ihigh > a->ob_size)
|
|
ihigh = a->ob_size;
|
|
np = (PyListObject *) PyList_New(ihigh - ilow);
|
|
if (np == NULL)
|
|
return NULL;
|
|
for (i = ilow; i < ihigh; i++) {
|
|
PyObject *v = a->ob_item[i];
|
|
Py_INCREF(v);
|
|
np->ob_item[i - ilow] = v;
|
|
}
|
|
return (PyObject *)np;
|
|
}
|
|
|
|
PyObject *
|
|
PyList_GetSlice(a, ilow, ihigh)
|
|
PyObject *a;
|
|
int ilow, ihigh;
|
|
{
|
|
if (!PyList_Check(a)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return list_slice((PyListObject *)a, ilow, ihigh);
|
|
}
|
|
|
|
static PyObject *
|
|
list_concat(a, bb)
|
|
PyListObject *a;
|
|
PyObject *bb;
|
|
{
|
|
int size;
|
|
int i;
|
|
PyListObject *np;
|
|
if (!PyList_Check(bb)) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
#define b ((PyListObject *)bb)
|
|
size = a->ob_size + b->ob_size;
|
|
np = (PyListObject *) PyList_New(size);
|
|
if (np == NULL) {
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < a->ob_size; i++) {
|
|
PyObject *v = a->ob_item[i];
|
|
Py_INCREF(v);
|
|
np->ob_item[i] = v;
|
|
}
|
|
for (i = 0; i < b->ob_size; i++) {
|
|
PyObject *v = b->ob_item[i];
|
|
Py_INCREF(v);
|
|
np->ob_item[i + a->ob_size] = v;
|
|
}
|
|
return (PyObject *)np;
|
|
#undef b
|
|
}
|
|
|
|
static PyObject *
|
|
list_repeat(a, n)
|
|
PyListObject *a;
|
|
int n;
|
|
{
|
|
int i, j;
|
|
int size;
|
|
PyListObject *np;
|
|
PyObject **p;
|
|
if (n < 0)
|
|
n = 0;
|
|
size = a->ob_size * n;
|
|
np = (PyListObject *) PyList_New(size);
|
|
if (np == NULL)
|
|
return NULL;
|
|
p = np->ob_item;
|
|
for (i = 0; i < n; i++) {
|
|
for (j = 0; j < a->ob_size; j++) {
|
|
*p = a->ob_item[j];
|
|
Py_INCREF(*p);
|
|
p++;
|
|
}
|
|
}
|
|
return (PyObject *) np;
|
|
}
|
|
|
|
static int
|
|
list_ass_slice(a, ilow, ihigh, v)
|
|
PyListObject *a;
|
|
int ilow, ihigh;
|
|
PyObject *v;
|
|
{
|
|
/* Because [X]DECREF can recursively invoke list operations on
|
|
this list, we must postpone all [X]DECREF activity until
|
|
after the list is back in its canonical shape. Therefore
|
|
we must allocate an additional array, 'recycle', into which
|
|
we temporarily copy the items that are deleted from the
|
|
list. :-( */
|
|
PyObject **recycle, **p;
|
|
PyObject **item;
|
|
int n; /* Size of replacement list */
|
|
int d; /* Change in size */
|
|
int k; /* Loop index */
|
|
#define b ((PyListObject *)v)
|
|
if (v == NULL)
|
|
n = 0;
|
|
else if (PyList_Check(v)) {
|
|
n = b->ob_size;
|
|
if (a == b) {
|
|
/* Special case "a[i:j] = a" -- copy b first */
|
|
int ret;
|
|
v = list_slice(b, 0, n);
|
|
ret = list_ass_slice(a, ilow, ihigh, v);
|
|
Py_DECREF(v);
|
|
return ret;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_BadArgument();
|
|
return -1;
|
|
}
|
|
if (ilow < 0)
|
|
ilow = 0;
|
|
else if (ilow > a->ob_size)
|
|
ilow = a->ob_size;
|
|
if (ihigh < 0)
|
|
ihigh = 0;
|
|
if (ihigh < ilow)
|
|
ihigh = ilow;
|
|
else if (ihigh > a->ob_size)
|
|
ihigh = a->ob_size;
|
|
item = a->ob_item;
|
|
d = n - (ihigh-ilow);
|
|
if (ihigh > ilow)
|
|
p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
|
|
else
|
|
p = recycle = NULL;
|
|
if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
|
|
for (k = ilow; k < ihigh; k++)
|
|
*p++ = item[k];
|
|
if (d < 0) {
|
|
for (/*k = ihigh*/; k < a->ob_size; k++)
|
|
item[k+d] = item[k];
|
|
a->ob_size += d;
|
|
NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
|
|
a->ob_item = item;
|
|
}
|
|
}
|
|
else { /* Insert d items; recycle ihigh-ilow items */
|
|
NRESIZE(item, PyObject *, a->ob_size + d);
|
|
if (item == NULL) {
|
|
PyMem_XDEL(recycle);
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
for (k = a->ob_size; --k >= ihigh; )
|
|
item[k+d] = item[k];
|
|
for (/*k = ihigh-1*/; k >= ilow; --k)
|
|
*p++ = item[k];
|
|
a->ob_item = item;
|
|
a->ob_size += d;
|
|
}
|
|
for (k = 0; k < n; k++, ilow++) {
|
|
PyObject *w = b->ob_item[k];
|
|
Py_XINCREF(w);
|
|
item[ilow] = w;
|
|
}
|
|
if (recycle) {
|
|
while (--p >= recycle)
|
|
Py_XDECREF(*p);
|
|
PyMem_DEL(recycle);
|
|
}
|
|
return 0;
|
|
#undef b
|
|
}
|
|
|
|
int
|
|
PyList_SetSlice(a, ilow, ihigh, v)
|
|
PyObject *a;
|
|
int ilow, ihigh;
|
|
PyObject *v;
|
|
{
|
|
if (!PyList_Check(a)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
|
|
}
|
|
|
|
static int
|
|
list_ass_item(a, i, v)
|
|
PyListObject *a;
|
|
int i;
|
|
PyObject *v;
|
|
{
|
|
PyObject *old_value;
|
|
if (i < 0 || i >= a->ob_size) {
|
|
PyErr_SetString(PyExc_IndexError,
|
|
"list assignment index out of range");
|
|
return -1;
|
|
}
|
|
if (v == NULL)
|
|
return list_ass_slice(a, i, i+1, v);
|
|
Py_INCREF(v);
|
|
old_value = a->ob_item[i];
|
|
a->ob_item[i] = v;
|
|
Py_DECREF(old_value);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
ins(self, where, v)
|
|
PyListObject *self;
|
|
int where;
|
|
PyObject *v;
|
|
{
|
|
if (ins1(self, where, v) != 0)
|
|
return NULL;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
static PyObject *
|
|
listinsert(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int i;
|
|
PyObject *v;
|
|
if (!PyArg_Parse(args, "(iO)", &i, &v))
|
|
return NULL;
|
|
return ins(self, i, v);
|
|
}
|
|
|
|
static PyObject *
|
|
listappend(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
PyObject *v;
|
|
if (!PyArg_Parse(args, "O", &v))
|
|
return NULL;
|
|
return ins(self, (int) self->ob_size, v);
|
|
}
|
|
|
|
/* New quicksort implementation for arrays of object pointers.
|
|
Thanks to discussions with Tim Peters. */
|
|
|
|
/* CMPERROR is returned by our comparison function when an error
|
|
occurred. This is the largest negative integer (0x80000000 on a
|
|
32-bit system). */
|
|
#define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) )
|
|
|
|
/* Comparison function. Takes care of calling a user-supplied
|
|
comparison function (any callable Python object). Calls the
|
|
standard comparison function, PyObject_Compare(), if the user-
|
|
supplied function is NULL. */
|
|
|
|
static int
|
|
docompare(x, y, compare)
|
|
PyObject *x;
|
|
PyObject *y;
|
|
PyObject *compare;
|
|
{
|
|
PyObject *args, *res;
|
|
int i;
|
|
|
|
if (compare == NULL) {
|
|
i = PyObject_Compare(x, y);
|
|
if (i && PyErr_Occurred())
|
|
i = CMPERROR;
|
|
return i;
|
|
}
|
|
|
|
args = Py_BuildValue("(OO)", x, y);
|
|
if (args == NULL)
|
|
return CMPERROR;
|
|
res = PyEval_CallObject(compare, args);
|
|
Py_DECREF(args);
|
|
if (res == NULL)
|
|
return CMPERROR;
|
|
if (!PyInt_Check(res)) {
|
|
Py_DECREF(res);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"comparison function should return int");
|
|
return CMPERROR;
|
|
}
|
|
i = PyInt_AsLong(res);
|
|
Py_DECREF(res);
|
|
if (i < 0)
|
|
return -1;
|
|
if (i > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* MINSIZE is the smallest array that will get a full-blown samplesort
|
|
treatment; smaller arrays are sorted using binary insertion. It must
|
|
be at least 7 for the samplesort implementation to work. Binary
|
|
insertion does fewer compares, but can suffer O(N**2) data movement.
|
|
The more expensive compares, the larger MINSIZE should be. */
|
|
#define MINSIZE 100
|
|
|
|
/* MINPARTITIONSIZE is the smallest array slice samplesort will bother to
|
|
partition; smaller slices are passed to binarysort. It must be at
|
|
least 2, and no larger than MINSIZE. Setting it higher reduces the #
|
|
of compares slowly, but increases the amount of data movement quickly.
|
|
The value here was chosen assuming a compare costs ~25x more than
|
|
swapping a pair of memory-resident pointers -- but under that assumption,
|
|
changing the value by a few dozen more or less has aggregate effect
|
|
under 1%. So the value is crucial, but not touchy <wink>. */
|
|
#define MINPARTITIONSIZE 40
|
|
|
|
/* MAXMERGE is the largest number of elements we'll always merge into
|
|
a known-to-be sorted chunk via binary insertion, regardless of the
|
|
size of that chunk. Given a chunk of N sorted elements, and a group
|
|
of K unknowns, the largest K for which it's better to do insertion
|
|
(than a full-blown sort) is a complicated function of N and K mostly
|
|
involving the expected number of compares and data moves under each
|
|
approach, and the relative cost of those operations on a specific
|
|
architecure. The fixed value here is conservative, and should be a
|
|
clear win regardless of architecture or N. */
|
|
#define MAXMERGE 15
|
|
|
|
/* STACKSIZE is the size of our work stack. A rough estimate is that
|
|
this allows us to sort arrays of size N where
|
|
N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough
|
|
for arrays of size 2**64. Because we push the biggest partition
|
|
first, the worst case occurs when all subarrays are always partitioned
|
|
exactly in two. */
|
|
#define STACKSIZE 60
|
|
|
|
|
|
#define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail
|
|
|
|
/* binarysort is the best method for sorting small arrays: it does
|
|
few compares, but can do data movement quadratic in the number of
|
|
elements.
|
|
[lo, hi) is a contiguous slice of the list, and is sorted via
|
|
binary insertion.
|
|
On entry, must have lo <= start <= hi, and that [lo, start) is already
|
|
sorted (pass start == lo if you don't know!).
|
|
If docompare complains (returns CMPERROR) return -1, else 0.
|
|
Even in case of error, the output slice will be some permutation of
|
|
the input (nothing is lost or duplicated).
|
|
*/
|
|
|
|
static int
|
|
binarysort(lo, hi, start, list, compare)
|
|
PyObject **lo;
|
|
PyObject **hi;
|
|
PyObject **start;
|
|
PyListObject *list; /* Needed by docompare for paranoia checks */
|
|
PyObject *compare;/* Comparison function object, or NULL for default */
|
|
{
|
|
/* assert lo <= start <= hi
|
|
assert [lo, start) is sorted */
|
|
register int k;
|
|
register PyObject **l, **p, **r;
|
|
register PyObject *pivot;
|
|
|
|
if (lo == start)
|
|
++start;
|
|
for (; start < hi; ++start) {
|
|
/* set l to where *start belongs */
|
|
l = lo;
|
|
r = start;
|
|
pivot = *r;
|
|
do {
|
|
p = l + ((r - l) >> 1);
|
|
SETK(pivot, *p);
|
|
if (k < 0)
|
|
r = p;
|
|
else
|
|
l = p + 1;
|
|
} while (l < r);
|
|
/* Pivot should go at l -- slide over to make room.
|
|
Caution: using memmove is much slower under MSVC 5;
|
|
we're not usually moving many slots. */
|
|
for (p = start; p > l; --p)
|
|
*p = *(p-1);
|
|
*l = pivot;
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
/* samplesortslice is the sorting workhorse.
|
|
[lo, hi) is a contiguous slice of the list, to be sorted in place.
|
|
On entry, must have lo <= hi,
|
|
If docompare complains (returns CMPERROR) return -1, else 0.
|
|
Even in case of error, the output slice will be some permutation of
|
|
the input (nothing is lost or duplicated).
|
|
|
|
samplesort is basically quicksort on steroids: a power of 2 close
|
|
to n/ln(n) is computed, and that many elements (less 1) are picked at
|
|
random from the array and sorted. These 2**k - 1 elements are then
|
|
used as preselected pivots for an equal number of quicksort
|
|
partitioning steps, partitioning the slice into 2**k chunks each of
|
|
size about ln(n). These small final chunks are then usually handled
|
|
by binarysort. Note that when k=1, this is roughly the same as an
|
|
ordinary quicksort using a random pivot, and when k=2 this is roughly
|
|
a median-of-3 quicksort. From that view, using k ~= lg(n/ln(n)) makes
|
|
this a "median of n/ln(n)" quicksort. You can also view it as a kind
|
|
of bucket sort, where 2**k-1 bucket boundaries are picked dynamically.
|
|
|
|
The large number of samples makes a quadratic-time case almost
|
|
impossible, and asymptotically drives the average-case number of
|
|
compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of-
|
|
3 variant) down to N lg N.
|
|
|
|
We also play lots of low-level tricks to cut the number of compares.
|
|
|
|
Very obscure: To avoid using extra memory, the PPs are stored in the
|
|
array and shuffled around as partitioning proceeds. At the start of a
|
|
partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order,
|
|
adjacent (either on the left or the right!) to a chunk of X elements
|
|
that are to be partitioned: P X or X P. In either case we need to
|
|
shuffle things *in place* so that the 2**(m-1) smaller PPs are on the
|
|
left, followed by the PP to be used for this step (that's the middle
|
|
of the PPs), followed by X, followed by the 2**(m-1) larger PPs:
|
|
P X or X P -> Psmall pivot X Plarge
|
|
and the order of the PPs must not be altered. It can take a while
|
|
to realize this isn't trivial! It can take even longer <wink> to
|
|
understand why the simple code below works, using only 2**(m-1) swaps.
|
|
The key is that the order of the X elements isn't necessarily
|
|
preserved: X can end up as some cyclic permutation of its original
|
|
order. That's OK, because X is unsorted anyway. If the order of X
|
|
had to be preserved too, the simplest method I know of using O(1)
|
|
scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes.
|
|
Since len(X) is typically several times larger than 2**(m-1), that
|
|
would slow things down.
|
|
*/
|
|
|
|
struct SamplesortStackNode {
|
|
/* Represents a slice of the array, from (& including) lo up
|
|
to (but excluding) hi. "extra" additional & adjacent elements
|
|
are pre-selected pivots (PPs), spanning [lo-extra, lo) if
|
|
extra > 0, or [hi, hi-extra) if extra < 0. The PPs are
|
|
already sorted, but nothing is known about the other elements
|
|
in [lo, hi). |extra| is always one less than a power of 2.
|
|
When extra is 0, we're out of PPs, and the slice must be
|
|
sorted by some other means. */
|
|
PyObject **lo;
|
|
PyObject **hi;
|
|
int extra;
|
|
};
|
|
|
|
/* The number of PPs we want is 2**k - 1, where 2**k is as close to
|
|
N / ln(N) as possible. So k ~= lg(N / ln(N). Calling libm routines
|
|
is undesirable, so cutoff values are canned in the "cutoff" table
|
|
below: cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */
|
|
#define CUTOFFBASE 4
|
|
static int cutoff[] = {
|
|
43, /* smallest N such that k == 4 */
|
|
106, /* etc */
|
|
250,
|
|
576,
|
|
1298,
|
|
2885,
|
|
6339,
|
|
13805,
|
|
29843,
|
|
64116,
|
|
137030,
|
|
291554,
|
|
617916,
|
|
1305130,
|
|
2748295,
|
|
5771662,
|
|
12091672,
|
|
25276798,
|
|
52734615,
|
|
109820537,
|
|
228324027,
|
|
473977813,
|
|
982548444, /* smallest N such that k == 26 */
|
|
2034159050 /* largest N that fits in signed 32-bit; k == 27 */
|
|
};
|
|
|
|
static int
|
|
samplesortslice(lo, hi, list, compare)
|
|
PyObject **lo;
|
|
PyObject **hi;
|
|
PyListObject *list; /* Needed by docompare for paranoia checks */
|
|
PyObject *compare;/* Comparison function object, or NULL for default */
|
|
{
|
|
register PyObject **l, **r;
|
|
register PyObject *tmp, *pivot;
|
|
register int k;
|
|
int n, extra, top, extraOnRight;
|
|
struct SamplesortStackNode stack[STACKSIZE];
|
|
|
|
/* assert lo <= hi */
|
|
n = hi - lo;
|
|
|
|
/* ----------------------------------------------------------
|
|
* Special cases
|
|
* --------------------------------------------------------*/
|
|
if (n < 2)
|
|
return 0;
|
|
|
|
/* Set r to the largest value such that [lo,r) is sorted.
|
|
This catches the already-sorted case, the all-the-same
|
|
case, and the appended-a-few-elements-to-a-sorted-list case.
|
|
If the array is unsorted, we're very likely to get out of
|
|
the loop fast, so the test is cheap if it doesn't pay off.
|
|
*/
|
|
/* assert lo < hi */
|
|
for (r = lo+1; r < hi; ++r) {
|
|
SETK(*r, *(r-1));
|
|
if (k < 0)
|
|
break;
|
|
}
|
|
/* [lo,r) is sorted, [r,hi) unknown. Get out cheap if there are
|
|
few unknowns, or few elements in total. */
|
|
if (hi - r <= MAXMERGE || n < MINSIZE)
|
|
return binarysort(lo, hi, r, list, compare);
|
|
|
|
/* Check for the array already being reverse-sorted. Typical
|
|
benchmark-driven silliness <wink>. */
|
|
/* assert lo < hi */
|
|
for (r = lo+1; r < hi; ++r) {
|
|
SETK(*(r-1), *r);
|
|
if (k < 0)
|
|
break;
|
|
}
|
|
if (hi - r <= MAXMERGE) {
|
|
/* Reverse the reversed prefix, then insert the tail */
|
|
PyObject **originalr = r;
|
|
l = lo;
|
|
do {
|
|
--r;
|
|
tmp = *l; *l = *r; *r = tmp;
|
|
++l;
|
|
} while (l < r);
|
|
return binarysort(lo, hi, originalr, list, compare);
|
|
}
|
|
|
|
/* ----------------------------------------------------------
|
|
* Normal case setup: a large array without obvious pattern.
|
|
* --------------------------------------------------------*/
|
|
|
|
/* extra := a power of 2 ~= n/ln(n), less 1.
|
|
First find the smallest extra s.t. n < cutoff[extra] */
|
|
for (extra = 0;
|
|
extra < sizeof(cutoff) / sizeof(cutoff[0]);
|
|
++extra) {
|
|
if (n < cutoff[extra])
|
|
break;
|
|
/* note that if we fall out of the loop, the value of
|
|
extra still makes *sense*, but may be smaller than
|
|
we would like (but the array has more than ~= 2**31
|
|
elements in this case!) */
|
|
}
|
|
/* Now k == extra - 1 + CUTOFFBASE. The smallest value k can
|
|
have is CUTOFFBASE-1, so
|
|
assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */
|
|
extra = (1 << (extra - 1 + CUTOFFBASE)) - 1;
|
|
/* assert extra > 0 and n >= extra */
|
|
|
|
/* Swap that many values to the start of the array. The
|
|
selection of elements is pseudo-random, but the same on
|
|
every run (this is intentional! timing algorithm changes is
|
|
a pain if timing varies across runs). */
|
|
{
|
|
unsigned int seed = n / extra; /* arbitrary */
|
|
unsigned int i;
|
|
for (i = 0; i < (unsigned)extra; ++i) {
|
|
/* j := random int in [i, n) */
|
|
unsigned int j;
|
|
seed = seed * 69069 + 7;
|
|
j = i + seed % (n - i);
|
|
tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp;
|
|
}
|
|
}
|
|
|
|
/* Recursively sort the preselected pivots. */
|
|
if (samplesortslice(lo, lo + extra, list, compare) < 0)
|
|
goto fail;
|
|
|
|
top = 0; /* index of available stack slot */
|
|
lo += extra; /* point to first unknown */
|
|
extraOnRight = 0; /* the PPs are at the left end */
|
|
|
|
/* ----------------------------------------------------------
|
|
* Partition [lo, hi), and repeat until out of work.
|
|
* --------------------------------------------------------*/
|
|
for (;;) {
|
|
/* assert lo <= hi, so n >= 0 */
|
|
n = hi - lo;
|
|
|
|
/* We may not want, or may not be able, to partition:
|
|
If n is small, it's quicker to insert.
|
|
If extra is 0, we're out of pivots, and *must* use
|
|
another method.
|
|
*/
|
|
if (n < MINPARTITIONSIZE || extra == 0) {
|
|
if (n >= MINSIZE) {
|
|
/* assert extra == 0
|
|
This is rare, since the average size
|
|
of a final block is only about
|
|
ln(original n). */
|
|
if (samplesortslice(lo, hi, list,
|
|
compare) < 0)
|
|
goto fail;
|
|
}
|
|
else {
|
|
/* Binary insertion should be quicker,
|
|
and we can take advantage of the PPs
|
|
already being sorted. */
|
|
if (extraOnRight && extra) {
|
|
/* swap the PPs to the left end */
|
|
k = extra;
|
|
do {
|
|
tmp = *lo;
|
|
*lo = *hi;
|
|
*hi = tmp;
|
|
++lo; ++hi;
|
|
} while (--k);
|
|
}
|
|
if (binarysort(lo - extra, hi, lo,
|
|
list, compare) < 0)
|
|
goto fail;
|
|
}
|
|
|
|
/* Find another slice to work on. */
|
|
if (--top < 0)
|
|
break; /* no more -- done! */
|
|
lo = stack[top].lo;
|
|
hi = stack[top].hi;
|
|
extra = stack[top].extra;
|
|
extraOnRight = 0;
|
|
if (extra < 0) {
|
|
extraOnRight = 1;
|
|
extra = -extra;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Pretend the PPs are indexed 0, 1, ..., extra-1.
|
|
Then our preselected pivot is at (extra-1)/2, and we
|
|
want to move the PPs before that to the left end of
|
|
the slice, and the PPs after that to the right end.
|
|
The following section changes extra, lo, hi, and the
|
|
slice such that:
|
|
[lo-extra, lo) contains the smaller PPs.
|
|
*lo == our PP.
|
|
(lo, hi) contains the unknown elements.
|
|
[hi, hi+extra) contains the larger PPs.
|
|
*/
|
|
k = extra >>= 1; /* num PPs to move */
|
|
if (extraOnRight) {
|
|
/* Swap the smaller PPs to the left end.
|
|
Note that this loop actually moves k+1 items:
|
|
the last is our PP */
|
|
do {
|
|
tmp = *lo; *lo = *hi; *hi = tmp;
|
|
++lo; ++hi;
|
|
} while (k--);
|
|
}
|
|
else {
|
|
/* Swap the larger PPs to the right end. */
|
|
while (k--) {
|
|
--lo; --hi;
|
|
tmp = *lo; *lo = *hi; *hi = tmp;
|
|
}
|
|
}
|
|
--lo; /* *lo is now our PP */
|
|
pivot = *lo;
|
|
|
|
/* Now an almost-ordinary quicksort partition step.
|
|
Note that most of the time is spent here!
|
|
Only odd thing is that we partition into < and >=,
|
|
instead of the usual <= and >=. This helps when
|
|
there are lots of duplicates of different values,
|
|
because it eventually tends to make subfiles
|
|
"pure" (all duplicates), and we special-case for
|
|
duplicates later. */
|
|
l = lo + 1;
|
|
r = hi - 1;
|
|
/* assert lo < l < r < hi (small n weeded out above) */
|
|
|
|
do {
|
|
/* slide l right, looking for key >= pivot */
|
|
do {
|
|
SETK(*l, pivot);
|
|
if (k < 0)
|
|
++l;
|
|
else
|
|
break;
|
|
} while (l < r);
|
|
|
|
/* slide r left, looking for key < pivot */
|
|
while (l < r) {
|
|
SETK(*r, pivot);
|
|
if (k < 0)
|
|
break;
|
|
else
|
|
--r;
|
|
}
|
|
|
|
/* swap and advance both pointers */
|
|
if (l < r) {
|
|
tmp = *l; *l = *r; *r = tmp;
|
|
++l;
|
|
--r;
|
|
}
|
|
|
|
} while (l < r);
|
|
|
|
/* assert lo < r <= l < hi
|
|
assert r == l or r+1 == l
|
|
everything to the left of l is < pivot, and
|
|
everything to the right of r is >= pivot */
|
|
|
|
if (l == r) {
|
|
SETK(*r, pivot);
|
|
if (k < 0)
|
|
++l;
|
|
else
|
|
--r;
|
|
}
|
|
/* assert lo <= r and r+1 == l and l <= hi
|
|
assert r == lo or a[r] < pivot
|
|
assert a[lo] is pivot
|
|
assert l == hi or a[l] >= pivot
|
|
Swap the pivot into "the middle", so we can henceforth
|
|
ignore it.
|
|
*/
|
|
*lo = *r;
|
|
*r = pivot;
|
|
|
|
/* The following is true now, & will be preserved:
|
|
All in [lo,r) are < pivot
|
|
All in [r,l) == pivot (& so can be ignored)
|
|
All in [l,hi) are >= pivot */
|
|
|
|
/* Check for duplicates of the pivot. One compare is
|
|
wasted if there are no duplicates, but can win big
|
|
when there are.
|
|
Tricky: we're sticking to "<" compares, so deduce
|
|
equality indirectly. We know pivot <= *l, so they're
|
|
equal iff not pivot < *l.
|
|
*/
|
|
while (l < hi) {
|
|
/* pivot <= *l known */
|
|
SETK(pivot, *l);
|
|
if (k < 0)
|
|
break;
|
|
else
|
|
/* <= and not < implies == */
|
|
++l;
|
|
}
|
|
|
|
/* assert lo <= r < l <= hi
|
|
Partitions are [lo, r) and [l, hi) */
|
|
|
|
/* push fattest first; remember we still have extra PPs
|
|
to the left of the left chunk and to the right of
|
|
the right chunk! */
|
|
/* assert top < STACKSIZE */
|
|
if (r - lo <= hi - l) {
|
|
/* second is bigger */
|
|
stack[top].lo = l;
|
|
stack[top].hi = hi;
|
|
stack[top].extra = -extra;
|
|
hi = r;
|
|
extraOnRight = 0;
|
|
}
|
|
else {
|
|
/* first is bigger */
|
|
stack[top].lo = lo;
|
|
stack[top].hi = r;
|
|
stack[top].extra = extra;
|
|
lo = l;
|
|
extraOnRight = 1;
|
|
}
|
|
++top;
|
|
|
|
} /* end of partitioning loop */
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
#undef SETK
|
|
|
|
staticforward PyTypeObject immutable_list_type;
|
|
|
|
static PyObject *
|
|
listsort(self, compare)
|
|
PyListObject *self;
|
|
PyObject *compare;
|
|
{
|
|
int err;
|
|
|
|
self->ob_type = &immutable_list_type;
|
|
err = samplesortslice(self->ob_item,
|
|
self->ob_item + self->ob_size,
|
|
self, compare);
|
|
self->ob_type = &PyList_Type;
|
|
if (err < 0)
|
|
return NULL;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
int
|
|
PyList_Sort(v)
|
|
PyObject *v;
|
|
{
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
v = listsort((PyListObject *)v, (PyObject *)NULL);
|
|
if (v == NULL)
|
|
return -1;
|
|
Py_DECREF(v);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
listreverse(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
register PyObject **p, **q;
|
|
register PyObject *tmp;
|
|
|
|
if (args != NULL) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
|
|
if (self->ob_size > 1) {
|
|
for (p = self->ob_item, q = self->ob_item + self->ob_size - 1;
|
|
p < q; p++, q--) {
|
|
tmp = *p;
|
|
*p = *q;
|
|
*q = tmp;
|
|
}
|
|
}
|
|
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
int
|
|
PyList_Reverse(v)
|
|
PyObject *v;
|
|
{
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
v = listreverse((PyListObject *)v, (PyObject *)NULL);
|
|
if (v == NULL)
|
|
return -1;
|
|
Py_DECREF(v);
|
|
return 0;
|
|
}
|
|
|
|
PyObject *
|
|
PyList_AsTuple(v)
|
|
PyObject *v;
|
|
{
|
|
PyObject *w;
|
|
PyObject **p;
|
|
int n;
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
n = ((PyListObject *)v)->ob_size;
|
|
w = PyTuple_New(n);
|
|
if (w == NULL)
|
|
return NULL;
|
|
p = ((PyTupleObject *)w)->ob_item;
|
|
memcpy((ANY *)p,
|
|
(ANY *)((PyListObject *)v)->ob_item,
|
|
n*sizeof(PyObject *));
|
|
while (--n >= 0) {
|
|
Py_INCREF(*p);
|
|
p++;
|
|
}
|
|
return w;
|
|
}
|
|
|
|
static PyObject *
|
|
listindex(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int i;
|
|
|
|
if (args == NULL) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < self->ob_size; i++) {
|
|
if (PyObject_Compare(self->ob_item[i], args) == 0)
|
|
return PyInt_FromLong((long)i);
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
listcount(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int count = 0;
|
|
int i;
|
|
|
|
if (args == NULL) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < self->ob_size; i++) {
|
|
if (PyObject_Compare(self->ob_item[i], args) == 0)
|
|
count++;
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
return PyInt_FromLong((long)count);
|
|
}
|
|
|
|
static PyObject *
|
|
listremove(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int i;
|
|
|
|
if (args == NULL) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < self->ob_size; i++) {
|
|
if (PyObject_Compare(self->ob_item[i], args) == 0) {
|
|
if (list_ass_slice(self, i, i+1,
|
|
(PyObject *)NULL) != 0)
|
|
return NULL;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
|
|
return NULL;
|
|
}
|
|
|
|
static PyMethodDef list_methods[] = {
|
|
{"append", (PyCFunction)listappend},
|
|
{"insert", (PyCFunction)listinsert},
|
|
{"remove", (PyCFunction)listremove},
|
|
{"index", (PyCFunction)listindex},
|
|
{"count", (PyCFunction)listcount},
|
|
{"reverse", (PyCFunction)listreverse},
|
|
{"sort", (PyCFunction)listsort, 0},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyObject *
|
|
list_getattr(f, name)
|
|
PyListObject *f;
|
|
char *name;
|
|
{
|
|
return Py_FindMethod(list_methods, (PyObject *)f, name);
|
|
}
|
|
|
|
static PySequenceMethods list_as_sequence = {
|
|
(inquiry)list_length, /*sq_length*/
|
|
(binaryfunc)list_concat, /*sq_concat*/
|
|
(intargfunc)list_repeat, /*sq_repeat*/
|
|
(intargfunc)list_item, /*sq_item*/
|
|
(intintargfunc)list_slice, /*sq_slice*/
|
|
(intobjargproc)list_ass_item, /*sq_ass_item*/
|
|
(intintobjargproc)list_ass_slice, /*sq_ass_slice*/
|
|
};
|
|
|
|
PyTypeObject PyList_Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"list",
|
|
sizeof(PyListObject),
|
|
0,
|
|
(destructor)list_dealloc, /*tp_dealloc*/
|
|
(printfunc)list_print, /*tp_print*/
|
|
(getattrfunc)list_getattr, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
(cmpfunc)list_compare, /*tp_compare*/
|
|
(reprfunc)list_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
&list_as_sequence, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
};
|
|
|
|
|
|
/* During a sort, we really can't have anyone modifying the list; it could
|
|
cause core dumps. Thus, we substitute a dummy type that raises an
|
|
explanatory exception when a modifying operation is used. Caveat:
|
|
comparisons may behave differently; but I guess it's a bad idea anyway to
|
|
compare a list that's being sorted... */
|
|
|
|
static PyObject *
|
|
immutable_list_op(/*No args!*/)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"a list cannot be modified while it is being sorted");
|
|
return NULL;
|
|
}
|
|
|
|
static PyMethodDef immutable_list_methods[] = {
|
|
{"append", (PyCFunction)immutable_list_op},
|
|
{"insert", (PyCFunction)immutable_list_op},
|
|
{"remove", (PyCFunction)immutable_list_op},
|
|
{"index", (PyCFunction)listindex},
|
|
{"count", (PyCFunction)listcount},
|
|
{"reverse", (PyCFunction)immutable_list_op},
|
|
{"sort", (PyCFunction)immutable_list_op},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyObject *
|
|
immutable_list_getattr(f, name)
|
|
PyListObject *f;
|
|
char *name;
|
|
{
|
|
return Py_FindMethod(immutable_list_methods, (PyObject *)f, name);
|
|
}
|
|
|
|
static int
|
|
immutable_list_ass(/*No args!*/)
|
|
{
|
|
immutable_list_op();
|
|
return -1;
|
|
}
|
|
|
|
static PySequenceMethods immutable_list_as_sequence = {
|
|
(inquiry)list_length, /*sq_length*/
|
|
(binaryfunc)list_concat, /*sq_concat*/
|
|
(intargfunc)list_repeat, /*sq_repeat*/
|
|
(intargfunc)list_item, /*sq_item*/
|
|
(intintargfunc)list_slice, /*sq_slice*/
|
|
(intobjargproc)immutable_list_ass, /*sq_ass_item*/
|
|
(intintobjargproc)immutable_list_ass, /*sq_ass_slice*/
|
|
};
|
|
|
|
static PyTypeObject immutable_list_type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"list (immutable, during sort)",
|
|
sizeof(PyListObject),
|
|
0,
|
|
0, /*tp_dealloc*/ /* Cannot happen */
|
|
(printfunc)list_print, /*tp_print*/
|
|
(getattrfunc)immutable_list_getattr, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_compare*/ /* Won't be called */
|
|
(reprfunc)list_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
&immutable_list_as_sequence, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
};
|