mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 02:15:10 +00:00 
			
		
		
		
	 be143ec996
			
		
	
	
		be143ec996
		
			
		
	
	
	
	
		
			
			The PyFPE_START_PROTECT() and PyFPE_END_PROTECT() macros are empty:
they have been doing nothing for the last year  (since commit
735ae8d139), so stop using them.
		
	
			
		
			
				
	
	
		
			956 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
		
			Generated
		
	
	
			
		
		
	
	
			956 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
		
			Generated
		
	
	
| /*[clinic input]
 | |
| preserve
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| PyDoc_STRVAR(cmath_acos__doc__,
 | |
| "acos($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the arc cosine of z.");
 | |
| 
 | |
| #define CMATH_ACOS_METHODDEF    \
 | |
|     {"acos", (PyCFunction)cmath_acos, METH_O, cmath_acos__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_acos_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_acos(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_acos_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_acosh__doc__,
 | |
| "acosh($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the inverse hyperbolic cosine of z.");
 | |
| 
 | |
| #define CMATH_ACOSH_METHODDEF    \
 | |
|     {"acosh", (PyCFunction)cmath_acosh, METH_O, cmath_acosh__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_acosh_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_acosh(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_acosh_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_asin__doc__,
 | |
| "asin($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the arc sine of z.");
 | |
| 
 | |
| #define CMATH_ASIN_METHODDEF    \
 | |
|     {"asin", (PyCFunction)cmath_asin, METH_O, cmath_asin__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_asin_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_asin(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_asin_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_asinh__doc__,
 | |
| "asinh($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the inverse hyperbolic sine of z.");
 | |
| 
 | |
| #define CMATH_ASINH_METHODDEF    \
 | |
|     {"asinh", (PyCFunction)cmath_asinh, METH_O, cmath_asinh__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_asinh_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_asinh(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_asinh_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_atan__doc__,
 | |
| "atan($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the arc tangent of z.");
 | |
| 
 | |
| #define CMATH_ATAN_METHODDEF    \
 | |
|     {"atan", (PyCFunction)cmath_atan, METH_O, cmath_atan__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_atan_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_atan(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_atan_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_atanh__doc__,
 | |
| "atanh($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the inverse hyperbolic tangent of z.");
 | |
| 
 | |
| #define CMATH_ATANH_METHODDEF    \
 | |
|     {"atanh", (PyCFunction)cmath_atanh, METH_O, cmath_atanh__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_atanh_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_atanh(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_atanh_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_cos__doc__,
 | |
| "cos($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the cosine of z.");
 | |
| 
 | |
| #define CMATH_COS_METHODDEF    \
 | |
|     {"cos", (PyCFunction)cmath_cos, METH_O, cmath_cos__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_cos_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_cos(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_cos_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_cosh__doc__,
 | |
| "cosh($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the hyperbolic cosine of z.");
 | |
| 
 | |
| #define CMATH_COSH_METHODDEF    \
 | |
|     {"cosh", (PyCFunction)cmath_cosh, METH_O, cmath_cosh__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_cosh_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_cosh(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_cosh_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_exp__doc__,
 | |
| "exp($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the exponential value e**z.");
 | |
| 
 | |
| #define CMATH_EXP_METHODDEF    \
 | |
|     {"exp", (PyCFunction)cmath_exp, METH_O, cmath_exp__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_exp_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_exp(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_exp_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_log10__doc__,
 | |
| "log10($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the base-10 logarithm of z.");
 | |
| 
 | |
| #define CMATH_LOG10_METHODDEF    \
 | |
|     {"log10", (PyCFunction)cmath_log10, METH_O, cmath_log10__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_log10_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_log10(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_log10_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_sin__doc__,
 | |
| "sin($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the sine of z.");
 | |
| 
 | |
| #define CMATH_SIN_METHODDEF    \
 | |
|     {"sin", (PyCFunction)cmath_sin, METH_O, cmath_sin__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_sin_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_sin(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_sin_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_sinh__doc__,
 | |
| "sinh($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the hyperbolic sine of z.");
 | |
| 
 | |
| #define CMATH_SINH_METHODDEF    \
 | |
|     {"sinh", (PyCFunction)cmath_sinh, METH_O, cmath_sinh__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_sinh_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_sinh(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_sinh_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_sqrt__doc__,
 | |
| "sqrt($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the square root of z.");
 | |
| 
 | |
| #define CMATH_SQRT_METHODDEF    \
 | |
|     {"sqrt", (PyCFunction)cmath_sqrt, METH_O, cmath_sqrt__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_sqrt_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_sqrt(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_sqrt_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_tan__doc__,
 | |
| "tan($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the tangent of z.");
 | |
| 
 | |
| #define CMATH_TAN_METHODDEF    \
 | |
|     {"tan", (PyCFunction)cmath_tan, METH_O, cmath_tan__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_tan_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_tan(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_tan_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_tanh__doc__,
 | |
| "tanh($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the hyperbolic tangent of z.");
 | |
| 
 | |
| #define CMATH_TANH_METHODDEF    \
 | |
|     {"tanh", (PyCFunction)cmath_tanh, METH_O, cmath_tanh__doc__},
 | |
| 
 | |
| static Py_complex
 | |
| cmath_tanh_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_tanh(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
|     Py_complex _return_value;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     /* modifications for z */
 | |
|     errno = 0;
 | |
|     _return_value = cmath_tanh_impl(module, z);
 | |
|     if (errno == EDOM) {
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else if (errno == ERANGE) {
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|         goto exit;
 | |
|     }
 | |
|     else {
 | |
|         return_value = PyComplex_FromCComplex(_return_value);
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_log__doc__,
 | |
| "log($module, z, base=<unrepresentable>, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "log(z[, base]) -> the logarithm of z to the given base.\n"
 | |
| "\n"
 | |
| "If the base not specified, returns the natural logarithm (base e) of z.");
 | |
| 
 | |
| #define CMATH_LOG_METHODDEF    \
 | |
|     {"log", (PyCFunction)(void(*)(void))cmath_log, METH_FASTCALL, cmath_log__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| cmath_log_impl(PyObject *module, Py_complex x, PyObject *y_obj);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_log(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex x;
 | |
|     PyObject *y_obj = NULL;
 | |
| 
 | |
|     if (!_PyArg_CheckPositional("log", nargs, 1, 2)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     x = PyComplex_AsCComplex(args[0]);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     if (nargs < 2) {
 | |
|         goto skip_optional;
 | |
|     }
 | |
|     y_obj = args[1];
 | |
| skip_optional:
 | |
|     return_value = cmath_log_impl(module, x, y_obj);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_phase__doc__,
 | |
| "phase($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return argument, also known as the phase angle, of a complex.");
 | |
| 
 | |
| #define CMATH_PHASE_METHODDEF    \
 | |
|     {"phase", (PyCFunction)cmath_phase, METH_O, cmath_phase__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| cmath_phase_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_phase(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = cmath_phase_impl(module, z);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_polar__doc__,
 | |
| "polar($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Convert a complex from rectangular coordinates to polar coordinates.\n"
 | |
| "\n"
 | |
| "r is the distance from 0 and phi the phase angle.");
 | |
| 
 | |
| #define CMATH_POLAR_METHODDEF    \
 | |
|     {"polar", (PyCFunction)cmath_polar, METH_O, cmath_polar__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| cmath_polar_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_polar(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = cmath_polar_impl(module, z);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_rect__doc__,
 | |
| "rect($module, r, phi, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Convert from polar coordinates to rectangular coordinates.");
 | |
| 
 | |
| #define CMATH_RECT_METHODDEF    \
 | |
|     {"rect", (PyCFunction)(void(*)(void))cmath_rect, METH_FASTCALL, cmath_rect__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| cmath_rect_impl(PyObject *module, double r, double phi);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_rect(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double r;
 | |
|     double phi;
 | |
| 
 | |
|     if (!_PyArg_CheckPositional("rect", nargs, 2, 2)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     if (PyFloat_CheckExact(args[0])) {
 | |
|         r = PyFloat_AS_DOUBLE(args[0]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         r = PyFloat_AsDouble(args[0]);
 | |
|         if (r == -1.0 && PyErr_Occurred()) {
 | |
|             goto exit;
 | |
|         }
 | |
|     }
 | |
|     if (PyFloat_CheckExact(args[1])) {
 | |
|         phi = PyFloat_AS_DOUBLE(args[1]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         phi = PyFloat_AsDouble(args[1]);
 | |
|         if (phi == -1.0 && PyErr_Occurred()) {
 | |
|             goto exit;
 | |
|         }
 | |
|     }
 | |
|     return_value = cmath_rect_impl(module, r, phi);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_isfinite__doc__,
 | |
| "isfinite($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return True if both the real and imaginary parts of z are finite, else False.");
 | |
| 
 | |
| #define CMATH_ISFINITE_METHODDEF    \
 | |
|     {"isfinite", (PyCFunction)cmath_isfinite, METH_O, cmath_isfinite__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isfinite_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isfinite(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = cmath_isfinite_impl(module, z);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_isnan__doc__,
 | |
| "isnan($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Checks if the real or imaginary part of z not a number (NaN).");
 | |
| 
 | |
| #define CMATH_ISNAN_METHODDEF    \
 | |
|     {"isnan", (PyCFunction)cmath_isnan, METH_O, cmath_isnan__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isnan_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isnan(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = cmath_isnan_impl(module, z);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_isinf__doc__,
 | |
| "isinf($module, z, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Checks if the real or imaginary part of z is infinite.");
 | |
| 
 | |
| #define CMATH_ISINF_METHODDEF    \
 | |
|     {"isinf", (PyCFunction)cmath_isinf, METH_O, cmath_isinf__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isinf_impl(PyObject *module, Py_complex z);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isinf(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     Py_complex z;
 | |
| 
 | |
|     z = PyComplex_AsCComplex(arg);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = cmath_isinf_impl(module, z);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(cmath_isclose__doc__,
 | |
| "isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Determine whether two complex numbers are close in value.\n"
 | |
| "\n"
 | |
| "  rel_tol\n"
 | |
| "    maximum difference for being considered \"close\", relative to the\n"
 | |
| "    magnitude of the input values\n"
 | |
| "  abs_tol\n"
 | |
| "    maximum difference for being considered \"close\", regardless of the\n"
 | |
| "    magnitude of the input values\n"
 | |
| "\n"
 | |
| "Return True if a is close in value to b, and False otherwise.\n"
 | |
| "\n"
 | |
| "For the values to be considered close, the difference between them must be\n"
 | |
| "smaller than at least one of the tolerances.\n"
 | |
| "\n"
 | |
| "-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is\n"
 | |
| "not close to anything, even itself. inf and -inf are only close to themselves.");
 | |
| 
 | |
| #define CMATH_ISCLOSE_METHODDEF    \
 | |
|     {"isclose", (PyCFunction)(void(*)(void))cmath_isclose, METH_FASTCALL|METH_KEYWORDS, cmath_isclose__doc__},
 | |
| 
 | |
| static int
 | |
| cmath_isclose_impl(PyObject *module, Py_complex a, Py_complex b,
 | |
|                    double rel_tol, double abs_tol);
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isclose(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     static const char * const _keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};
 | |
|     static _PyArg_Parser _parser = {NULL, _keywords, "isclose", 0};
 | |
|     PyObject *argsbuf[4];
 | |
|     Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2;
 | |
|     Py_complex a;
 | |
|     Py_complex b;
 | |
|     double rel_tol = 1e-09;
 | |
|     double abs_tol = 0.0;
 | |
|     int _return_value;
 | |
| 
 | |
|     args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 0, argsbuf);
 | |
|     if (!args) {
 | |
|         goto exit;
 | |
|     }
 | |
|     a = PyComplex_AsCComplex(args[0]);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     b = PyComplex_AsCComplex(args[1]);
 | |
|     if (PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     if (!noptargs) {
 | |
|         goto skip_optional_kwonly;
 | |
|     }
 | |
|     if (args[2]) {
 | |
|         if (PyFloat_CheckExact(args[2])) {
 | |
|             rel_tol = PyFloat_AS_DOUBLE(args[2]);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             rel_tol = PyFloat_AsDouble(args[2]);
 | |
|             if (rel_tol == -1.0 && PyErr_Occurred()) {
 | |
|                 goto exit;
 | |
|             }
 | |
|         }
 | |
|         if (!--noptargs) {
 | |
|             goto skip_optional_kwonly;
 | |
|         }
 | |
|     }
 | |
|     if (PyFloat_CheckExact(args[3])) {
 | |
|         abs_tol = PyFloat_AS_DOUBLE(args[3]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         abs_tol = PyFloat_AsDouble(args[3]);
 | |
|         if (abs_tol == -1.0 && PyErr_Occurred()) {
 | |
|             goto exit;
 | |
|         }
 | |
|     }
 | |
| skip_optional_kwonly:
 | |
|     _return_value = cmath_isclose_impl(module, a, b, rel_tol, abs_tol);
 | |
|     if ((_return_value == -1) && PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = PyBool_FromLong((long)_return_value);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| /*[clinic end generated code: output=353347db2e808e0d input=a9049054013a1b77]*/
 |