mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	This PR adds a private `Fraction._from_coprime_ints` classmethod for internal creations of `Fraction` objects, replacing the use of `_normalize=False` in the existing constructor. This speeds up creation of `Fraction` objects arising from calculations. The `_normalize` argument to the `Fraction` constructor has been removed. Co-authored-by: Pieter Eendebak <pieter.eendebak@gmail.com> Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
		
			
				
	
	
		
			230 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# test interactions between int, float, Decimal and Fraction
 | 
						|
 | 
						|
import unittest
 | 
						|
import random
 | 
						|
import math
 | 
						|
import sys
 | 
						|
import operator
 | 
						|
 | 
						|
from decimal import Decimal as D
 | 
						|
from fractions import Fraction as F
 | 
						|
 | 
						|
# Constants related to the hash implementation;  hash(x) is based
 | 
						|
# on the reduction of x modulo the prime _PyHASH_MODULUS.
 | 
						|
_PyHASH_MODULUS = sys.hash_info.modulus
 | 
						|
_PyHASH_INF = sys.hash_info.inf
 | 
						|
 | 
						|
 | 
						|
class DummyIntegral(int):
 | 
						|
    """Dummy Integral class to test conversion of the Rational to float."""
 | 
						|
 | 
						|
    def __mul__(self, other):
 | 
						|
        return DummyIntegral(super().__mul__(other))
 | 
						|
    __rmul__ = __mul__
 | 
						|
 | 
						|
    def __truediv__(self, other):
 | 
						|
        return NotImplemented
 | 
						|
    __rtruediv__ = __truediv__
 | 
						|
 | 
						|
    @property
 | 
						|
    def numerator(self):
 | 
						|
        return DummyIntegral(self)
 | 
						|
 | 
						|
    @property
 | 
						|
    def denominator(self):
 | 
						|
        return DummyIntegral(1)
 | 
						|
 | 
						|
 | 
						|
class HashTest(unittest.TestCase):
 | 
						|
    def check_equal_hash(self, x, y):
 | 
						|
        # check both that x and y are equal and that their hashes are equal
 | 
						|
        self.assertEqual(hash(x), hash(y),
 | 
						|
                         "got different hashes for {!r} and {!r}".format(x, y))
 | 
						|
        self.assertEqual(x, y)
 | 
						|
 | 
						|
    def test_bools(self):
 | 
						|
        self.check_equal_hash(False, 0)
 | 
						|
        self.check_equal_hash(True, 1)
 | 
						|
 | 
						|
    def test_integers(self):
 | 
						|
        # check that equal values hash equal
 | 
						|
 | 
						|
        # exact integers
 | 
						|
        for i in range(-1000, 1000):
 | 
						|
            self.check_equal_hash(i, float(i))
 | 
						|
            self.check_equal_hash(i, D(i))
 | 
						|
            self.check_equal_hash(i, F(i))
 | 
						|
 | 
						|
        # the current hash is based on reduction modulo 2**n-1 for some
 | 
						|
        # n, so pay special attention to numbers of the form 2**n and 2**n-1.
 | 
						|
        for i in range(100):
 | 
						|
            n = 2**i - 1
 | 
						|
            if n == int(float(n)):
 | 
						|
                self.check_equal_hash(n, float(n))
 | 
						|
                self.check_equal_hash(-n, -float(n))
 | 
						|
            self.check_equal_hash(n, D(n))
 | 
						|
            self.check_equal_hash(n, F(n))
 | 
						|
            self.check_equal_hash(-n, D(-n))
 | 
						|
            self.check_equal_hash(-n, F(-n))
 | 
						|
 | 
						|
            n = 2**i
 | 
						|
            self.check_equal_hash(n, float(n))
 | 
						|
            self.check_equal_hash(-n, -float(n))
 | 
						|
            self.check_equal_hash(n, D(n))
 | 
						|
            self.check_equal_hash(n, F(n))
 | 
						|
            self.check_equal_hash(-n, D(-n))
 | 
						|
            self.check_equal_hash(-n, F(-n))
 | 
						|
 | 
						|
        # random values of various sizes
 | 
						|
        for _ in range(1000):
 | 
						|
            e = random.randrange(300)
 | 
						|
            n = random.randrange(-10**e, 10**e)
 | 
						|
            self.check_equal_hash(n, D(n))
 | 
						|
            self.check_equal_hash(n, F(n))
 | 
						|
            if n == int(float(n)):
 | 
						|
                self.check_equal_hash(n, float(n))
 | 
						|
 | 
						|
    def test_binary_floats(self):
 | 
						|
        # check that floats hash equal to corresponding Fractions and Decimals
 | 
						|
 | 
						|
        # floats that are distinct but numerically equal should hash the same
 | 
						|
        self.check_equal_hash(0.0, -0.0)
 | 
						|
 | 
						|
        # zeros
 | 
						|
        self.check_equal_hash(0.0, D(0))
 | 
						|
        self.check_equal_hash(-0.0, D(0))
 | 
						|
        self.check_equal_hash(-0.0, D('-0.0'))
 | 
						|
        self.check_equal_hash(0.0, F(0))
 | 
						|
 | 
						|
        # infinities and nans
 | 
						|
        self.check_equal_hash(float('inf'), D('inf'))
 | 
						|
        self.check_equal_hash(float('-inf'), D('-inf'))
 | 
						|
 | 
						|
        for _ in range(1000):
 | 
						|
            x = random.random() * math.exp(random.random()*200.0 - 100.0)
 | 
						|
            self.check_equal_hash(x, D.from_float(x))
 | 
						|
            self.check_equal_hash(x, F.from_float(x))
 | 
						|
 | 
						|
    def test_complex(self):
 | 
						|
        # complex numbers with zero imaginary part should hash equal to
 | 
						|
        # the corresponding float
 | 
						|
 | 
						|
        test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5,
 | 
						|
                       float('inf'), float('-inf')]
 | 
						|
 | 
						|
        for zero in -0.0, 0.0:
 | 
						|
            for value in test_values:
 | 
						|
                self.check_equal_hash(value, complex(value, zero))
 | 
						|
 | 
						|
    def test_decimals(self):
 | 
						|
        # check that Decimal instances that have different representations
 | 
						|
        # but equal values give the same hash
 | 
						|
        zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10']
 | 
						|
        for zero in zeros:
 | 
						|
            self.check_equal_hash(D(zero), D(0))
 | 
						|
 | 
						|
        self.check_equal_hash(D('1.00'), D(1))
 | 
						|
        self.check_equal_hash(D('1.00000'), D(1))
 | 
						|
        self.check_equal_hash(D('-1.00'), D(-1))
 | 
						|
        self.check_equal_hash(D('-1.00000'), D(-1))
 | 
						|
        self.check_equal_hash(D('123e2'), D(12300))
 | 
						|
        self.check_equal_hash(D('1230e1'), D(12300))
 | 
						|
        self.check_equal_hash(D('12300'), D(12300))
 | 
						|
        self.check_equal_hash(D('12300.0'), D(12300))
 | 
						|
        self.check_equal_hash(D('12300.00'), D(12300))
 | 
						|
        self.check_equal_hash(D('12300.000'), D(12300))
 | 
						|
 | 
						|
    def test_fractions(self):
 | 
						|
        # check special case for fractions where either the numerator
 | 
						|
        # or the denominator is a multiple of _PyHASH_MODULUS
 | 
						|
        self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF)
 | 
						|
        self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF)
 | 
						|
        self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0)
 | 
						|
        self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0)
 | 
						|
 | 
						|
        # The numbers ABC doesn't enforce that the "true" division
 | 
						|
        # of integers produces a float.  This tests that the
 | 
						|
        # Rational.__float__() method has required type conversions.
 | 
						|
        x = F._from_coprime_ints(DummyIntegral(1), DummyIntegral(2))
 | 
						|
        self.assertRaises(TypeError, lambda: x.numerator/x.denominator)
 | 
						|
        self.assertEqual(float(x), 0.5)
 | 
						|
 | 
						|
    def test_hash_normalization(self):
 | 
						|
        # Test for a bug encountered while changing long_hash.
 | 
						|
        #
 | 
						|
        # Given objects x and y, it should be possible for y's
 | 
						|
        # __hash__ method to return hash(x) in order to ensure that
 | 
						|
        # hash(x) == hash(y).  But hash(x) is not exactly equal to the
 | 
						|
        # result of x.__hash__(): there's some internal normalization
 | 
						|
        # to make sure that the result fits in a C long, and is not
 | 
						|
        # equal to the invalid hash value -1.  This internal
 | 
						|
        # normalization must therefore not change the result of
 | 
						|
        # hash(x) for any x.
 | 
						|
 | 
						|
        class HalibutProxy:
 | 
						|
            def __hash__(self):
 | 
						|
                return hash('halibut')
 | 
						|
            def __eq__(self, other):
 | 
						|
                return other == 'halibut'
 | 
						|
 | 
						|
        x = {'halibut', HalibutProxy()}
 | 
						|
        self.assertEqual(len(x), 1)
 | 
						|
 | 
						|
class ComparisonTest(unittest.TestCase):
 | 
						|
    def test_mixed_comparisons(self):
 | 
						|
 | 
						|
        # ordered list of distinct test values of various types:
 | 
						|
        # int, float, Fraction, Decimal
 | 
						|
        test_values = [
 | 
						|
            float('-inf'),
 | 
						|
            D('-1e425000000'),
 | 
						|
            -1e308,
 | 
						|
            F(-22, 7),
 | 
						|
            -3.14,
 | 
						|
            -2,
 | 
						|
            0.0,
 | 
						|
            1e-320,
 | 
						|
            True,
 | 
						|
            F('1.2'),
 | 
						|
            D('1.3'),
 | 
						|
            float('1.4'),
 | 
						|
            F(275807, 195025),
 | 
						|
            D('1.414213562373095048801688724'),
 | 
						|
            F(114243, 80782),
 | 
						|
            F(473596569, 84615),
 | 
						|
            7e200,
 | 
						|
            D('infinity'),
 | 
						|
            ]
 | 
						|
        for i, first in enumerate(test_values):
 | 
						|
            for second in test_values[i+1:]:
 | 
						|
                self.assertLess(first, second)
 | 
						|
                self.assertLessEqual(first, second)
 | 
						|
                self.assertGreater(second, first)
 | 
						|
                self.assertGreaterEqual(second, first)
 | 
						|
 | 
						|
    def test_complex(self):
 | 
						|
        # comparisons with complex are special:  equality and inequality
 | 
						|
        # comparisons should always succeed, but order comparisons should
 | 
						|
        # raise TypeError.
 | 
						|
        z = 1.0 + 0j
 | 
						|
        w = -3.14 + 2.7j
 | 
						|
 | 
						|
        for v in 1, 1.0, F(1), D(1), complex(1):
 | 
						|
            self.assertEqual(z, v)
 | 
						|
            self.assertEqual(v, z)
 | 
						|
 | 
						|
        for v in 2, 2.0, F(2), D(2), complex(2):
 | 
						|
            self.assertNotEqual(z, v)
 | 
						|
            self.assertNotEqual(v, z)
 | 
						|
            self.assertNotEqual(w, v)
 | 
						|
            self.assertNotEqual(v, w)
 | 
						|
 | 
						|
        for v in (1, 1.0, F(1), D(1), complex(1),
 | 
						|
                  2, 2.0, F(2), D(2), complex(2), w):
 | 
						|
            for op in operator.le, operator.lt, operator.ge, operator.gt:
 | 
						|
                self.assertRaises(TypeError, op, z, v)
 | 
						|
                self.assertRaises(TypeError, op, v, z)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    unittest.main()
 |