mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 03:22:27 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			542 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			542 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* SHA module */
 | 
						|
 | 
						|
/* This module provides an interface to NIST's Secure Hash Algorithm */
 | 
						|
 | 
						|
/* See below for information about the original code this module was
 | 
						|
   based upon. Additional work performed by:
 | 
						|
 | 
						|
   Andrew Kuchling (amk@amk.ca)
 | 
						|
   Greg Stein (gstein@lyra.org)
 | 
						|
*/
 | 
						|
 | 
						|
/* SHA objects */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
 | 
						|
/* Endianness testing and definitions */
 | 
						|
#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
 | 
						|
	if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
 | 
						|
 | 
						|
#define PCT_LITTLE_ENDIAN 1
 | 
						|
#define PCT_BIG_ENDIAN 0
 | 
						|
 | 
						|
/* Some useful types */
 | 
						|
 | 
						|
typedef unsigned char SHA_BYTE;
 | 
						|
 | 
						|
#if SIZEOF_INT == 4
 | 
						|
typedef unsigned int SHA_INT32;	/* 32-bit integer */
 | 
						|
#else
 | 
						|
/* not defined. compilation will die. */
 | 
						|
#endif
 | 
						|
 | 
						|
/* The SHA block size and message digest sizes, in bytes */
 | 
						|
 | 
						|
#define SHA_BLOCKSIZE    64
 | 
						|
#define SHA_DIGESTSIZE  20
 | 
						|
 | 
						|
/* The structure for storing SHS info */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    PyObject_HEAD
 | 
						|
    SHA_INT32 digest[5];		/* Message digest */
 | 
						|
    SHA_INT32 count_lo, count_hi;	/* 64-bit bit count */
 | 
						|
    SHA_BYTE data[SHA_BLOCKSIZE];	/* SHA data buffer */
 | 
						|
    int Endianness;
 | 
						|
    int local;				/* unprocessed amount in data */
 | 
						|
} SHAobject;
 | 
						|
 | 
						|
/* When run on a little-endian CPU we need to perform byte reversal on an
 | 
						|
   array of longwords. */
 | 
						|
 | 
						|
static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness)
 | 
						|
{
 | 
						|
    SHA_INT32 value;
 | 
						|
 | 
						|
    if ( Endianness == PCT_BIG_ENDIAN )
 | 
						|
	return;
 | 
						|
 | 
						|
    byteCount /= sizeof(*buffer);
 | 
						|
    while (byteCount--) {
 | 
						|
        value = *buffer;
 | 
						|
        value = ( ( value & 0xFF00FF00L ) >> 8  ) | \
 | 
						|
                ( ( value & 0x00FF00FFL ) << 8 );
 | 
						|
        *buffer++ = ( value << 16 ) | ( value >> 16 );
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void SHAcopy(SHAobject *src, SHAobject *dest)
 | 
						|
{
 | 
						|
    dest->Endianness = src->Endianness;
 | 
						|
    dest->local = src->local;
 | 
						|
    dest->count_lo = src->count_lo;
 | 
						|
    dest->count_hi = src->count_hi;
 | 
						|
    memcpy(dest->digest, src->digest, sizeof(src->digest));
 | 
						|
    memcpy(dest->data, src->data, sizeof(src->data));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ------------------------------------------------------------------------
 | 
						|
 *
 | 
						|
 * This code for the SHA algorithm was noted as public domain. The original
 | 
						|
 * headers are pasted below.
 | 
						|
 *
 | 
						|
 * Several changes have been made to make it more compatible with the
 | 
						|
 * Python environment and desired interface.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* NIST Secure Hash Algorithm */
 | 
						|
/* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */
 | 
						|
/* from Peter C. Gutmann's implementation as found in */
 | 
						|
/* Applied Cryptography by Bruce Schneier */
 | 
						|
/* Further modifications to include the "UNRAVEL" stuff, below */
 | 
						|
 | 
						|
/* This code is in the public domain */
 | 
						|
 | 
						|
/* UNRAVEL should be fastest & biggest */
 | 
						|
/* UNROLL_LOOPS should be just as big, but slightly slower */
 | 
						|
/* both undefined should be smallest and slowest */
 | 
						|
 | 
						|
#define UNRAVEL
 | 
						|
/* #define UNROLL_LOOPS */
 | 
						|
 | 
						|
/* The SHA f()-functions.  The f1 and f3 functions can be optimized to
 | 
						|
   save one boolean operation each - thanks to Rich Schroeppel,
 | 
						|
   rcs@cs.arizona.edu for discovering this */
 | 
						|
 | 
						|
/*#define f1(x,y,z)	((x & y) | (~x & z))		// Rounds  0-19 */
 | 
						|
#define f1(x,y,z)	(z ^ (x & (y ^ z)))		/* Rounds  0-19 */
 | 
						|
#define f2(x,y,z)	(x ^ y ^ z)			/* Rounds 20-39 */
 | 
						|
/*#define f3(x,y,z)	((x & y) | (x & z) | (y & z))	// Rounds 40-59 */
 | 
						|
#define f3(x,y,z)	((x & y) | (z & (x | y)))	/* Rounds 40-59 */
 | 
						|
#define f4(x,y,z)	(x ^ y ^ z)			/* Rounds 60-79 */
 | 
						|
 | 
						|
/* SHA constants */
 | 
						|
 | 
						|
#define CONST1		0x5a827999L			/* Rounds  0-19 */
 | 
						|
#define CONST2		0x6ed9eba1L			/* Rounds 20-39 */
 | 
						|
#define CONST3		0x8f1bbcdcL			/* Rounds 40-59 */
 | 
						|
#define CONST4		0xca62c1d6L			/* Rounds 60-79 */
 | 
						|
 | 
						|
/* 32-bit rotate */
 | 
						|
 | 
						|
#define R32(x,n)	((x << n) | (x >> (32 - n)))
 | 
						|
 | 
						|
/* the generic case, for when the overall rotation is not unraveled */
 | 
						|
 | 
						|
#define FG(n)	\
 | 
						|
    T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n;	\
 | 
						|
    E = D; D = C; C = R32(B,30); B = A; A = T
 | 
						|
 | 
						|
/* specific cases, for when the overall rotation is unraveled */
 | 
						|
 | 
						|
#define FA(n)	\
 | 
						|
    T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30)
 | 
						|
 | 
						|
#define FB(n)	\
 | 
						|
    E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30)
 | 
						|
 | 
						|
#define FC(n)	\
 | 
						|
    D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30)
 | 
						|
 | 
						|
#define FD(n)	\
 | 
						|
    C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30)
 | 
						|
 | 
						|
#define FE(n)	\
 | 
						|
    B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30)
 | 
						|
 | 
						|
#define FT(n)	\
 | 
						|
    A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30)
 | 
						|
 | 
						|
/* do SHA transformation */
 | 
						|
 | 
						|
static void
 | 
						|
sha_transform(SHAobject *sha_info)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    SHA_INT32 T, A, B, C, D, E, W[80], *WP;
 | 
						|
 | 
						|
    memcpy(W, sha_info->data, sizeof(sha_info->data));
 | 
						|
    longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness);
 | 
						|
 | 
						|
    for (i = 16; i < 80; ++i) {
 | 
						|
	W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
 | 
						|
 | 
						|
	/* extra rotation fix */
 | 
						|
	W[i] = R32(W[i], 1);
 | 
						|
    }
 | 
						|
    A = sha_info->digest[0];
 | 
						|
    B = sha_info->digest[1];
 | 
						|
    C = sha_info->digest[2];
 | 
						|
    D = sha_info->digest[3];
 | 
						|
    E = sha_info->digest[4];
 | 
						|
    WP = W;
 | 
						|
#ifdef UNRAVEL
 | 
						|
    FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
 | 
						|
    FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
 | 
						|
    FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
 | 
						|
    FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
 | 
						|
    FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
 | 
						|
    FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
 | 
						|
    FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
 | 
						|
    FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
 | 
						|
    sha_info->digest[0] += E;
 | 
						|
    sha_info->digest[1] += T;
 | 
						|
    sha_info->digest[2] += A;
 | 
						|
    sha_info->digest[3] += B;
 | 
						|
    sha_info->digest[4] += C;
 | 
						|
#else /* !UNRAVEL */
 | 
						|
#ifdef UNROLL_LOOPS
 | 
						|
    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
 | 
						|
    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
 | 
						|
    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
 | 
						|
    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
 | 
						|
    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
 | 
						|
    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
 | 
						|
    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
 | 
						|
    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
 | 
						|
#else /* !UNROLL_LOOPS */
 | 
						|
    for (i =  0; i < 20; ++i) { FG(1); }
 | 
						|
    for (i = 20; i < 40; ++i) { FG(2); }
 | 
						|
    for (i = 40; i < 60; ++i) { FG(3); }
 | 
						|
    for (i = 60; i < 80; ++i) { FG(4); }
 | 
						|
#endif /* !UNROLL_LOOPS */
 | 
						|
    sha_info->digest[0] += A;
 | 
						|
    sha_info->digest[1] += B;
 | 
						|
    sha_info->digest[2] += C;
 | 
						|
    sha_info->digest[3] += D;
 | 
						|
    sha_info->digest[4] += E;
 | 
						|
#endif /* !UNRAVEL */
 | 
						|
}
 | 
						|
 | 
						|
/* initialize the SHA digest */
 | 
						|
 | 
						|
static void
 | 
						|
sha_init(SHAobject *sha_info)
 | 
						|
{
 | 
						|
    TestEndianness(sha_info->Endianness)
 | 
						|
 | 
						|
    sha_info->digest[0] = 0x67452301L;
 | 
						|
    sha_info->digest[1] = 0xefcdab89L;
 | 
						|
    sha_info->digest[2] = 0x98badcfeL;
 | 
						|
    sha_info->digest[3] = 0x10325476L;
 | 
						|
    sha_info->digest[4] = 0xc3d2e1f0L;
 | 
						|
    sha_info->count_lo = 0L;
 | 
						|
    sha_info->count_hi = 0L;
 | 
						|
    sha_info->local = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* update the SHA digest */
 | 
						|
 | 
						|
static void
 | 
						|
sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    SHA_INT32 clo;
 | 
						|
 | 
						|
    clo = sha_info->count_lo + ((SHA_INT32) count << 3);
 | 
						|
    if (clo < sha_info->count_lo) {
 | 
						|
        ++sha_info->count_hi;
 | 
						|
    }
 | 
						|
    sha_info->count_lo = clo;
 | 
						|
    sha_info->count_hi += (SHA_INT32) count >> 29;
 | 
						|
    if (sha_info->local) {
 | 
						|
        i = SHA_BLOCKSIZE - sha_info->local;
 | 
						|
        if (i > count) {
 | 
						|
            i = count;
 | 
						|
        }
 | 
						|
        memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
 | 
						|
        count -= i;
 | 
						|
        buffer += i;
 | 
						|
        sha_info->local += i;
 | 
						|
        if (sha_info->local == SHA_BLOCKSIZE) {
 | 
						|
            sha_transform(sha_info);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    while (count >= SHA_BLOCKSIZE) {
 | 
						|
        memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
 | 
						|
        buffer += SHA_BLOCKSIZE;
 | 
						|
        count -= SHA_BLOCKSIZE;
 | 
						|
        sha_transform(sha_info);
 | 
						|
    }
 | 
						|
    memcpy(sha_info->data, buffer, count);
 | 
						|
    sha_info->local = count;
 | 
						|
}
 | 
						|
 | 
						|
/* finish computing the SHA digest */
 | 
						|
 | 
						|
static void
 | 
						|
sha_final(unsigned char digest[20], SHAobject *sha_info)
 | 
						|
{
 | 
						|
    int count;
 | 
						|
    SHA_INT32 lo_bit_count, hi_bit_count;
 | 
						|
 | 
						|
    lo_bit_count = sha_info->count_lo;
 | 
						|
    hi_bit_count = sha_info->count_hi;
 | 
						|
    count = (int) ((lo_bit_count >> 3) & 0x3f);
 | 
						|
    ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
 | 
						|
    if (count > SHA_BLOCKSIZE - 8) {
 | 
						|
	memset(((SHA_BYTE *) sha_info->data) + count, 0,
 | 
						|
	       SHA_BLOCKSIZE - count);
 | 
						|
	sha_transform(sha_info);
 | 
						|
	memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	memset(((SHA_BYTE *) sha_info->data) + count, 0,
 | 
						|
	       SHA_BLOCKSIZE - 8 - count);
 | 
						|
    }
 | 
						|
 | 
						|
    /* GJS: note that we add the hi/lo in big-endian. sha_transform will
 | 
						|
       swap these values into host-order. */
 | 
						|
    sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
 | 
						|
    sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
 | 
						|
    sha_info->data[58] = (hi_bit_count >>  8) & 0xff;
 | 
						|
    sha_info->data[59] = (hi_bit_count >>  0) & 0xff;
 | 
						|
    sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
 | 
						|
    sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
 | 
						|
    sha_info->data[62] = (lo_bit_count >>  8) & 0xff;
 | 
						|
    sha_info->data[63] = (lo_bit_count >>  0) & 0xff;
 | 
						|
    sha_transform(sha_info);
 | 
						|
    digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
 | 
						|
    digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
 | 
						|
    digest[ 2] = (unsigned char) ((sha_info->digest[0] >>  8) & 0xff);
 | 
						|
    digest[ 3] = (unsigned char) ((sha_info->digest[0]      ) & 0xff);
 | 
						|
    digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
 | 
						|
    digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
 | 
						|
    digest[ 6] = (unsigned char) ((sha_info->digest[1] >>  8) & 0xff);
 | 
						|
    digest[ 7] = (unsigned char) ((sha_info->digest[1]      ) & 0xff);
 | 
						|
    digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
 | 
						|
    digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
 | 
						|
    digest[10] = (unsigned char) ((sha_info->digest[2] >>  8) & 0xff);
 | 
						|
    digest[11] = (unsigned char) ((sha_info->digest[2]      ) & 0xff);
 | 
						|
    digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
 | 
						|
    digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
 | 
						|
    digest[14] = (unsigned char) ((sha_info->digest[3] >>  8) & 0xff);
 | 
						|
    digest[15] = (unsigned char) ((sha_info->digest[3]      ) & 0xff);
 | 
						|
    digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
 | 
						|
    digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
 | 
						|
    digest[18] = (unsigned char) ((sha_info->digest[4] >>  8) & 0xff);
 | 
						|
    digest[19] = (unsigned char) ((sha_info->digest[4]      ) & 0xff);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * End of copied SHA code.
 | 
						|
 *
 | 
						|
 * ------------------------------------------------------------------------
 | 
						|
 */
 | 
						|
 | 
						|
static PyTypeObject SHAtype;
 | 
						|
 | 
						|
 | 
						|
static SHAobject *
 | 
						|
newSHAobject(void)
 | 
						|
{
 | 
						|
    return (SHAobject *)PyObject_New(SHAobject, &SHAtype);
 | 
						|
}
 | 
						|
 | 
						|
/* Internal methods for a hashing object */
 | 
						|
 | 
						|
static void
 | 
						|
SHA_dealloc(PyObject *ptr)
 | 
						|
{
 | 
						|
    PyObject_Del(ptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* External methods for a hashing object */
 | 
						|
 | 
						|
PyDoc_STRVAR(SHA_copy__doc__, "Return a copy of the hashing object.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
SHA_copy(SHAobject *self, PyObject *args)
 | 
						|
{
 | 
						|
    SHAobject *newobj;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, ":copy")) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if ( (newobj = newSHAobject())==NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    SHAcopy(self, newobj);
 | 
						|
    return (PyObject *)newobj;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(SHA_digest__doc__,
 | 
						|
"Return the digest value as a string of binary data.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
SHA_digest(SHAobject *self, PyObject *args)
 | 
						|
{
 | 
						|
    unsigned char digest[SHA_DIGESTSIZE];
 | 
						|
    SHAobject temp;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, ":digest"))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    SHAcopy(self, &temp);
 | 
						|
    sha_final(digest, &temp);
 | 
						|
    return PyString_FromStringAndSize((const char *)digest, sizeof(digest));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(SHA_hexdigest__doc__,
 | 
						|
"Return the digest value as a string of hexadecimal digits.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
SHA_hexdigest(SHAobject *self, PyObject *args)
 | 
						|
{
 | 
						|
    unsigned char digest[SHA_DIGESTSIZE];
 | 
						|
    SHAobject temp;
 | 
						|
    PyObject *retval;
 | 
						|
    char *hex_digest;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, ":hexdigest"))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    /* Get the raw (binary) digest value */
 | 
						|
    SHAcopy(self, &temp);
 | 
						|
    sha_final(digest, &temp);
 | 
						|
 | 
						|
    /* Create a new string */
 | 
						|
    retval = PyString_FromStringAndSize(NULL, sizeof(digest) * 2);
 | 
						|
    if (!retval)
 | 
						|
	    return NULL;
 | 
						|
    hex_digest = PyString_AsString(retval);
 | 
						|
    if (!hex_digest) {
 | 
						|
	    Py_DECREF(retval);
 | 
						|
	    return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make hex version of the digest */
 | 
						|
    for(i=j=0; i<sizeof(digest); i++) {
 | 
						|
        char c;
 | 
						|
        c = (digest[i] >> 4) & 0xf;
 | 
						|
	c = (c>9) ? c+'a'-10 : c + '0';
 | 
						|
        hex_digest[j++] = c;
 | 
						|
        c = (digest[i] & 0xf);
 | 
						|
	c = (c>9) ? c+'a'-10 : c + '0';
 | 
						|
        hex_digest[j++] = c;
 | 
						|
    }
 | 
						|
    return retval;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(SHA_update__doc__,
 | 
						|
"Update this hashing object's state with the provided string.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
SHA_update(SHAobject *self, PyObject *args)
 | 
						|
{
 | 
						|
    unsigned char *cp;
 | 
						|
    int len;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, "s#:update", &cp, &len))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    sha_update(self, cp, len);
 | 
						|
 | 
						|
    Py_INCREF(Py_None);
 | 
						|
    return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
static PyMethodDef SHA_methods[] = {
 | 
						|
    {"copy",	  (PyCFunction)SHA_copy,      METH_VARARGS, SHA_copy__doc__},
 | 
						|
    {"digest",	  (PyCFunction)SHA_digest,    METH_VARARGS, SHA_digest__doc__},
 | 
						|
    {"hexdigest", (PyCFunction)SHA_hexdigest, METH_VARARGS, SHA_hexdigest__doc__},
 | 
						|
    {"update",	  (PyCFunction)SHA_update,    METH_VARARGS, SHA_update__doc__},
 | 
						|
    {NULL,	  NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
SHA_getattr(PyObject *self, char *name)
 | 
						|
{
 | 
						|
    if (strcmp(name, "blocksize")==0)
 | 
						|
        return PyInt_FromLong(1);
 | 
						|
    if (strcmp(name, "digest_size")==0 || strcmp(name, "digestsize")==0)
 | 
						|
        return PyInt_FromLong(20);
 | 
						|
 | 
						|
    return Py_FindMethod(SHA_methods, self, name);
 | 
						|
}
 | 
						|
 | 
						|
static PyTypeObject SHAtype = {
 | 
						|
    PyObject_HEAD_INIT(NULL)
 | 
						|
    0,			/*ob_size*/
 | 
						|
    "sha.SHA",		/*tp_name*/
 | 
						|
    sizeof(SHAobject),	/*tp_size*/
 | 
						|
    0,			/*tp_itemsize*/
 | 
						|
    /* methods */
 | 
						|
    SHA_dealloc,	/*tp_dealloc*/
 | 
						|
    0,			/*tp_print*/
 | 
						|
    SHA_getattr,	/*tp_getattr*/
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* The single module-level function: new() */
 | 
						|
 | 
						|
PyDoc_STRVAR(SHA_new__doc__,
 | 
						|
"Return a new SHA hashing object.  An optional string argument\n\
 | 
						|
may be provided; if present, this string will be automatically\n\
 | 
						|
hashed.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
SHA_new(PyObject *self, PyObject *args, PyObject *kwdict)
 | 
						|
{
 | 
						|
    static char *kwlist[] = {"string", NULL};
 | 
						|
    SHAobject *new;
 | 
						|
    unsigned char *cp = NULL;
 | 
						|
    int len;
 | 
						|
 | 
						|
    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist,
 | 
						|
                                     &cp, &len)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((new = newSHAobject()) == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    sha_init(new);
 | 
						|
 | 
						|
    if (PyErr_Occurred()) {
 | 
						|
        Py_DECREF(new);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (cp)
 | 
						|
        sha_update(new, cp, len);
 | 
						|
 | 
						|
    return (PyObject *)new;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* List of functions exported by this module */
 | 
						|
 | 
						|
static struct PyMethodDef SHA_functions[] = {
 | 
						|
    {"new", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__},
 | 
						|
    {"sha", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__},
 | 
						|
    {NULL,	NULL}		 /* Sentinel */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* Initialize this module. */
 | 
						|
 | 
						|
#define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
 | 
						|
 | 
						|
PyMODINIT_FUNC
 | 
						|
initsha(void)
 | 
						|
{
 | 
						|
    PyObject *m;
 | 
						|
 | 
						|
    SHAtype.ob_type = &PyType_Type;
 | 
						|
    m = Py_InitModule("sha", SHA_functions);
 | 
						|
 | 
						|
    /* Add some symbolic constants to the module */
 | 
						|
    insint("blocksize", 1);  /* For future use, in case some hash
 | 
						|
                                functions require an integral number of
 | 
						|
                                blocks */ 
 | 
						|
    insint("digestsize", 20);
 | 
						|
    insint("digest_size", 20);
 | 
						|
}
 |