mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	svn+ssh://pythondev@svn.python.org/python/branches/py3k
................
  r82223 | mark.dickinson | 2010-06-25 21:22:24 +0100 (Fri, 25 Jun 2010) | 9 lines
  Merged revisions 82221 via svnmerge from
  svn+ssh://pythondev@svn.python.org/python/trunk
  ........
    r82221 | mark.dickinson | 2010-06-25 21:19:48 +0100 (Fri, 25 Jun 2010) | 1 line
    Fix indentation of Python code example in C comment.
  ........
................
		
	
			
		
			
				
	
	
		
			1208 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1208 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Math module -- standard C math library functions, pi and e */
 | 
						|
 | 
						|
/* Here are some comments from Tim Peters, extracted from the
 | 
						|
   discussion attached to http://bugs.python.org/issue1640.  They
 | 
						|
   describe the general aims of the math module with respect to
 | 
						|
   special values, IEEE-754 floating-point exceptions, and Python
 | 
						|
   exceptions.
 | 
						|
 | 
						|
These are the "spirit of 754" rules:
 | 
						|
 | 
						|
1. If the mathematical result is a real number, but of magnitude too
 | 
						|
large to approximate by a machine float, overflow is signaled and the
 | 
						|
result is an infinity (with the appropriate sign).
 | 
						|
 | 
						|
2. If the mathematical result is a real number, but of magnitude too
 | 
						|
small to approximate by a machine float, underflow is signaled and the
 | 
						|
result is a zero (with the appropriate sign).
 | 
						|
 | 
						|
3. At a singularity (a value x such that the limit of f(y) as y
 | 
						|
approaches x exists and is an infinity), "divide by zero" is signaled
 | 
						|
and the result is an infinity (with the appropriate sign).  This is
 | 
						|
complicated a little by that the left-side and right-side limits may
 | 
						|
not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
 | 
						|
from the positive or negative directions.  In that specific case, the
 | 
						|
sign of the zero determines the result of 1/0.
 | 
						|
 | 
						|
4. At a point where a function has no defined result in the extended
 | 
						|
reals (i.e., the reals plus an infinity or two), invalid operation is
 | 
						|
signaled and a NaN is returned.
 | 
						|
 | 
						|
And these are what Python has historically /tried/ to do (but not
 | 
						|
always successfully, as platform libm behavior varies a lot):
 | 
						|
 | 
						|
For #1, raise OverflowError.
 | 
						|
 | 
						|
For #2, return a zero (with the appropriate sign if that happens by
 | 
						|
accident ;-)).
 | 
						|
 | 
						|
For #3 and #4, raise ValueError.  It may have made sense to raise
 | 
						|
Python's ZeroDivisionError in #3, but historically that's only been
 | 
						|
raised for division by zero and mod by zero.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
   In general, on an IEEE-754 platform the aim is to follow the C99
 | 
						|
   standard, including Annex 'F', whenever possible.  Where the
 | 
						|
   standard recommends raising the 'divide-by-zero' or 'invalid'
 | 
						|
   floating-point exceptions, Python should raise a ValueError.  Where
 | 
						|
   the standard recommends raising 'overflow', Python should raise an
 | 
						|
   OverflowError.  In all other circumstances a value should be
 | 
						|
   returned.
 | 
						|
 */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "longintrepr.h" /* just for SHIFT */
 | 
						|
 | 
						|
#ifdef _OSF_SOURCE
 | 
						|
/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
 | 
						|
extern double copysign(double, double);
 | 
						|
#endif
 | 
						|
 | 
						|
/* Call is_error when errno != 0, and where x is the result libm
 | 
						|
 * returned.  is_error will usually set up an exception and return
 | 
						|
 * true (1), but may return false (0) without setting up an exception.
 | 
						|
 */
 | 
						|
static int
 | 
						|
is_error(double x)
 | 
						|
{
 | 
						|
    int result = 1;     /* presumption of guilt */
 | 
						|
    assert(errno);      /* non-zero errno is a precondition for calling */
 | 
						|
    if (errno == EDOM)
 | 
						|
        PyErr_SetString(PyExc_ValueError, "math domain error");
 | 
						|
 | 
						|
    else if (errno == ERANGE) {
 | 
						|
        /* ANSI C generally requires libm functions to set ERANGE
 | 
						|
         * on overflow, but also generally *allows* them to set
 | 
						|
         * ERANGE on underflow too.  There's no consistency about
 | 
						|
         * the latter across platforms.
 | 
						|
         * Alas, C99 never requires that errno be set.
 | 
						|
         * Here we suppress the underflow errors (libm functions
 | 
						|
         * should return a zero on underflow, and +- HUGE_VAL on
 | 
						|
         * overflow, so testing the result for zero suffices to
 | 
						|
         * distinguish the cases).
 | 
						|
         *
 | 
						|
         * On some platforms (Ubuntu/ia64) it seems that errno can be
 | 
						|
         * set to ERANGE for subnormal results that do *not* underflow
 | 
						|
         * to zero.  So to be safe, we'll ignore ERANGE whenever the
 | 
						|
         * function result is less than one in absolute value.
 | 
						|
         */
 | 
						|
        if (fabs(x) < 1.0)
 | 
						|
            result = 0;
 | 
						|
        else
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "math range error");
 | 
						|
    }
 | 
						|
    else
 | 
						|
        /* Unexpected math error */
 | 
						|
        PyErr_SetFromErrno(PyExc_ValueError);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   wrapper for atan2 that deals directly with special cases before
 | 
						|
   delegating to the platform libm for the remaining cases.  This
 | 
						|
   is necessary to get consistent behaviour across platforms.
 | 
						|
   Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
 | 
						|
   always follow C99.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_atan2(double y, double x)
 | 
						|
{
 | 
						|
    if (Py_IS_NAN(x) || Py_IS_NAN(y))
 | 
						|
        return Py_NAN;
 | 
						|
    if (Py_IS_INFINITY(y)) {
 | 
						|
        if (Py_IS_INFINITY(x)) {
 | 
						|
            if (copysign(1., x) == 1.)
 | 
						|
                /* atan2(+-inf, +inf) == +-pi/4 */
 | 
						|
                return copysign(0.25*Py_MATH_PI, y);
 | 
						|
            else
 | 
						|
                /* atan2(+-inf, -inf) == +-pi*3/4 */
 | 
						|
                return copysign(0.75*Py_MATH_PI, y);
 | 
						|
        }
 | 
						|
        /* atan2(+-inf, x) == +-pi/2 for finite x */
 | 
						|
        return copysign(0.5*Py_MATH_PI, y);
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(x) || y == 0.) {
 | 
						|
        if (copysign(1., x) == 1.)
 | 
						|
            /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
 | 
						|
            return copysign(0., y);
 | 
						|
        else
 | 
						|
            /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
 | 
						|
            return copysign(Py_MATH_PI, y);
 | 
						|
    }
 | 
						|
    return atan2(y, x);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
    Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
 | 
						|
    log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with
 | 
						|
    special values directly, passing positive non-special values through to
 | 
						|
    the system log/log10.
 | 
						|
 */
 | 
						|
 | 
						|
static double
 | 
						|
m_log(double x)
 | 
						|
{
 | 
						|
    if (Py_IS_FINITE(x)) {
 | 
						|
        if (x > 0.0)
 | 
						|
            return log(x);
 | 
						|
        errno = EDOM;
 | 
						|
        if (x == 0.0)
 | 
						|
            return -Py_HUGE_VAL; /* log(0) = -inf */
 | 
						|
        else
 | 
						|
            return Py_NAN; /* log(-ve) = nan */
 | 
						|
    }
 | 
						|
    else if (Py_IS_NAN(x))
 | 
						|
        return x; /* log(nan) = nan */
 | 
						|
    else if (x > 0.0)
 | 
						|
        return x; /* log(inf) = inf */
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log(-inf) = nan */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
m_log10(double x)
 | 
						|
{
 | 
						|
    if (Py_IS_FINITE(x)) {
 | 
						|
        if (x > 0.0)
 | 
						|
            return log10(x);
 | 
						|
        errno = EDOM;
 | 
						|
        if (x == 0.0)
 | 
						|
            return -Py_HUGE_VAL; /* log10(0) = -inf */
 | 
						|
        else
 | 
						|
            return Py_NAN; /* log10(-ve) = nan */
 | 
						|
    }
 | 
						|
    else if (Py_IS_NAN(x))
 | 
						|
        return x; /* log10(nan) = nan */
 | 
						|
    else if (x > 0.0)
 | 
						|
        return x; /* log10(inf) = inf */
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log10(-inf) = nan */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
   math_1 is used to wrap a libm function f that takes a double
 | 
						|
   arguments and returns a double.
 | 
						|
 | 
						|
   The error reporting follows these rules, which are designed to do
 | 
						|
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | 
						|
   platforms.
 | 
						|
 | 
						|
   - a NaN result from non-NaN inputs causes ValueError to be raised
 | 
						|
   - an infinite result from finite inputs causes OverflowError to be
 | 
						|
     raised if can_overflow is 1, or raises ValueError if can_overflow
 | 
						|
     is 0.
 | 
						|
   - if the result is finite and errno == EDOM then ValueError is
 | 
						|
     raised
 | 
						|
   - if the result is finite and nonzero and errno == ERANGE then
 | 
						|
     OverflowError is raised
 | 
						|
 | 
						|
   The last rule is used to catch overflow on platforms which follow
 | 
						|
   C89 but for which HUGE_VAL is not an infinity.
 | 
						|
 | 
						|
   For the majority of one-argument functions these rules are enough
 | 
						|
   to ensure that Python's functions behave as specified in 'Annex F'
 | 
						|
   of the C99 standard, with the 'invalid' and 'divide-by-zero'
 | 
						|
   floating-point exceptions mapping to Python's ValueError and the
 | 
						|
   'overflow' floating-point exception mapping to OverflowError.
 | 
						|
   math_1 only works for functions that don't have singularities *and*
 | 
						|
   the possibility of overflow; fortunately, that covers everything we
 | 
						|
   care about right now.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1_to_whatever(PyObject *arg, double (*func) (double),
 | 
						|
                   PyObject *(*from_double_func) (double),
 | 
						|
                   int can_overflow)
 | 
						|
{
 | 
						|
    double x, r;
 | 
						|
    x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_1", return 0);
 | 
						|
    r = (*func)(x);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "math domain error"); /* invalid arg */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
 | 
						|
                    if (can_overflow)
 | 
						|
                            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                                    "math range error"); /* overflow */
 | 
						|
            else
 | 
						|
                PyErr_SetString(PyExc_ValueError,
 | 
						|
                    "math domain error"); /* singularity */
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_FINITE(r) && errno && is_error(r))
 | 
						|
        /* this branch unnecessary on most platforms */
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    return (*from_double_func)(r);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   math_2 is used to wrap a libm function f that takes two double
 | 
						|
   arguments and returns a double.
 | 
						|
 | 
						|
   The error reporting follows these rules, which are designed to do
 | 
						|
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | 
						|
   platforms.
 | 
						|
 | 
						|
   - a NaN result from non-NaN inputs causes ValueError to be raised
 | 
						|
   - an infinite result from finite inputs causes OverflowError to be
 | 
						|
     raised.
 | 
						|
   - if the result is finite and errno == EDOM then ValueError is
 | 
						|
     raised
 | 
						|
   - if the result is finite and nonzero and errno == ERANGE then
 | 
						|
     OverflowError is raised
 | 
						|
 | 
						|
   The last rule is used to catch overflow on platforms which follow
 | 
						|
   C89 but for which HUGE_VAL is not an infinity.
 | 
						|
 | 
						|
   For most two-argument functions (copysign, fmod, hypot, atan2)
 | 
						|
   these rules are enough to ensure that Python's functions behave as
 | 
						|
   specified in 'Annex F' of the C99 standard, with the 'invalid' and
 | 
						|
   'divide-by-zero' floating-point exceptions mapping to Python's
 | 
						|
   ValueError and the 'overflow' floating-point exception mapping to
 | 
						|
   OverflowError.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1(PyObject *arg, double (*func) (double), int can_overflow)
 | 
						|
{
 | 
						|
    return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
 | 
						|
{
 | 
						|
    return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_2(PyObject *args, double (*func) (double, double), char *funcname)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double x, y, r;
 | 
						|
    if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_2", return 0);
 | 
						|
    r = (*func)(x, y);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    else if (Py_IS_INFINITY(r)) {
 | 
						|
        if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | 
						|
            errno = ERANGE;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
#define FUNC1(funcname, func, can_overflow, docstring)                  \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | 
						|
        return math_1(args, func, can_overflow);                            \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
#define FUNC2(funcname, func, docstring) \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | 
						|
        return math_2(args, func, #funcname); \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
FUNC1(acos, acos, 0,
 | 
						|
      "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
 | 
						|
FUNC1(acosh, acosh, 0,
 | 
						|
      "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
 | 
						|
FUNC1(asin, asin, 0,
 | 
						|
      "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
 | 
						|
FUNC1(asinh, asinh, 0,
 | 
						|
      "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
 | 
						|
FUNC1(atan, atan, 0,
 | 
						|
      "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
 | 
						|
FUNC2(atan2, m_atan2,
 | 
						|
      "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
 | 
						|
      "Unlike atan(y/x), the signs of both x and y are considered.")
 | 
						|
FUNC1(atanh, atanh, 0,
 | 
						|
      "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
 | 
						|
 | 
						|
static PyObject * math_ceil(PyObject *self, PyObject *number) {
 | 
						|
    static PyObject *ceil_str = NULL;
 | 
						|
    PyObject *method;
 | 
						|
 | 
						|
    if (ceil_str == NULL) {
 | 
						|
        ceil_str = PyUnicode_InternFromString("__ceil__");
 | 
						|
        if (ceil_str == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    method = _PyType_Lookup(Py_TYPE(number), ceil_str);
 | 
						|
    if (method == NULL)
 | 
						|
        return math_1_to_int(number, ceil, 0);
 | 
						|
    else
 | 
						|
        return PyObject_CallFunction(method, "O", number);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_ceil_doc,
 | 
						|
             "ceil(x)\n\nReturn the ceiling of x as an int.\n"
 | 
						|
             "This is the smallest integral value >= x.");
 | 
						|
 | 
						|
FUNC2(copysign, copysign,
 | 
						|
      "copysign(x, y)\n\nReturn x with the sign of y.")
 | 
						|
FUNC1(cos, cos, 0,
 | 
						|
      "cos(x)\n\nReturn the cosine of x (measured in radians).")
 | 
						|
FUNC1(cosh, cosh, 1,
 | 
						|
      "cosh(x)\n\nReturn the hyperbolic cosine of x.")
 | 
						|
FUNC1(exp, exp, 1,
 | 
						|
      "exp(x)\n\nReturn e raised to the power of x.")
 | 
						|
FUNC1(fabs, fabs, 0,
 | 
						|
      "fabs(x)\n\nReturn the absolute value of the float x.")
 | 
						|
 | 
						|
static PyObject * math_floor(PyObject *self, PyObject *number) {
 | 
						|
    static PyObject *floor_str = NULL;
 | 
						|
    PyObject *method;
 | 
						|
 | 
						|
    if (floor_str == NULL) {
 | 
						|
        floor_str = PyUnicode_InternFromString("__floor__");
 | 
						|
        if (floor_str == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    method = _PyType_Lookup(Py_TYPE(number), floor_str);
 | 
						|
    if (method == NULL)
 | 
						|
        return math_1_to_int(number, floor, 0);
 | 
						|
    else
 | 
						|
        return PyObject_CallFunction(method, "O", number);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_floor_doc,
 | 
						|
             "floor(x)\n\nReturn the floor of x as an int.\n"
 | 
						|
             "This is the largest integral value <= x.");
 | 
						|
 | 
						|
FUNC1(log1p, log1p, 1,
 | 
						|
      "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
 | 
						|
      "The result is computed in a way which is accurate for x near zero.")
 | 
						|
FUNC1(sin, sin, 0,
 | 
						|
      "sin(x)\n\nReturn the sine of x (measured in radians).")
 | 
						|
FUNC1(sinh, sinh, 1,
 | 
						|
      "sinh(x)\n\nReturn the hyperbolic sine of x.")
 | 
						|
FUNC1(sqrt, sqrt, 0,
 | 
						|
      "sqrt(x)\n\nReturn the square root of x.")
 | 
						|
FUNC1(tan, tan, 0,
 | 
						|
      "tan(x)\n\nReturn the tangent of x (measured in radians).")
 | 
						|
FUNC1(tanh, tanh, 0,
 | 
						|
      "tanh(x)\n\nReturn the hyperbolic tangent of x.")
 | 
						|
 | 
						|
/* Precision summation function as msum() by Raymond Hettinger in
 | 
						|
   <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
 | 
						|
   enhanced with the exact partials sum and roundoff from Mark
 | 
						|
   Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
 | 
						|
   See those links for more details, proofs and other references.
 | 
						|
 | 
						|
   Note 1: IEEE 754R floating point semantics are assumed,
 | 
						|
   but the current implementation does not re-establish special
 | 
						|
   value semantics across iterations (i.e. handling -Inf + Inf).
 | 
						|
 | 
						|
   Note 2:  No provision is made for intermediate overflow handling;
 | 
						|
   therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
 | 
						|
   sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
 | 
						|
   overflow of the first partial sum.
 | 
						|
 | 
						|
   Note 3: The intermediate values lo, yr, and hi are declared volatile so
 | 
						|
   aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
 | 
						|
   Also, the volatile declaration forces the values to be stored in memory as
 | 
						|
   regular doubles instead of extended long precision (80-bit) values.  This
 | 
						|
   prevents double rounding because any addition or subtraction of two doubles
 | 
						|
   can be resolved exactly into double-sized hi and lo values.  As long as the
 | 
						|
   hi value gets forced into a double before yr and lo are computed, the extra
 | 
						|
   bits in downstream extended precision operations (x87 for example) will be
 | 
						|
   exactly zero and therefore can be losslessly stored back into a double,
 | 
						|
   thereby preventing double rounding.
 | 
						|
 | 
						|
   Note 4: A similar implementation is in Modules/cmathmodule.c.
 | 
						|
   Be sure to update both when making changes.
 | 
						|
 | 
						|
   Note 5: The signature of math.fsum() differs from __builtin__.sum()
 | 
						|
   because the start argument doesn't make sense in the context of
 | 
						|
   accurate summation.  Since the partials table is collapsed before
 | 
						|
   returning a result, sum(seq2, start=sum(seq1)) may not equal the
 | 
						|
   accurate result returned by sum(itertools.chain(seq1, seq2)).
 | 
						|
*/
 | 
						|
 | 
						|
#define NUM_PARTIALS  32  /* initial partials array size, on stack */
 | 
						|
 | 
						|
/* Extend the partials array p[] by doubling its size. */
 | 
						|
static int                          /* non-zero on error */
 | 
						|
_fsum_realloc(double **p_ptr, Py_ssize_t  n,
 | 
						|
             double  *ps,    Py_ssize_t *m_ptr)
 | 
						|
{
 | 
						|
    void *v = NULL;
 | 
						|
    Py_ssize_t m = *m_ptr;
 | 
						|
 | 
						|
    m += m;  /* double */
 | 
						|
    if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
 | 
						|
        double *p = *p_ptr;
 | 
						|
        if (p == ps) {
 | 
						|
            v = PyMem_Malloc(sizeof(double) * m);
 | 
						|
            if (v != NULL)
 | 
						|
                memcpy(v, ps, sizeof(double) * n);
 | 
						|
        }
 | 
						|
        else
 | 
						|
            v = PyMem_Realloc(p, sizeof(double) * m);
 | 
						|
    }
 | 
						|
    if (v == NULL) {        /* size overflow or no memory */
 | 
						|
        PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    *p_ptr = (double*) v;
 | 
						|
    *m_ptr = m;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Full precision summation of a sequence of floats.
 | 
						|
 | 
						|
   def msum(iterable):
 | 
						|
       partials = []  # sorted, non-overlapping partial sums
 | 
						|
       for x in iterable:
 | 
						|
           i = 0
 | 
						|
           for y in partials:
 | 
						|
               if abs(x) < abs(y):
 | 
						|
                   x, y = y, x
 | 
						|
               hi = x + y
 | 
						|
               lo = y - (hi - x)
 | 
						|
               if lo:
 | 
						|
                   partials[i] = lo
 | 
						|
                   i += 1
 | 
						|
               x = hi
 | 
						|
           partials[i:] = [x]
 | 
						|
       return sum_exact(partials)
 | 
						|
 | 
						|
   Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
 | 
						|
   are exactly equal to x+y.  The inner loop applies hi/lo summation to each
 | 
						|
   partial so that the list of partial sums remains exact.
 | 
						|
 | 
						|
   Sum_exact() adds the partial sums exactly and correctly rounds the final
 | 
						|
   result (using the round-half-to-even rule).  The items in partials remain
 | 
						|
   non-zero, non-special, non-overlapping and strictly increasing in
 | 
						|
   magnitude, but possibly not all having the same sign.
 | 
						|
 | 
						|
   Depends on IEEE 754 arithmetic guarantees and half-even rounding.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject*
 | 
						|
math_fsum(PyObject *self, PyObject *seq)
 | 
						|
{
 | 
						|
    PyObject *item, *iter, *sum = NULL;
 | 
						|
    Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
 | 
						|
    double x, y, t, ps[NUM_PARTIALS], *p = ps;
 | 
						|
    double xsave, special_sum = 0.0, inf_sum = 0.0;
 | 
						|
    volatile double hi, yr, lo;
 | 
						|
 | 
						|
    iter = PyObject_GetIter(seq);
 | 
						|
    if (iter == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
 | 
						|
 | 
						|
    for(;;) {           /* for x in iterable */
 | 
						|
        assert(0 <= n && n <= m);
 | 
						|
        assert((m == NUM_PARTIALS && p == ps) ||
 | 
						|
               (m >  NUM_PARTIALS && p != NULL));
 | 
						|
 | 
						|
        item = PyIter_Next(iter);
 | 
						|
        if (item == NULL) {
 | 
						|
            if (PyErr_Occurred())
 | 
						|
                goto _fsum_error;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        x = PyFloat_AsDouble(item);
 | 
						|
        Py_DECREF(item);
 | 
						|
        if (PyErr_Occurred())
 | 
						|
            goto _fsum_error;
 | 
						|
 | 
						|
        xsave = x;
 | 
						|
        for (i = j = 0; j < n; j++) {       /* for y in partials */
 | 
						|
            y = p[j];
 | 
						|
            if (fabs(x) < fabs(y)) {
 | 
						|
                t = x; x = y; y = t;
 | 
						|
            }
 | 
						|
            hi = x + y;
 | 
						|
            yr = hi - x;
 | 
						|
            lo = y - yr;
 | 
						|
            if (lo != 0.0)
 | 
						|
                p[i++] = lo;
 | 
						|
            x = hi;
 | 
						|
        }
 | 
						|
 | 
						|
        n = i;                              /* ps[i:] = [x] */
 | 
						|
        if (x != 0.0) {
 | 
						|
            if (! Py_IS_FINITE(x)) {
 | 
						|
                /* a nonfinite x could arise either as
 | 
						|
                   a result of intermediate overflow, or
 | 
						|
                   as a result of a nan or inf in the
 | 
						|
                   summands */
 | 
						|
                if (Py_IS_FINITE(xsave)) {
 | 
						|
                    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                          "intermediate overflow in fsum");
 | 
						|
                    goto _fsum_error;
 | 
						|
                }
 | 
						|
                if (Py_IS_INFINITY(xsave))
 | 
						|
                    inf_sum += xsave;
 | 
						|
                special_sum += xsave;
 | 
						|
                /* reset partials */
 | 
						|
                n = 0;
 | 
						|
            }
 | 
						|
            else if (n >= m && _fsum_realloc(&p, n, ps, &m))
 | 
						|
                goto _fsum_error;
 | 
						|
            else
 | 
						|
                p[n++] = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (special_sum != 0.0) {
 | 
						|
        if (Py_IS_NAN(inf_sum))
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "-inf + inf in fsum");
 | 
						|
        else
 | 
						|
            sum = PyFloat_FromDouble(special_sum);
 | 
						|
        goto _fsum_error;
 | 
						|
    }
 | 
						|
 | 
						|
    hi = 0.0;
 | 
						|
    if (n > 0) {
 | 
						|
        hi = p[--n];
 | 
						|
        /* sum_exact(ps, hi) from the top, stop when the sum becomes
 | 
						|
           inexact. */
 | 
						|
        while (n > 0) {
 | 
						|
            x = hi;
 | 
						|
            y = p[--n];
 | 
						|
            assert(fabs(y) < fabs(x));
 | 
						|
            hi = x + y;
 | 
						|
            yr = hi - x;
 | 
						|
            lo = y - yr;
 | 
						|
            if (lo != 0.0)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        /* Make half-even rounding work across multiple partials.
 | 
						|
           Needed so that sum([1e-16, 1, 1e16]) will round-up the last
 | 
						|
           digit to two instead of down to zero (the 1e-16 makes the 1
 | 
						|
           slightly closer to two).  With a potential 1 ULP rounding
 | 
						|
           error fixed-up, math.fsum() can guarantee commutativity. */
 | 
						|
        if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
 | 
						|
                      (lo > 0.0 && p[n-1] > 0.0))) {
 | 
						|
            y = lo * 2.0;
 | 
						|
            x = hi + y;
 | 
						|
            yr = x - hi;
 | 
						|
            if (y == yr)
 | 
						|
                hi = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    sum = PyFloat_FromDouble(hi);
 | 
						|
 | 
						|
_fsum_error:
 | 
						|
    PyFPE_END_PROTECT(hi)
 | 
						|
    Py_DECREF(iter);
 | 
						|
    if (p != ps)
 | 
						|
        PyMem_Free(p);
 | 
						|
    return sum;
 | 
						|
}
 | 
						|
 | 
						|
#undef NUM_PARTIALS
 | 
						|
 | 
						|
PyDoc_STRVAR(math_fsum_doc,
 | 
						|
"fsum(iterable)\n\n\
 | 
						|
Return an accurate floating point sum of values in the iterable.\n\
 | 
						|
Assumes IEEE-754 floating point arithmetic.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_factorial(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    long i, x;
 | 
						|
    PyObject *result, *iobj, *newresult;
 | 
						|
 | 
						|
    if (PyFloat_Check(arg)) {
 | 
						|
        double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
 | 
						|
        if (dx != floor(dx)) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                "factorial() only accepts integral values");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    x = PyLong_AsLong(arg);
 | 
						|
    if (x == -1 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    if (x < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
            "factorial() not defined for negative values");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    result = (PyObject *)PyLong_FromLong(1);
 | 
						|
    if (result == NULL)
 | 
						|
        return NULL;
 | 
						|
    for (i=1 ; i<=x ; i++) {
 | 
						|
        iobj = (PyObject *)PyLong_FromLong(i);
 | 
						|
        if (iobj == NULL)
 | 
						|
            goto error;
 | 
						|
        newresult = PyNumber_Multiply(result, iobj);
 | 
						|
        Py_DECREF(iobj);
 | 
						|
        if (newresult == NULL)
 | 
						|
            goto error;
 | 
						|
        Py_DECREF(result);
 | 
						|
        result = newresult;
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
 | 
						|
error:
 | 
						|
    Py_DECREF(result);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_factorial_doc,
 | 
						|
"factorial(x) -> Integral\n"
 | 
						|
"\n"
 | 
						|
"Find x!. Raise a ValueError if x is negative or non-integral.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_trunc(PyObject *self, PyObject *number)
 | 
						|
{
 | 
						|
    static PyObject *trunc_str = NULL;
 | 
						|
    PyObject *trunc;
 | 
						|
 | 
						|
    if (Py_TYPE(number)->tp_dict == NULL) {
 | 
						|
        if (PyType_Ready(Py_TYPE(number)) < 0)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (trunc_str == NULL) {
 | 
						|
        trunc_str = PyUnicode_InternFromString("__trunc__");
 | 
						|
        if (trunc_str == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
 | 
						|
    if (trunc == NULL) {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
                     "type %.100s doesn't define __trunc__ method",
 | 
						|
                     Py_TYPE(number)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return PyObject_CallFunctionObjArgs(trunc, number, NULL);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_trunc_doc,
 | 
						|
"trunc(x:Real) -> Integral\n"
 | 
						|
"\n"
 | 
						|
"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_frexp(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* deal with special cases directly, to sidestep platform
 | 
						|
       differences */
 | 
						|
    if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
 | 
						|
        i = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyFPE_START_PROTECT("in math_frexp", return 0);
 | 
						|
        x = frexp(x, &i);
 | 
						|
        PyFPE_END_PROTECT(x);
 | 
						|
    }
 | 
						|
    return Py_BuildValue("(di)", x, i);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_frexp_doc,
 | 
						|
"frexp(x)\n"
 | 
						|
"\n"
 | 
						|
"Return the mantissa and exponent of x, as pair (m, e).\n"
 | 
						|
"m is a float and e is an int, such that x = m * 2.**e.\n"
 | 
						|
"If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_ldexp(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    double x, r;
 | 
						|
    PyObject *oexp;
 | 
						|
    long exp;
 | 
						|
    if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (PyLong_Check(oexp)) {
 | 
						|
        /* on overflow, replace exponent with either LONG_MAX
 | 
						|
           or LONG_MIN, depending on the sign. */
 | 
						|
        exp = PyLong_AsLong(oexp);
 | 
						|
        if (exp == -1 && PyErr_Occurred()) {
 | 
						|
            if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | 
						|
                if (Py_SIZE(oexp) < 0) {
 | 
						|
                    exp = LONG_MIN;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    exp = LONG_MAX;
 | 
						|
                }
 | 
						|
                PyErr_Clear();
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                /* propagate any unexpected exception */
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
                        "Expected an int or long as second argument "
 | 
						|
                        "to ldexp.");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (x == 0. || !Py_IS_FINITE(x)) {
 | 
						|
        /* NaNs, zeros and infinities are returned unchanged */
 | 
						|
        r = x;
 | 
						|
        errno = 0;
 | 
						|
    } else if (exp > INT_MAX) {
 | 
						|
        /* overflow */
 | 
						|
        r = copysign(Py_HUGE_VAL, x);
 | 
						|
        errno = ERANGE;
 | 
						|
    } else if (exp < INT_MIN) {
 | 
						|
        /* underflow to +-0 */
 | 
						|
        r = copysign(0., x);
 | 
						|
        errno = 0;
 | 
						|
    } else {
 | 
						|
        errno = 0;
 | 
						|
        PyFPE_START_PROTECT("in math_ldexp", return 0);
 | 
						|
        r = ldexp(x, (int)exp);
 | 
						|
        PyFPE_END_PROTECT(r);
 | 
						|
        if (Py_IS_INFINITY(r))
 | 
						|
            errno = ERANGE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_ldexp_doc,
 | 
						|
"ldexp(x, i)\n\n\
 | 
						|
Return x * (2**i).");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_modf(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double y, x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* some platforms don't do the right thing for NaNs and
 | 
						|
       infinities, so we take care of special cases directly. */
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_INFINITY(x))
 | 
						|
            return Py_BuildValue("(dd)", copysign(0., x), x);
 | 
						|
        else if (Py_IS_NAN(x))
 | 
						|
            return Py_BuildValue("(dd)", x, x);
 | 
						|
    }
 | 
						|
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_modf", return 0);
 | 
						|
    x = modf(x, &y);
 | 
						|
    PyFPE_END_PROTECT(x);
 | 
						|
    return Py_BuildValue("(dd)", x, y);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_modf_doc,
 | 
						|
"modf(x)\n"
 | 
						|
"\n"
 | 
						|
"Return the fractional and integer parts of x.  Both results carry the sign\n"
 | 
						|
"of x and are floats.");
 | 
						|
 | 
						|
/* A decent logarithm is easy to compute even for huge longs, but libm can't
 | 
						|
   do that by itself -- loghelper can.  func is log or log10, and name is
 | 
						|
   "log" or "log10".  Note that overflow isn't possible:  a long can contain
 | 
						|
   no more than INT_MAX * SHIFT bits, so has value certainly less than
 | 
						|
   2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
 | 
						|
   small enough to fit in an IEEE single.  log and log10 are even smaller.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject*
 | 
						|
loghelper(PyObject* arg, double (*func)(double), char *funcname)
 | 
						|
{
 | 
						|
    /* If it is long, do it ourselves. */
 | 
						|
    if (PyLong_Check(arg)) {
 | 
						|
        double x;
 | 
						|
        int e;
 | 
						|
        x = _PyLong_AsScaledDouble(arg, &e);
 | 
						|
        if (x <= 0.0) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "math domain error");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
 | 
						|
           log(x) + log(2) * e * PyLong_SHIFT.
 | 
						|
           CAUTION:  e*PyLong_SHIFT may overflow using int arithmetic,
 | 
						|
           so force use of double. */
 | 
						|
        x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Else let libm handle it by itself. */
 | 
						|
    return math_1(arg, func, 0);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *arg;
 | 
						|
    PyObject *base = NULL;
 | 
						|
    PyObject *num, *den;
 | 
						|
    PyObject *ans;
 | 
						|
 | 
						|
    if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    num = loghelper(arg, m_log, "log");
 | 
						|
    if (num == NULL || base == NULL)
 | 
						|
        return num;
 | 
						|
 | 
						|
    den = loghelper(base, m_log, "log");
 | 
						|
    if (den == NULL) {
 | 
						|
        Py_DECREF(num);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    ans = PyNumber_TrueDivide(num, den);
 | 
						|
    Py_DECREF(num);
 | 
						|
    Py_DECREF(den);
 | 
						|
    return ans;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_log_doc,
 | 
						|
"log(x[, base])\n\n\
 | 
						|
Return the logarithm of x to the given base.\n\
 | 
						|
If the base not specified, returns the natural logarithm (base e) of x.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log10(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    return loghelper(arg, m_log10, "log10");
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_log10_doc,
 | 
						|
"log10(x)\n\nReturn the base 10 logarithm of x.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_fmod(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double r, x, y;
 | 
						|
    if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* fmod(x, +/-Inf) returns x for finite x. */
 | 
						|
    if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_fmod", return 0);
 | 
						|
    r = fmod(x, y);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_fmod_doc,
 | 
						|
"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
 | 
						|
"  x % y may differ.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_hypot(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double r, x, y;
 | 
						|
    if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
 | 
						|
    if (Py_IS_INFINITY(x))
 | 
						|
        return PyFloat_FromDouble(fabs(x));
 | 
						|
    if (Py_IS_INFINITY(y))
 | 
						|
        return PyFloat_FromDouble(fabs(y));
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_hypot", return 0);
 | 
						|
    r = hypot(x, y);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    else if (Py_IS_INFINITY(r)) {
 | 
						|
        if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | 
						|
            errno = ERANGE;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_hypot_doc,
 | 
						|
"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
 | 
						|
 | 
						|
/* pow can't use math_2, but needs its own wrapper: the problem is
 | 
						|
   that an infinite result can arise either as a result of overflow
 | 
						|
   (in which case OverflowError should be raised) or as a result of
 | 
						|
   e.g. 0.**-5. (for which ValueError needs to be raised.)
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_pow(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double r, x, y;
 | 
						|
    int odd_y;
 | 
						|
 | 
						|
    if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    /* deal directly with IEEE specials, to cope with problems on various
 | 
						|
       platforms whose semantics don't exactly match C99 */
 | 
						|
    r = 0.; /* silence compiler warning */
 | 
						|
    if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
 | 
						|
        errno = 0;
 | 
						|
        if (Py_IS_NAN(x))
 | 
						|
            r = y == 0. ? 1. : x; /* NaN**0 = 1 */
 | 
						|
        else if (Py_IS_NAN(y))
 | 
						|
            r = x == 1. ? 1. : y; /* 1**NaN = 1 */
 | 
						|
        else if (Py_IS_INFINITY(x)) {
 | 
						|
            odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
 | 
						|
            if (y > 0.)
 | 
						|
                r = odd_y ? x : fabs(x);
 | 
						|
            else if (y == 0.)
 | 
						|
                r = 1.;
 | 
						|
            else /* y < 0. */
 | 
						|
                r = odd_y ? copysign(0., x) : 0.;
 | 
						|
        }
 | 
						|
        else if (Py_IS_INFINITY(y)) {
 | 
						|
            if (fabs(x) == 1.0)
 | 
						|
                r = 1.;
 | 
						|
            else if (y > 0. && fabs(x) > 1.0)
 | 
						|
                r = y;
 | 
						|
            else if (y < 0. && fabs(x) < 1.0) {
 | 
						|
                r = -y; /* result is +inf */
 | 
						|
                if (x == 0.) /* 0**-inf: divide-by-zero */
 | 
						|
                    errno = EDOM;
 | 
						|
            }
 | 
						|
            else
 | 
						|
                r = 0.;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* let libm handle finite**finite */
 | 
						|
        errno = 0;
 | 
						|
        PyFPE_START_PROTECT("in math_pow", return 0);
 | 
						|
        r = pow(x, y);
 | 
						|
        PyFPE_END_PROTECT(r);
 | 
						|
        /* a NaN result should arise only from (-ve)**(finite
 | 
						|
           non-integer); in this case we want to raise ValueError. */
 | 
						|
        if (!Py_IS_FINITE(r)) {
 | 
						|
            if (Py_IS_NAN(r)) {
 | 
						|
                errno = EDOM;
 | 
						|
            }
 | 
						|
            /*
 | 
						|
               an infinite result here arises either from:
 | 
						|
               (A) (+/-0.)**negative (-> divide-by-zero)
 | 
						|
               (B) overflow of x**y with x and y finite
 | 
						|
            */
 | 
						|
            else if (Py_IS_INFINITY(r)) {
 | 
						|
                if (x == 0.)
 | 
						|
                    errno = EDOM;
 | 
						|
                else
 | 
						|
                    errno = ERANGE;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_pow_doc,
 | 
						|
"pow(x, y)\n\nReturn x**y (x to the power of y).");
 | 
						|
 | 
						|
static const double degToRad = Py_MATH_PI / 180.0;
 | 
						|
static const double radToDeg = 180.0 / Py_MATH_PI;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_degrees(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(x * radToDeg);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_degrees_doc,
 | 
						|
"degrees(x)\n\n\
 | 
						|
Convert angle x from radians to degrees.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_radians(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(x * degToRad);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_radians_doc,
 | 
						|
"radians(x)\n\n\
 | 
						|
Convert angle x from degrees to radians.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isnan(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyBool_FromLong((long)Py_IS_NAN(x));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_isnan_doc,
 | 
						|
"isnan(x) -> bool\n\n\
 | 
						|
Check if float x is not a number (NaN).");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isinf(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyBool_FromLong((long)Py_IS_INFINITY(x));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_isinf_doc,
 | 
						|
"isinf(x) -> bool\n\n\
 | 
						|
Check if float x is infinite (positive or negative).");
 | 
						|
 | 
						|
static PyMethodDef math_methods[] = {
 | 
						|
    {"acos",            math_acos,      METH_O,         math_acos_doc},
 | 
						|
    {"acosh",           math_acosh,     METH_O,         math_acosh_doc},
 | 
						|
    {"asin",            math_asin,      METH_O,         math_asin_doc},
 | 
						|
    {"asinh",           math_asinh,     METH_O,         math_asinh_doc},
 | 
						|
    {"atan",            math_atan,      METH_O,         math_atan_doc},
 | 
						|
    {"atan2",           math_atan2,     METH_VARARGS,   math_atan2_doc},
 | 
						|
    {"atanh",           math_atanh,     METH_O,         math_atanh_doc},
 | 
						|
    {"ceil",            math_ceil,      METH_O,         math_ceil_doc},
 | 
						|
    {"copysign",        math_copysign,  METH_VARARGS,   math_copysign_doc},
 | 
						|
    {"cos",             math_cos,       METH_O,         math_cos_doc},
 | 
						|
    {"cosh",            math_cosh,      METH_O,         math_cosh_doc},
 | 
						|
    {"degrees",         math_degrees,   METH_O,         math_degrees_doc},
 | 
						|
    {"exp",             math_exp,       METH_O,         math_exp_doc},
 | 
						|
    {"fabs",            math_fabs,      METH_O,         math_fabs_doc},
 | 
						|
    {"factorial",       math_factorial, METH_O,         math_factorial_doc},
 | 
						|
    {"floor",           math_floor,     METH_O,         math_floor_doc},
 | 
						|
    {"fmod",            math_fmod,      METH_VARARGS,   math_fmod_doc},
 | 
						|
    {"frexp",           math_frexp,     METH_O,         math_frexp_doc},
 | 
						|
    {"fsum",            math_fsum,      METH_O,         math_fsum_doc},
 | 
						|
    {"hypot",           math_hypot,     METH_VARARGS,   math_hypot_doc},
 | 
						|
    {"isinf",           math_isinf,     METH_O,         math_isinf_doc},
 | 
						|
    {"isnan",           math_isnan,     METH_O,         math_isnan_doc},
 | 
						|
    {"ldexp",           math_ldexp,     METH_VARARGS,   math_ldexp_doc},
 | 
						|
    {"log",             math_log,       METH_VARARGS,   math_log_doc},
 | 
						|
    {"log1p",           math_log1p,     METH_O,         math_log1p_doc},
 | 
						|
    {"log10",           math_log10,     METH_O,         math_log10_doc},
 | 
						|
    {"modf",            math_modf,      METH_O,         math_modf_doc},
 | 
						|
    {"pow",             math_pow,       METH_VARARGS,   math_pow_doc},
 | 
						|
    {"radians",         math_radians,   METH_O,         math_radians_doc},
 | 
						|
    {"sin",             math_sin,       METH_O,         math_sin_doc},
 | 
						|
    {"sinh",            math_sinh,      METH_O,         math_sinh_doc},
 | 
						|
    {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc},
 | 
						|
    {"tan",             math_tan,       METH_O,         math_tan_doc},
 | 
						|
    {"tanh",            math_tanh,      METH_O,         math_tanh_doc},
 | 
						|
    {"trunc",           math_trunc,     METH_O,         math_trunc_doc},
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
PyDoc_STRVAR(module_doc,
 | 
						|
"This module is always available.  It provides access to the\n"
 | 
						|
"mathematical functions defined by the C standard.");
 | 
						|
 | 
						|
 | 
						|
static struct PyModuleDef mathmodule = {
 | 
						|
    PyModuleDef_HEAD_INIT,
 | 
						|
    "math",
 | 
						|
    module_doc,
 | 
						|
    -1,
 | 
						|
    math_methods,
 | 
						|
    NULL,
 | 
						|
    NULL,
 | 
						|
    NULL,
 | 
						|
    NULL
 | 
						|
};
 | 
						|
 | 
						|
PyMODINIT_FUNC
 | 
						|
PyInit_math(void)
 | 
						|
{
 | 
						|
    PyObject *m;
 | 
						|
 | 
						|
    m = PyModule_Create(&mathmodule);
 | 
						|
    if (m == NULL)
 | 
						|
        goto finally;
 | 
						|
 | 
						|
    PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
 | 
						|
    PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
 | 
						|
 | 
						|
    finally:
 | 
						|
    return m;
 | 
						|
}
 |