mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 19:34:08 +00:00 
			
		
		
		
	http://sourceforge.net/tracker/?func=detail&aid=409448&group_id=5470&atid=105470 Now less braindead. Also added test_complex.py, which doesn't test much, but fails without this patch.
		
			
				
	
	
		
			629 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			629 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/* Complex object implementation */
 | 
						|
 | 
						|
/* Borrows heavily from floatobject.c */
 | 
						|
 | 
						|
/* Submitted by Jim Hugunin */
 | 
						|
 | 
						|
#ifndef WITHOUT_COMPLEX
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
/* Precisions used by repr() and str(), respectively.
 | 
						|
 | 
						|
   The repr() precision (17 significant decimal digits) is the minimal number
 | 
						|
   that is guaranteed to have enough precision so that if the number is read
 | 
						|
   back in the exact same binary value is recreated.  This is true for IEEE
 | 
						|
   floating point by design, and also happens to work for all other modern
 | 
						|
   hardware.
 | 
						|
 | 
						|
   The str() precision is chosen so that in most cases, the rounding noise
 | 
						|
   created by various operations is suppressed, while giving plenty of
 | 
						|
   precision for practical use.
 | 
						|
*/
 | 
						|
 | 
						|
#define PREC_REPR	17
 | 
						|
#define PREC_STR	12
 | 
						|
 | 
						|
/* elementary operations on complex numbers */
 | 
						|
 | 
						|
static Py_complex c_1 = {1., 0.};
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_sum(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = a.real + b.real;
 | 
						|
	r.imag = a.imag + b.imag;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_diff(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = a.real - b.real;
 | 
						|
	r.imag = a.imag - b.imag;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_neg(Py_complex a)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = -a.real;
 | 
						|
	r.imag = -a.imag;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_prod(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	r.real = a.real*b.real - a.imag*b.imag;
 | 
						|
	r.imag = a.real*b.imag + a.imag*b.real;
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_quot(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	/******************************************************************
 | 
						|
	This was the original algorithm.  It's grossly prone to spurious
 | 
						|
	overflow and underflow errors.  It also merrily divides by 0 despite
 | 
						|
	checking for that(!).  The code still serves a doc purpose here, as
 | 
						|
	the algorithm following is a simple by-cases transformation of this
 | 
						|
	one:
 | 
						|
 | 
						|
	Py_complex r;
 | 
						|
	double d = b.real*b.real + b.imag*b.imag;
 | 
						|
	if (d == 0.)
 | 
						|
		errno = EDOM;
 | 
						|
	r.real = (a.real*b.real + a.imag*b.imag)/d;
 | 
						|
	r.imag = (a.imag*b.real - a.real*b.imag)/d;
 | 
						|
	return r;
 | 
						|
	******************************************************************/
 | 
						|
 | 
						|
	/* This algorithm is better, and is pretty obvious:  first divide the
 | 
						|
	 * numerators and denominator by whichever of {b.real, b.imag} has
 | 
						|
	 * larger magnitude.  The earliest reference I found was to CACM
 | 
						|
	 * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
 | 
						|
	 * University).  As usual, though, we're still ignoring all IEEE
 | 
						|
	 * endcases.
 | 
						|
	 */
 | 
						|
	 Py_complex r;	/* the result */
 | 
						|
 	 const double abs_breal = b.real < 0 ? -b.real : b.real;
 | 
						|
	 const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
 | 
						|
 | 
						|
	 if (abs_breal >= abs_bimag) {
 | 
						|
 		/* divide tops and bottom by b.real */
 | 
						|
	 	if (abs_breal == 0.0) {
 | 
						|
	 		errno = EDOM;
 | 
						|
	 		r.real = r.imag = 0.0;
 | 
						|
	 	}
 | 
						|
	 	else {
 | 
						|
	 		const double ratio = b.imag / b.real;
 | 
						|
	 		const double denom = b.real + b.imag * ratio;
 | 
						|
	 		r.real = (a.real + a.imag * ratio) / denom;
 | 
						|
	 		r.imag = (a.imag - a.real * ratio) / denom;
 | 
						|
	 	}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* divide tops and bottom by b.imag */
 | 
						|
		const double ratio = b.real / b.imag;
 | 
						|
		const double denom = b.real * ratio + b.imag;
 | 
						|
		assert(b.imag != 0.0);
 | 
						|
		r.real = (a.real * ratio + a.imag) / denom;
 | 
						|
		r.imag = (a.imag * ratio - a.real) / denom;
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
c_pow(Py_complex a, Py_complex b)
 | 
						|
{
 | 
						|
	Py_complex r;
 | 
						|
	double vabs,len,at,phase;
 | 
						|
	if (b.real == 0. && b.imag == 0.) {
 | 
						|
		r.real = 1.;
 | 
						|
		r.imag = 0.;
 | 
						|
	}
 | 
						|
	else if (a.real == 0. && a.imag == 0.) {
 | 
						|
		if (b.imag != 0. || b.real < 0.)
 | 
						|
			errno = ERANGE;
 | 
						|
		r.real = 0.;
 | 
						|
		r.imag = 0.;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		vabs = hypot(a.real,a.imag);
 | 
						|
		len = pow(vabs,b.real);
 | 
						|
		at = atan2(a.imag, a.real);
 | 
						|
		phase = at*b.real;
 | 
						|
		if (b.imag != 0.0) {
 | 
						|
			len /= exp(at*b.imag);
 | 
						|
			phase += b.imag*log(vabs);
 | 
						|
		}
 | 
						|
		r.real = len*cos(phase);
 | 
						|
		r.imag = len*sin(phase);
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static Py_complex
 | 
						|
c_powu(Py_complex x, long n)
 | 
						|
{
 | 
						|
	Py_complex r, p;
 | 
						|
	long mask = 1;
 | 
						|
	r = c_1;
 | 
						|
	p = x;
 | 
						|
	while (mask > 0 && n >= mask) {
 | 
						|
		if (n & mask)
 | 
						|
			r = c_prod(r,p);
 | 
						|
		mask <<= 1;
 | 
						|
		p = c_prod(p,p);
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static Py_complex
 | 
						|
c_powi(Py_complex x, long n)
 | 
						|
{
 | 
						|
	Py_complex cn;
 | 
						|
 | 
						|
	if (n > 100 || n < -100) {
 | 
						|
		cn.real = (double) n;
 | 
						|
		cn.imag = 0.;
 | 
						|
		return c_pow(x,cn);
 | 
						|
	}
 | 
						|
	else if (n > 0)
 | 
						|
		return c_powu(x,n);
 | 
						|
	else
 | 
						|
		return c_quot(c_1,c_powu(x,-n));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyComplex_FromCComplex(Py_complex cval)
 | 
						|
{
 | 
						|
	register PyComplexObject *op;
 | 
						|
 | 
						|
	/* PyObject_New is inlined */
 | 
						|
	op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
 | 
						|
	if (op == NULL)
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	PyObject_INIT(op, &PyComplex_Type);
 | 
						|
	op->cval = cval;
 | 
						|
	return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyComplex_FromDoubles(double real, double imag)
 | 
						|
{
 | 
						|
	Py_complex c;
 | 
						|
	c.real = real;
 | 
						|
	c.imag = imag;
 | 
						|
	return PyComplex_FromCComplex(c);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyComplex_RealAsDouble(PyObject *op)
 | 
						|
{
 | 
						|
	if (PyComplex_Check(op)) {
 | 
						|
		return ((PyComplexObject *)op)->cval.real;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return PyFloat_AsDouble(op);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyComplex_ImagAsDouble(PyObject *op)
 | 
						|
{
 | 
						|
	if (PyComplex_Check(op)) {
 | 
						|
		return ((PyComplexObject *)op)->cval.imag;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return 0.0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
Py_complex
 | 
						|
PyComplex_AsCComplex(PyObject *op)
 | 
						|
{
 | 
						|
	Py_complex cv;
 | 
						|
	if (PyComplex_Check(op)) {
 | 
						|
		return ((PyComplexObject *)op)->cval;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		cv.real = PyFloat_AsDouble(op);
 | 
						|
		cv.imag = 0.;
 | 
						|
		return cv;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
complex_dealloc(PyObject *op)
 | 
						|
{
 | 
						|
	PyObject_DEL(op);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
complex_to_buf(char *buf, PyComplexObject *v, int precision)
 | 
						|
{
 | 
						|
	if (v->cval.real == 0.)
 | 
						|
		sprintf(buf, "%.*gj", precision, v->cval.imag);
 | 
						|
	else
 | 
						|
		sprintf(buf, "(%.*g%+.*gj)", precision, v->cval.real,
 | 
						|
					     precision, v->cval.imag);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
complex_print(PyComplexObject *v, FILE *fp, int flags)
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	complex_to_buf(buf, v,
 | 
						|
		       (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
 | 
						|
	fputs(buf, fp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_repr(PyComplexObject *v)
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	complex_to_buf(buf, v, PREC_REPR);
 | 
						|
	return PyString_FromString(buf);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_str(PyComplexObject *v)
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	complex_to_buf(buf, v, PREC_STR);
 | 
						|
	return PyString_FromString(buf);
 | 
						|
}
 | 
						|
 | 
						|
static long
 | 
						|
complex_hash(PyComplexObject *v)
 | 
						|
{
 | 
						|
	long hashreal, hashimag, combined;
 | 
						|
	hashreal = _Py_HashDouble(v->cval.real);
 | 
						|
	if (hashreal == -1)
 | 
						|
		return -1;
 | 
						|
	hashimag = _Py_HashDouble(v->cval.imag);
 | 
						|
	if (hashimag == -1)
 | 
						|
		return -1;
 | 
						|
	/* Note:  if the imaginary part is 0, hashimag is 0 now,
 | 
						|
	 * so the following returns hashreal unchanged.  This is
 | 
						|
	 * important because numbers of different types that
 | 
						|
	 * compare equal must have the same hash value, so that
 | 
						|
	 * hash(x + 0*j) must equal hash(x).
 | 
						|
	 */
 | 
						|
	combined = hashreal + 1000003 * hashimag;
 | 
						|
	if (combined == -1)
 | 
						|
		combined = -2;
 | 
						|
	return combined;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_add(PyComplexObject *v, PyComplexObject *w)
 | 
						|
{
 | 
						|
	Py_complex result;
 | 
						|
	PyFPE_START_PROTECT("complex_add", return 0)
 | 
						|
	result = c_sum(v->cval,w->cval);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_sub(PyComplexObject *v, PyComplexObject *w)
 | 
						|
{
 | 
						|
	Py_complex result;
 | 
						|
	PyFPE_START_PROTECT("complex_sub", return 0)
 | 
						|
	result = c_diff(v->cval,w->cval);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_mul(PyComplexObject *v, PyComplexObject *w)
 | 
						|
{
 | 
						|
	Py_complex result;
 | 
						|
	PyFPE_START_PROTECT("complex_mul", return 0)
 | 
						|
	result = c_prod(v->cval,w->cval);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyComplex_FromCComplex(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_div(PyComplexObject *v, PyComplexObject *w)
 | 
						|
{
 | 
						|
	Py_complex quot;
 | 
						|
	PyFPE_START_PROTECT("complex_div", return 0)
 | 
						|
	errno = 0;
 | 
						|
	quot = c_quot(v->cval,w->cval);
 | 
						|
	PyFPE_END_PROTECT(quot)
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyComplex_FromCComplex(quot);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_remainder(PyComplexObject *v, PyComplexObject *w)
 | 
						|
{
 | 
						|
        Py_complex div, mod;
 | 
						|
	errno = 0;
 | 
						|
	div = c_quot(v->cval,w->cval); /* The raw divisor value. */
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	div.real = floor(div.real); /* Use the floor of the real part. */
 | 
						|
	div.imag = 0.0;
 | 
						|
	mod = c_diff(v->cval, c_prod(w->cval, div));
 | 
						|
 | 
						|
	return PyComplex_FromCComplex(mod);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_divmod(PyComplexObject *v, PyComplexObject *w)
 | 
						|
{
 | 
						|
        Py_complex div, mod;
 | 
						|
	PyObject *d, *m, *z;
 | 
						|
	errno = 0;
 | 
						|
	div = c_quot(v->cval,w->cval); /* The raw divisor value. */
 | 
						|
	if (errno == EDOM) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	div.real = floor(div.real); /* Use the floor of the real part. */
 | 
						|
	div.imag = 0.0;
 | 
						|
	mod = c_diff(v->cval, c_prod(w->cval, div));
 | 
						|
	d = PyComplex_FromCComplex(div);
 | 
						|
	m = PyComplex_FromCComplex(mod);
 | 
						|
	z = Py_BuildValue("(OO)", d, m);
 | 
						|
	Py_XDECREF(d);
 | 
						|
	Py_XDECREF(m);
 | 
						|
	return z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_pow(PyComplexObject *v, PyObject *w, PyComplexObject *z)
 | 
						|
{
 | 
						|
	Py_complex p;
 | 
						|
	Py_complex exponent;
 | 
						|
	long int_exponent;
 | 
						|
 | 
						|
 	if ((PyObject *)z!=Py_None) {
 | 
						|
		PyErr_SetString(PyExc_ValueError, "complex modulo");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("complex_pow", return 0)
 | 
						|
	errno = 0;
 | 
						|
	exponent = ((PyComplexObject*)w)->cval;
 | 
						|
	int_exponent = (long)exponent.real;
 | 
						|
	if (exponent.imag == 0. && exponent.real == int_exponent)
 | 
						|
		p = c_powi(v->cval,int_exponent);
 | 
						|
	else
 | 
						|
		p = c_pow(v->cval,exponent);
 | 
						|
 | 
						|
	PyFPE_END_PROTECT(p)
 | 
						|
	if (errno == ERANGE) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
				"0.0 to a negative or complex power");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyComplex_FromCComplex(p);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_neg(PyComplexObject *v)
 | 
						|
{
 | 
						|
	Py_complex neg;
 | 
						|
	neg.real = -v->cval.real;
 | 
						|
	neg.imag = -v->cval.imag;
 | 
						|
	return PyComplex_FromCComplex(neg);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_pos(PyComplexObject *v)
 | 
						|
{
 | 
						|
	Py_INCREF(v);
 | 
						|
	return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_abs(PyComplexObject *v)
 | 
						|
{
 | 
						|
	double result;
 | 
						|
	PyFPE_START_PROTECT("complex_abs", return 0)
 | 
						|
	result = hypot(v->cval.real,v->cval.imag);
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
complex_nonzero(PyComplexObject *v)
 | 
						|
{
 | 
						|
	return v->cval.real != 0.0 || v->cval.imag != 0.0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
complex_coerce(PyObject **pv, PyObject **pw)
 | 
						|
{
 | 
						|
	Py_complex cval;
 | 
						|
	cval.imag = 0.;
 | 
						|
	if (PyInt_Check(*pw)) {
 | 
						|
		cval.real = (double)PyInt_AsLong(*pw);
 | 
						|
		*pw = PyComplex_FromCComplex(cval);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(*pw)) {
 | 
						|
		cval.real = PyLong_AsDouble(*pw);
 | 
						|
		*pw = PyComplex_FromCComplex(cval);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyFloat_Check(*pw)) {
 | 
						|
		cval.real = PyFloat_AsDouble(*pw);
 | 
						|
		*pw = PyComplex_FromCComplex(cval);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return 1; /* Can't do it */
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_richcompare(PyObject *v, PyObject *w, int op)
 | 
						|
{
 | 
						|
	int c;
 | 
						|
	Py_complex i, j;
 | 
						|
	PyObject *res;
 | 
						|
 | 
						|
	if (op != Py_EQ && op != Py_NE) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
			"cannot compare complex numbers using <, <=, >, >=");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	c = PyNumber_CoerceEx(&v, &w);
 | 
						|
	if (c < 0)
 | 
						|
		return NULL;
 | 
						|
	if (c > 0) {
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
	if (!PyComplex_Check(v) || !PyComplex_Check(w)) {
 | 
						|
		Py_DECREF(v);
 | 
						|
		Py_DECREF(w);
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
 | 
						|
	i = ((PyComplexObject *)v)->cval;
 | 
						|
	j = ((PyComplexObject *)w)->cval;
 | 
						|
	Py_DECREF(v);
 | 
						|
	Py_DECREF(w);
 | 
						|
 | 
						|
	if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
 | 
						|
		res = Py_True;
 | 
						|
	else
 | 
						|
		res = Py_False;
 | 
						|
 | 
						|
	Py_INCREF(res);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_int(PyObject *v)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
		   "can't convert complex to int; use e.g. int(abs(z))");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_long(PyObject *v)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
		   "can't convert complex to long; use e.g. long(abs(z))");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_float(PyObject *v)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
		   "can't convert complex to float; use e.g. abs(z)");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_conjugate(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	Py_complex c;
 | 
						|
	if (!PyArg_ParseTuple(args, ":conjugate"))
 | 
						|
		return NULL;
 | 
						|
	c = ((PyComplexObject *)self)->cval;
 | 
						|
	c.imag = -c.imag;
 | 
						|
	return PyComplex_FromCComplex(c);
 | 
						|
}
 | 
						|
 | 
						|
static PyMethodDef complex_methods[] = {
 | 
						|
	{"conjugate",	complex_conjugate,	1},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
complex_getattr(PyComplexObject *self, char *name)
 | 
						|
{
 | 
						|
	if (strcmp(name, "real") == 0)
 | 
						|
		return (PyObject *)PyFloat_FromDouble(self->cval.real);
 | 
						|
	else if (strcmp(name, "imag") == 0)
 | 
						|
		return (PyObject *)PyFloat_FromDouble(self->cval.imag);
 | 
						|
	else if (strcmp(name, "__members__") == 0)
 | 
						|
		return Py_BuildValue("[ss]", "imag", "real");
 | 
						|
	return Py_FindMethod(complex_methods, (PyObject *)self, name);
 | 
						|
}
 | 
						|
 | 
						|
static PyNumberMethods complex_as_number = {
 | 
						|
	(binaryfunc)complex_add, 		/* nb_add */
 | 
						|
	(binaryfunc)complex_sub, 		/* nb_subtract */
 | 
						|
	(binaryfunc)complex_mul, 		/* nb_multiply */
 | 
						|
	(binaryfunc)complex_div, 		/* nb_divide */
 | 
						|
	(binaryfunc)complex_remainder,		/* nb_remainder */
 | 
						|
	(binaryfunc)complex_divmod,		/* nb_divmod */
 | 
						|
	(ternaryfunc)complex_pow,		/* nb_power */
 | 
						|
	(unaryfunc)complex_neg,			/* nb_negative */
 | 
						|
	(unaryfunc)complex_pos,			/* nb_positive */
 | 
						|
	(unaryfunc)complex_abs,			/* nb_absolute */
 | 
						|
	(inquiry)complex_nonzero,		/* nb_nonzero */
 | 
						|
	0,					/* nb_invert */
 | 
						|
	0,					/* nb_lshift */
 | 
						|
	0,					/* nb_rshift */
 | 
						|
	0,					/* nb_and */
 | 
						|
	0,					/* nb_xor */
 | 
						|
	0,					/* nb_or */
 | 
						|
	(coercion)complex_coerce,		/* nb_coerce */
 | 
						|
	(unaryfunc)complex_int,			/* nb_int */
 | 
						|
	(unaryfunc)complex_long,		/* nb_long */
 | 
						|
	(unaryfunc)complex_float,		/* nb_float */
 | 
						|
	0,					/* nb_oct */
 | 
						|
	0,					/* nb_hex */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyComplex_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"complex",
 | 
						|
	sizeof(PyComplexObject),
 | 
						|
	0,
 | 
						|
	(destructor)complex_dealloc,		/* tp_dealloc */
 | 
						|
	(printfunc)complex_print,		/* tp_print */
 | 
						|
	(getattrfunc)complex_getattr,		/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	0,					/* tp_compare */
 | 
						|
	(reprfunc)complex_repr,			/* tp_repr */
 | 
						|
	&complex_as_number,    			/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	(hashfunc)complex_hash, 		/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	(reprfunc)complex_str,			/* tp_str */
 | 
						|
	0,					/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 | 
						|
	0,					/* tp_doc */
 | 
						|
	0,					/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	complex_richcompare,			/* tp_richcompare */
 | 
						|
};
 | 
						|
 | 
						|
#endif
 |