mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			701 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			701 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/* Parser generator */
 | 
						|
/* XXX This file is not yet fully PROTOized */
 | 
						|
 | 
						|
/* For a description, see the comments at end of this file */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "pgenheaders.h"
 | 
						|
#include "token.h"
 | 
						|
#include "node.h"
 | 
						|
#include "grammar.h"
 | 
						|
#include "metagrammar.h"
 | 
						|
#include "pgen.h"
 | 
						|
 | 
						|
extern int Py_DebugFlag;
 | 
						|
extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */
 | 
						|
 | 
						|
 | 
						|
/* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
 | 
						|
 | 
						|
typedef struct _nfaarc {
 | 
						|
	int	ar_label;
 | 
						|
	int	ar_arrow;
 | 
						|
} nfaarc;
 | 
						|
 | 
						|
typedef struct _nfastate {
 | 
						|
	int	st_narcs;
 | 
						|
	nfaarc	*st_arc;
 | 
						|
} nfastate;
 | 
						|
 | 
						|
typedef struct _nfa {
 | 
						|
	int		nf_type;
 | 
						|
	char		*nf_name;
 | 
						|
	int		nf_nstates;
 | 
						|
	nfastate	*nf_state;
 | 
						|
	int		nf_start, nf_finish;
 | 
						|
} nfa;
 | 
						|
 | 
						|
/* Forward */
 | 
						|
static void compile_rhs(labellist *ll,
 | 
						|
			nfa *nf, node *n, int *pa, int *pb);
 | 
						|
static void compile_alt(labellist *ll,
 | 
						|
			nfa *nf, node *n, int *pa, int *pb);
 | 
						|
static void compile_item(labellist *ll,
 | 
						|
			 nfa *nf, node *n, int *pa, int *pb);
 | 
						|
static void compile_atom(labellist *ll,
 | 
						|
			 nfa *nf, node *n, int *pa, int *pb);
 | 
						|
 | 
						|
static int
 | 
						|
addnfastate(nfa *nf)
 | 
						|
{
 | 
						|
	nfastate *st;
 | 
						|
	
 | 
						|
	PyMem_RESIZE(nf->nf_state, nfastate, nf->nf_nstates + 1);
 | 
						|
	if (nf->nf_state == NULL)
 | 
						|
		Py_FatalError("out of mem");
 | 
						|
	st = &nf->nf_state[nf->nf_nstates++];
 | 
						|
	st->st_narcs = 0;
 | 
						|
	st->st_arc = NULL;
 | 
						|
	return st - nf->nf_state;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
addnfaarc(nfa *nf, int from, int to, int lbl)
 | 
						|
{
 | 
						|
	nfastate *st;
 | 
						|
	nfaarc *ar;
 | 
						|
	
 | 
						|
	st = &nf->nf_state[from];
 | 
						|
	PyMem_RESIZE(st->st_arc, nfaarc, st->st_narcs + 1);
 | 
						|
	if (st->st_arc == NULL)
 | 
						|
		Py_FatalError("out of mem");
 | 
						|
	ar = &st->st_arc[st->st_narcs++];
 | 
						|
	ar->ar_label = lbl;
 | 
						|
	ar->ar_arrow = to;
 | 
						|
}
 | 
						|
 | 
						|
static nfa *
 | 
						|
newnfa(char *name)
 | 
						|
{
 | 
						|
	nfa *nf;
 | 
						|
	static int type = NT_OFFSET; /* All types will be disjunct */
 | 
						|
	
 | 
						|
	nf = PyMem_NEW(nfa, 1);
 | 
						|
	if (nf == NULL)
 | 
						|
		Py_FatalError("no mem for new nfa");
 | 
						|
	nf->nf_type = type++;
 | 
						|
	nf->nf_name = name; /* XXX strdup(name) ??? */
 | 
						|
	nf->nf_nstates = 0;
 | 
						|
	nf->nf_state = NULL;
 | 
						|
	nf->nf_start = nf->nf_finish = -1;
 | 
						|
	return nf;
 | 
						|
}
 | 
						|
 | 
						|
typedef struct _nfagrammar {
 | 
						|
	int		gr_nnfas;
 | 
						|
	nfa		**gr_nfa;
 | 
						|
	labellist	gr_ll;
 | 
						|
} nfagrammar;
 | 
						|
 | 
						|
/* Forward */
 | 
						|
static void compile_rule(nfagrammar *gr, node *n);
 | 
						|
 | 
						|
static nfagrammar *
 | 
						|
newnfagrammar(void)
 | 
						|
{
 | 
						|
	nfagrammar *gr;
 | 
						|
	
 | 
						|
	gr = PyMem_NEW(nfagrammar, 1);
 | 
						|
	if (gr == NULL)
 | 
						|
		Py_FatalError("no mem for new nfa grammar");
 | 
						|
	gr->gr_nnfas = 0;
 | 
						|
	gr->gr_nfa = NULL;
 | 
						|
	gr->gr_ll.ll_nlabels = 0;
 | 
						|
	gr->gr_ll.ll_label = NULL;
 | 
						|
	addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
 | 
						|
	return gr;
 | 
						|
}
 | 
						|
 | 
						|
static nfa *
 | 
						|
addnfa(nfagrammar *gr, char *name)
 | 
						|
{
 | 
						|
	nfa *nf;
 | 
						|
	
 | 
						|
	nf = newnfa(name);
 | 
						|
	PyMem_RESIZE(gr->gr_nfa, nfa *, gr->gr_nnfas + 1);
 | 
						|
	if (gr->gr_nfa == NULL)
 | 
						|
		Py_FatalError("out of mem");
 | 
						|
	gr->gr_nfa[gr->gr_nnfas++] = nf;
 | 
						|
	addlabel(&gr->gr_ll, NAME, nf->nf_name);
 | 
						|
	return nf;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef Py_DEBUG
 | 
						|
 | 
						|
static char REQNFMT[] = "metacompile: less than %d children\n";
 | 
						|
 | 
						|
#define REQN(i, count) \
 | 
						|
 	if (i < count) { \
 | 
						|
		fprintf(stderr, REQNFMT, count); \
 | 
						|
		Py_FatalError("REQN"); \
 | 
						|
	} else
 | 
						|
 | 
						|
#else
 | 
						|
#define REQN(i, count)	/* empty */
 | 
						|
#endif
 | 
						|
 | 
						|
static nfagrammar *
 | 
						|
metacompile(node *n)
 | 
						|
{
 | 
						|
	nfagrammar *gr;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (Py_DebugFlag)
 | 
						|
		printf("Compiling (meta-) parse tree into NFA grammar\n");
 | 
						|
	gr = newnfagrammar();
 | 
						|
	REQ(n, MSTART);
 | 
						|
	i = n->n_nchildren - 1; /* Last child is ENDMARKER */
 | 
						|
	n = n->n_child;
 | 
						|
	for (; --i >= 0; n++) {
 | 
						|
		if (n->n_type != NEWLINE)
 | 
						|
			compile_rule(gr, n);
 | 
						|
	}
 | 
						|
	return gr;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
compile_rule(nfagrammar *gr, node *n)
 | 
						|
{
 | 
						|
	nfa *nf;
 | 
						|
	
 | 
						|
	REQ(n, RULE);
 | 
						|
	REQN(n->n_nchildren, 4);
 | 
						|
	n = n->n_child;
 | 
						|
	REQ(n, NAME);
 | 
						|
	nf = addnfa(gr, n->n_str);
 | 
						|
	n++;
 | 
						|
	REQ(n, COLON);
 | 
						|
	n++;
 | 
						|
	REQ(n, RHS);
 | 
						|
	compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
 | 
						|
	n++;
 | 
						|
	REQ(n, NEWLINE);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int a, b;
 | 
						|
	
 | 
						|
	REQ(n, RHS);
 | 
						|
	i = n->n_nchildren;
 | 
						|
	REQN(i, 1);
 | 
						|
	n = n->n_child;
 | 
						|
	REQ(n, ALT);
 | 
						|
	compile_alt(ll, nf, n, pa, pb);
 | 
						|
	if (--i <= 0)
 | 
						|
		return;
 | 
						|
	n++;
 | 
						|
	a = *pa;
 | 
						|
	b = *pb;
 | 
						|
	*pa = addnfastate(nf);
 | 
						|
	*pb = addnfastate(nf);
 | 
						|
	addnfaarc(nf, *pa, a, EMPTY);
 | 
						|
	addnfaarc(nf, b, *pb, EMPTY);
 | 
						|
	for (; --i >= 0; n++) {
 | 
						|
		REQ(n, VBAR);
 | 
						|
		REQN(i, 1);
 | 
						|
		--i;
 | 
						|
		n++;
 | 
						|
		REQ(n, ALT);
 | 
						|
		compile_alt(ll, nf, n, &a, &b);
 | 
						|
		addnfaarc(nf, *pa, a, EMPTY);
 | 
						|
		addnfaarc(nf, b, *pb, EMPTY);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int a, b;
 | 
						|
	
 | 
						|
	REQ(n, ALT);
 | 
						|
	i = n->n_nchildren;
 | 
						|
	REQN(i, 1);
 | 
						|
	n = n->n_child;
 | 
						|
	REQ(n, ITEM);
 | 
						|
	compile_item(ll, nf, n, pa, pb);
 | 
						|
	--i;
 | 
						|
	n++;
 | 
						|
	for (; --i >= 0; n++) {
 | 
						|
		if (n->n_type == COMMA) { /* XXX Temporary */
 | 
						|
			REQN(i, 1);
 | 
						|
			--i;
 | 
						|
			n++;
 | 
						|
		}
 | 
						|
		REQ(n, ITEM);
 | 
						|
		compile_item(ll, nf, n, &a, &b);
 | 
						|
		addnfaarc(nf, *pb, a, EMPTY);
 | 
						|
		*pb = b;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int a, b;
 | 
						|
	
 | 
						|
	REQ(n, ITEM);
 | 
						|
	i = n->n_nchildren;
 | 
						|
	REQN(i, 1);
 | 
						|
	n = n->n_child;
 | 
						|
	if (n->n_type == LSQB) {
 | 
						|
		REQN(i, 3);
 | 
						|
		n++;
 | 
						|
		REQ(n, RHS);
 | 
						|
		*pa = addnfastate(nf);
 | 
						|
		*pb = addnfastate(nf);
 | 
						|
		addnfaarc(nf, *pa, *pb, EMPTY);
 | 
						|
		compile_rhs(ll, nf, n, &a, &b);
 | 
						|
		addnfaarc(nf, *pa, a, EMPTY);
 | 
						|
		addnfaarc(nf, b, *pb, EMPTY);
 | 
						|
		REQN(i, 1);
 | 
						|
		n++;
 | 
						|
		REQ(n, RSQB);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		compile_atom(ll, nf, n, pa, pb);
 | 
						|
		if (--i <= 0)
 | 
						|
			return;
 | 
						|
		n++;
 | 
						|
		addnfaarc(nf, *pb, *pa, EMPTY);
 | 
						|
		if (n->n_type == STAR)
 | 
						|
			*pb = *pa;
 | 
						|
		else
 | 
						|
			REQ(n, PLUS);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	REQ(n, ATOM);
 | 
						|
	i = n->n_nchildren;
 | 
						|
	REQN(i, 1);
 | 
						|
	n = n->n_child;
 | 
						|
	if (n->n_type == LPAR) {
 | 
						|
		REQN(i, 3);
 | 
						|
		n++;
 | 
						|
		REQ(n, RHS);
 | 
						|
		compile_rhs(ll, nf, n, pa, pb);
 | 
						|
		n++;
 | 
						|
		REQ(n, RPAR);
 | 
						|
	}
 | 
						|
	else if (n->n_type == NAME || n->n_type == STRING) {
 | 
						|
		*pa = addnfastate(nf);
 | 
						|
		*pb = addnfastate(nf);
 | 
						|
		addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
 | 
						|
	}
 | 
						|
	else
 | 
						|
		REQ(n, NAME);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dumpstate(labellist *ll, nfa *nf, int istate)
 | 
						|
{
 | 
						|
	nfastate *st;
 | 
						|
	int i;
 | 
						|
	nfaarc *ar;
 | 
						|
	
 | 
						|
	printf("%c%2d%c",
 | 
						|
		istate == nf->nf_start ? '*' : ' ',
 | 
						|
		istate,
 | 
						|
		istate == nf->nf_finish ? '.' : ' ');
 | 
						|
	st = &nf->nf_state[istate];
 | 
						|
	ar = st->st_arc;
 | 
						|
	for (i = 0; i < st->st_narcs; i++) {
 | 
						|
		if (i > 0)
 | 
						|
			printf("\n    ");
 | 
						|
		printf("-> %2d  %s", ar->ar_arrow,
 | 
						|
			PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
 | 
						|
		ar++;
 | 
						|
	}
 | 
						|
	printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
dumpnfa(labellist *ll, nfa *nf)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	printf("NFA '%s' has %d states; start %d, finish %d\n",
 | 
						|
		nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
 | 
						|
	for (i = 0; i < nf->nf_nstates; i++)
 | 
						|
		dumpstate(ll, nf, i);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
 | 
						|
 | 
						|
static void
 | 
						|
addclosure(bitset ss, nfa *nf, int istate)
 | 
						|
{
 | 
						|
	if (addbit(ss, istate)) {
 | 
						|
		nfastate *st = &nf->nf_state[istate];
 | 
						|
		nfaarc *ar = st->st_arc;
 | 
						|
		int i;
 | 
						|
		
 | 
						|
		for (i = st->st_narcs; --i >= 0; ) {
 | 
						|
			if (ar->ar_label == EMPTY)
 | 
						|
				addclosure(ss, nf, ar->ar_arrow);
 | 
						|
			ar++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
typedef struct _ss_arc {
 | 
						|
	bitset	sa_bitset;
 | 
						|
	int	sa_arrow;
 | 
						|
	int	sa_label;
 | 
						|
} ss_arc;
 | 
						|
 | 
						|
typedef struct _ss_state {
 | 
						|
	bitset	ss_ss;
 | 
						|
	int	ss_narcs;
 | 
						|
	ss_arc	*ss_arc;
 | 
						|
	int	ss_deleted;
 | 
						|
	int	ss_finish;
 | 
						|
	int	ss_rename;
 | 
						|
} ss_state;
 | 
						|
 | 
						|
typedef struct _ss_dfa {
 | 
						|
	int	sd_nstates;
 | 
						|
	ss_state *sd_state;
 | 
						|
} ss_dfa;
 | 
						|
 | 
						|
/* Forward */
 | 
						|
static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
 | 
						|
		       labellist *ll, char *msg);
 | 
						|
static void simplify(int xx_nstates, ss_state *xx_state);
 | 
						|
static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
 | 
						|
 | 
						|
static void
 | 
						|
makedfa(nfagrammar *gr, nfa *nf, dfa *d)
 | 
						|
{
 | 
						|
	int nbits = nf->nf_nstates;
 | 
						|
	bitset ss;
 | 
						|
	int xx_nstates;
 | 
						|
	ss_state *xx_state, *yy;
 | 
						|
	ss_arc *zz;
 | 
						|
	int istate, jstate, iarc, jarc, ibit;
 | 
						|
	nfastate *st;
 | 
						|
	nfaarc *ar;
 | 
						|
	
 | 
						|
	ss = newbitset(nbits);
 | 
						|
	addclosure(ss, nf, nf->nf_start);
 | 
						|
	xx_state = PyMem_NEW(ss_state, 1);
 | 
						|
	if (xx_state == NULL)
 | 
						|
		Py_FatalError("no mem for xx_state in makedfa");
 | 
						|
	xx_nstates = 1;
 | 
						|
	yy = &xx_state[0];
 | 
						|
	yy->ss_ss = ss;
 | 
						|
	yy->ss_narcs = 0;
 | 
						|
	yy->ss_arc = NULL;
 | 
						|
	yy->ss_deleted = 0;
 | 
						|
	yy->ss_finish = testbit(ss, nf->nf_finish);
 | 
						|
	if (yy->ss_finish)
 | 
						|
		printf("Error: nonterminal '%s' may produce empty.\n",
 | 
						|
			nf->nf_name);
 | 
						|
	
 | 
						|
	/* This algorithm is from a book written before
 | 
						|
	   the invention of structured programming... */
 | 
						|
 | 
						|
	/* For each unmarked state... */
 | 
						|
	for (istate = 0; istate < xx_nstates; ++istate) {
 | 
						|
		yy = &xx_state[istate];
 | 
						|
		ss = yy->ss_ss;
 | 
						|
		/* For all its states... */
 | 
						|
		for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
 | 
						|
			if (!testbit(ss, ibit))
 | 
						|
				continue;
 | 
						|
			st = &nf->nf_state[ibit];
 | 
						|
			/* For all non-empty arcs from this state... */
 | 
						|
			for (iarc = 0; iarc < st->st_narcs; iarc++) {
 | 
						|
				ar = &st->st_arc[iarc];
 | 
						|
				if (ar->ar_label == EMPTY)
 | 
						|
					continue;
 | 
						|
				/* Look up in list of arcs from this state */
 | 
						|
				for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
 | 
						|
					zz = &yy->ss_arc[jarc];
 | 
						|
					if (ar->ar_label == zz->sa_label)
 | 
						|
						goto found;
 | 
						|
				}
 | 
						|
				/* Add new arc for this state */
 | 
						|
				PyMem_RESIZE(yy->ss_arc, ss_arc,
 | 
						|
					     yy->ss_narcs + 1);
 | 
						|
				if (yy->ss_arc == NULL)
 | 
						|
					Py_FatalError("out of mem");
 | 
						|
				zz = &yy->ss_arc[yy->ss_narcs++];
 | 
						|
				zz->sa_label = ar->ar_label;
 | 
						|
				zz->sa_bitset = newbitset(nbits);
 | 
						|
				zz->sa_arrow = -1;
 | 
						|
			 found:	;
 | 
						|
				/* Add destination */
 | 
						|
				addclosure(zz->sa_bitset, nf, ar->ar_arrow);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* Now look up all the arrow states */
 | 
						|
		for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
 | 
						|
			zz = &xx_state[istate].ss_arc[jarc];
 | 
						|
			for (jstate = 0; jstate < xx_nstates; jstate++) {
 | 
						|
				if (samebitset(zz->sa_bitset,
 | 
						|
					xx_state[jstate].ss_ss, nbits)) {
 | 
						|
					zz->sa_arrow = jstate;
 | 
						|
					goto done;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			PyMem_RESIZE(xx_state, ss_state, xx_nstates + 1);
 | 
						|
			if (xx_state == NULL)
 | 
						|
				Py_FatalError("out of mem");
 | 
						|
			zz->sa_arrow = xx_nstates;
 | 
						|
			yy = &xx_state[xx_nstates++];
 | 
						|
			yy->ss_ss = zz->sa_bitset;
 | 
						|
			yy->ss_narcs = 0;
 | 
						|
			yy->ss_arc = NULL;
 | 
						|
			yy->ss_deleted = 0;
 | 
						|
			yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
 | 
						|
		 done:	;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (Py_DebugFlag)
 | 
						|
		printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
 | 
						|
						"before minimizing");
 | 
						|
	
 | 
						|
	simplify(xx_nstates, xx_state);
 | 
						|
	
 | 
						|
	if (Py_DebugFlag)
 | 
						|
		printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
 | 
						|
						"after minimizing");
 | 
						|
	
 | 
						|
	convert(d, xx_nstates, xx_state);
 | 
						|
	
 | 
						|
	/* XXX cleanup */
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
 | 
						|
	   labellist *ll, char *msg)
 | 
						|
{
 | 
						|
	int i, ibit, iarc;
 | 
						|
	ss_state *yy;
 | 
						|
	ss_arc *zz;
 | 
						|
	
 | 
						|
	printf("Subset DFA %s\n", msg);
 | 
						|
	for (i = 0; i < xx_nstates; i++) {
 | 
						|
		yy = &xx_state[i];
 | 
						|
		if (yy->ss_deleted)
 | 
						|
			continue;
 | 
						|
		printf(" Subset %d", i);
 | 
						|
		if (yy->ss_finish)
 | 
						|
			printf(" (finish)");
 | 
						|
		printf(" { ");
 | 
						|
		for (ibit = 0; ibit < nbits; ibit++) {
 | 
						|
			if (testbit(yy->ss_ss, ibit))
 | 
						|
				printf("%d ", ibit);
 | 
						|
		}
 | 
						|
		printf("}\n");
 | 
						|
		for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
 | 
						|
			zz = &yy->ss_arc[iarc];
 | 
						|
			printf("  Arc to state %d, label %s\n",
 | 
						|
				zz->sa_arrow,
 | 
						|
				PyGrammar_LabelRepr(
 | 
						|
					&ll->ll_label[zz->sa_label]));
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* PART THREE -- SIMPLIFY DFA */
 | 
						|
 | 
						|
/* Simplify the DFA by repeatedly eliminating states that are
 | 
						|
   equivalent to another oner.  This is NOT Algorithm 3.3 from
 | 
						|
   [Aho&Ullman 77].  It does not always finds the minimal DFA,
 | 
						|
   but it does usually make a much smaller one...  (For an example
 | 
						|
   of sub-optimal behavior, try S: x a b+ | y a b+.)
 | 
						|
*/
 | 
						|
 | 
						|
static int
 | 
						|
samestate(ss_state *s1, ss_state *s2)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
 | 
						|
		return 0;
 | 
						|
	for (i = 0; i < s1->ss_narcs; i++) {
 | 
						|
		if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
 | 
						|
			s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	if (Py_DebugFlag)
 | 
						|
		printf("Rename state %d to %d.\n", from, to);
 | 
						|
	for (i = 0; i < xx_nstates; i++) {
 | 
						|
		if (xx_state[i].ss_deleted)
 | 
						|
			continue;
 | 
						|
		for (j = 0; j < xx_state[i].ss_narcs; j++) {
 | 
						|
			if (xx_state[i].ss_arc[j].sa_arrow == from)
 | 
						|
				xx_state[i].ss_arc[j].sa_arrow = to;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
simplify(int xx_nstates, ss_state *xx_state)
 | 
						|
{
 | 
						|
	int changes;
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	do {
 | 
						|
		changes = 0;
 | 
						|
		for (i = 1; i < xx_nstates; i++) {
 | 
						|
			if (xx_state[i].ss_deleted)
 | 
						|
				continue;
 | 
						|
			for (j = 0; j < i; j++) {
 | 
						|
				if (xx_state[j].ss_deleted)
 | 
						|
					continue;
 | 
						|
				if (samestate(&xx_state[i], &xx_state[j])) {
 | 
						|
					xx_state[i].ss_deleted++;
 | 
						|
					renamestates(xx_nstates, xx_state,
 | 
						|
						     i, j);
 | 
						|
					changes++;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} while (changes);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* PART FOUR -- GENERATE PARSING TABLES */
 | 
						|
 | 
						|
/* Convert the DFA into a grammar that can be used by our parser */
 | 
						|
 | 
						|
static void
 | 
						|
convert(dfa *d, int xx_nstates, ss_state *xx_state)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	ss_state *yy;
 | 
						|
	ss_arc *zz;
 | 
						|
	
 | 
						|
	for (i = 0; i < xx_nstates; i++) {
 | 
						|
		yy = &xx_state[i];
 | 
						|
		if (yy->ss_deleted)
 | 
						|
			continue;
 | 
						|
		yy->ss_rename = addstate(d);
 | 
						|
	}
 | 
						|
	
 | 
						|
	for (i = 0; i < xx_nstates; i++) {
 | 
						|
		yy = &xx_state[i];
 | 
						|
		if (yy->ss_deleted)
 | 
						|
			continue;
 | 
						|
		for (j = 0; j < yy->ss_narcs; j++) {
 | 
						|
			zz = &yy->ss_arc[j];
 | 
						|
			addarc(d, yy->ss_rename,
 | 
						|
				xx_state[zz->sa_arrow].ss_rename,
 | 
						|
				zz->sa_label);
 | 
						|
		}
 | 
						|
		if (yy->ss_finish)
 | 
						|
			addarc(d, yy->ss_rename, yy->ss_rename, 0);
 | 
						|
	}
 | 
						|
	
 | 
						|
	d->d_initial = 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* PART FIVE -- GLUE IT ALL TOGETHER */
 | 
						|
 | 
						|
static grammar *
 | 
						|
maketables(nfagrammar *gr)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	nfa *nf;
 | 
						|
	dfa *d;
 | 
						|
	grammar *g;
 | 
						|
	
 | 
						|
	if (gr->gr_nnfas == 0)
 | 
						|
		return NULL;
 | 
						|
	g = newgrammar(gr->gr_nfa[0]->nf_type);
 | 
						|
			/* XXX first rule must be start rule */
 | 
						|
	g->g_ll = gr->gr_ll;
 | 
						|
	
 | 
						|
	for (i = 0; i < gr->gr_nnfas; i++) {
 | 
						|
		nf = gr->gr_nfa[i];
 | 
						|
		if (Py_DebugFlag) {
 | 
						|
			printf("Dump of NFA for '%s' ...\n", nf->nf_name);
 | 
						|
			dumpnfa(&gr->gr_ll, nf);
 | 
						|
			printf("Making DFA for '%s' ...\n", nf->nf_name);
 | 
						|
		}
 | 
						|
		d = adddfa(g, nf->nf_type, nf->nf_name);
 | 
						|
		makedfa(gr, gr->gr_nfa[i], d);
 | 
						|
	}
 | 
						|
	
 | 
						|
	return g;
 | 
						|
}
 | 
						|
 | 
						|
grammar *
 | 
						|
pgen(node *n)
 | 
						|
{
 | 
						|
	nfagrammar *gr;
 | 
						|
	grammar *g;
 | 
						|
	
 | 
						|
	gr = metacompile(n);
 | 
						|
	g = maketables(gr);
 | 
						|
	translatelabels(g);
 | 
						|
	addfirstsets(g);
 | 
						|
	return g;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
Description
 | 
						|
-----------
 | 
						|
 | 
						|
Input is a grammar in extended BNF (using * for repetition, + for
 | 
						|
at-least-once repetition, [] for optional parts, | for alternatives and
 | 
						|
() for grouping).  This has already been parsed and turned into a parse
 | 
						|
tree.
 | 
						|
 | 
						|
Each rule is considered as a regular expression in its own right.
 | 
						|
It is turned into a Non-deterministic Finite Automaton (NFA), which
 | 
						|
is then turned into a Deterministic Finite Automaton (DFA), which is then
 | 
						|
optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
 | 
						|
or similar compiler books (this technique is more often used for lexical
 | 
						|
analyzers).
 | 
						|
 | 
						|
The DFA's are used by the parser as parsing tables in a special way
 | 
						|
that's probably unique.  Before they are usable, the FIRST sets of all
 | 
						|
non-terminals are computed.
 | 
						|
 | 
						|
Reference
 | 
						|
---------
 | 
						|
 | 
						|
[Aho&Ullman 77]
 | 
						|
	Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
 | 
						|
	(first edition)
 | 
						|
 | 
						|
*/
 |