mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 19:34:08 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			804 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			804 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* stringlib: fastsearch implementation */
 | 
						|
 | 
						|
#define STRINGLIB_FASTSEARCH_H
 | 
						|
 | 
						|
/* fast search/count implementation, based on a mix between boyer-
 | 
						|
   moore and horspool, with a few more bells and whistles on the top.
 | 
						|
   for some more background, see:
 | 
						|
   https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
 | 
						|
 | 
						|
/* note: fastsearch may access s[n], which isn't a problem when using
 | 
						|
   Python's ordinary string types, but may cause problems if you're
 | 
						|
   using this code in other contexts.  also, the count mode returns -1
 | 
						|
   if there cannot possibly be a match in the target string, and 0 if
 | 
						|
   it has actually checked for matches, but didn't find any.  callers
 | 
						|
   beware! */
 | 
						|
 | 
						|
/* If the strings are long enough, use Crochemore and Perrin's Two-Way
 | 
						|
   algorithm, which has worst-case O(n) runtime and best-case O(n/k).
 | 
						|
   Also compute a table of shifts to achieve O(n/k) in more cases,
 | 
						|
   and often (data dependent) deduce larger shifts than pure C&P can
 | 
						|
   deduce. See stringlib_find_two_way_notes.txt in this folder for a
 | 
						|
   detailed explanation. */
 | 
						|
 | 
						|
#define FAST_COUNT 0
 | 
						|
#define FAST_SEARCH 1
 | 
						|
#define FAST_RSEARCH 2
 | 
						|
 | 
						|
#if LONG_BIT >= 128
 | 
						|
#define STRINGLIB_BLOOM_WIDTH 128
 | 
						|
#elif LONG_BIT >= 64
 | 
						|
#define STRINGLIB_BLOOM_WIDTH 64
 | 
						|
#elif LONG_BIT >= 32
 | 
						|
#define STRINGLIB_BLOOM_WIDTH 32
 | 
						|
#else
 | 
						|
#error "LONG_BIT is smaller than 32"
 | 
						|
#endif
 | 
						|
 | 
						|
#define STRINGLIB_BLOOM_ADD(mask, ch) \
 | 
						|
    ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
 | 
						|
#define STRINGLIB_BLOOM(mask, ch)     \
 | 
						|
    ((mask &  (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
 | 
						|
 | 
						|
#ifdef STRINGLIB_FAST_MEMCHR
 | 
						|
#  define MEMCHR_CUT_OFF 15
 | 
						|
#else
 | 
						|
#  define MEMCHR_CUT_OFF 40
 | 
						|
#endif
 | 
						|
 | 
						|
Py_LOCAL_INLINE(Py_ssize_t)
 | 
						|
STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
 | 
						|
{
 | 
						|
    const STRINGLIB_CHAR *p, *e;
 | 
						|
 | 
						|
    p = s;
 | 
						|
    e = s + n;
 | 
						|
    if (n > MEMCHR_CUT_OFF) {
 | 
						|
#ifdef STRINGLIB_FAST_MEMCHR
 | 
						|
        p = STRINGLIB_FAST_MEMCHR(s, ch, n);
 | 
						|
        if (p != NULL)
 | 
						|
            return (p - s);
 | 
						|
        return -1;
 | 
						|
#else
 | 
						|
        /* use memchr if we can choose a needle without too many likely
 | 
						|
           false positives */
 | 
						|
        const STRINGLIB_CHAR *s1, *e1;
 | 
						|
        unsigned char needle = ch & 0xff;
 | 
						|
        /* If looking for a multiple of 256, we'd have too
 | 
						|
           many false positives looking for the '\0' byte in UCS2
 | 
						|
           and UCS4 representations. */
 | 
						|
        if (needle != 0) {
 | 
						|
            do {
 | 
						|
                void *candidate = memchr(p, needle,
 | 
						|
                                         (e - p) * sizeof(STRINGLIB_CHAR));
 | 
						|
                if (candidate == NULL)
 | 
						|
                    return -1;
 | 
						|
                s1 = p;
 | 
						|
                p = (const STRINGLIB_CHAR *)
 | 
						|
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
 | 
						|
                if (*p == ch)
 | 
						|
                    return (p - s);
 | 
						|
                /* False positive */
 | 
						|
                p++;
 | 
						|
                if (p - s1 > MEMCHR_CUT_OFF)
 | 
						|
                    continue;
 | 
						|
                if (e - p <= MEMCHR_CUT_OFF)
 | 
						|
                    break;
 | 
						|
                e1 = p + MEMCHR_CUT_OFF;
 | 
						|
                while (p != e1) {
 | 
						|
                    if (*p == ch)
 | 
						|
                        return (p - s);
 | 
						|
                    p++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            while (e - p > MEMCHR_CUT_OFF);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    while (p < e) {
 | 
						|
        if (*p == ch)
 | 
						|
            return (p - s);
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
#undef MEMCHR_CUT_OFF
 | 
						|
 | 
						|
#if STRINGLIB_SIZEOF_CHAR == 1
 | 
						|
#  define MEMRCHR_CUT_OFF 15
 | 
						|
#else
 | 
						|
#  define MEMRCHR_CUT_OFF 40
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
Py_LOCAL_INLINE(Py_ssize_t)
 | 
						|
STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
 | 
						|
{
 | 
						|
    const STRINGLIB_CHAR *p;
 | 
						|
#ifdef HAVE_MEMRCHR
 | 
						|
    /* memrchr() is a GNU extension, available since glibc 2.1.91.  it
 | 
						|
       doesn't seem as optimized as memchr(), but is still quite
 | 
						|
       faster than our hand-written loop below. There is no wmemrchr
 | 
						|
       for 4-byte chars. */
 | 
						|
 | 
						|
    if (n > MEMRCHR_CUT_OFF) {
 | 
						|
#if STRINGLIB_SIZEOF_CHAR == 1
 | 
						|
        p = memrchr(s, ch, n);
 | 
						|
        if (p != NULL)
 | 
						|
            return (p - s);
 | 
						|
        return -1;
 | 
						|
#else
 | 
						|
        /* use memrchr if we can choose a needle without too many likely
 | 
						|
           false positives */
 | 
						|
        const STRINGLIB_CHAR *s1;
 | 
						|
        Py_ssize_t n1;
 | 
						|
        unsigned char needle = ch & 0xff;
 | 
						|
        /* If looking for a multiple of 256, we'd have too
 | 
						|
           many false positives looking for the '\0' byte in UCS2
 | 
						|
           and UCS4 representations. */
 | 
						|
        if (needle != 0) {
 | 
						|
            do {
 | 
						|
                void *candidate = memrchr(s, needle,
 | 
						|
                                          n * sizeof(STRINGLIB_CHAR));
 | 
						|
                if (candidate == NULL)
 | 
						|
                    return -1;
 | 
						|
                n1 = n;
 | 
						|
                p = (const STRINGLIB_CHAR *)
 | 
						|
                        _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
 | 
						|
                n = p - s;
 | 
						|
                if (*p == ch)
 | 
						|
                    return n;
 | 
						|
                /* False positive */
 | 
						|
                if (n1 - n > MEMRCHR_CUT_OFF)
 | 
						|
                    continue;
 | 
						|
                if (n <= MEMRCHR_CUT_OFF)
 | 
						|
                    break;
 | 
						|
                s1 = p - MEMRCHR_CUT_OFF;
 | 
						|
                while (p > s1) {
 | 
						|
                    p--;
 | 
						|
                    if (*p == ch)
 | 
						|
                        return (p - s);
 | 
						|
                }
 | 
						|
                n = p - s;
 | 
						|
            }
 | 
						|
            while (n > MEMRCHR_CUT_OFF);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#endif  /* HAVE_MEMRCHR */
 | 
						|
    p = s + n;
 | 
						|
    while (p > s) {
 | 
						|
        p--;
 | 
						|
        if (*p == ch)
 | 
						|
            return (p - s);
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
#undef MEMRCHR_CUT_OFF
 | 
						|
 | 
						|
/* Change to a 1 to see logging comments walk through the algorithm. */
 | 
						|
#if 0 && STRINGLIB_SIZEOF_CHAR == 1
 | 
						|
# define LOG(...) printf(__VA_ARGS__)
 | 
						|
# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
 | 
						|
# define LOG_LINEUP() do {                                         \
 | 
						|
    LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> ");    \
 | 
						|
    LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
 | 
						|
    LOG_STRING(needle, len_needle); LOG("\n");                     \
 | 
						|
} while(0)
 | 
						|
#else
 | 
						|
# define LOG(...)
 | 
						|
# define LOG_STRING(s, n)
 | 
						|
# define LOG_LINEUP()
 | 
						|
#endif
 | 
						|
 | 
						|
Py_LOCAL_INLINE(Py_ssize_t)
 | 
						|
STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
 | 
						|
                       Py_ssize_t *return_period, int invert_alphabet)
 | 
						|
{
 | 
						|
    /* Do a lexicographic search. Essentially this:
 | 
						|
           >>> max(needle[i:] for i in range(len(needle)+1))
 | 
						|
       Also find the period of the right half.   */
 | 
						|
    Py_ssize_t max_suffix = 0;
 | 
						|
    Py_ssize_t candidate = 1;
 | 
						|
    Py_ssize_t k = 0;
 | 
						|
    // The period of the right half.
 | 
						|
    Py_ssize_t period = 1;
 | 
						|
 | 
						|
    while (candidate + k < len_needle) {
 | 
						|
        // each loop increases candidate + k + max_suffix
 | 
						|
        STRINGLIB_CHAR a = needle[candidate + k];
 | 
						|
        STRINGLIB_CHAR b = needle[max_suffix + k];
 | 
						|
        // check if the suffix at candidate is better than max_suffix
 | 
						|
        if (invert_alphabet ? (b < a) : (a < b)) {
 | 
						|
            // Fell short of max_suffix.
 | 
						|
            // The next k + 1 characters are non-increasing
 | 
						|
            // from candidate, so they won't start a maximal suffix.
 | 
						|
            candidate += k + 1;
 | 
						|
            k = 0;
 | 
						|
            // We've ruled out any period smaller than what's
 | 
						|
            // been scanned since max_suffix.
 | 
						|
            period = candidate - max_suffix;
 | 
						|
        }
 | 
						|
        else if (a == b) {
 | 
						|
            if (k + 1 != period) {
 | 
						|
                // Keep scanning the equal strings
 | 
						|
                k++;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                // Matched a whole period.
 | 
						|
                // Start matching the next period.
 | 
						|
                candidate += period;
 | 
						|
                k = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            // Did better than max_suffix, so replace it.
 | 
						|
            max_suffix = candidate;
 | 
						|
            candidate++;
 | 
						|
            k = 0;
 | 
						|
            period = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    *return_period = period;
 | 
						|
    return max_suffix;
 | 
						|
}
 | 
						|
 | 
						|
Py_LOCAL_INLINE(Py_ssize_t)
 | 
						|
STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
 | 
						|
                      Py_ssize_t len_needle,
 | 
						|
                      Py_ssize_t *return_period)
 | 
						|
{
 | 
						|
    /* Do a "critical factorization", making it so that:
 | 
						|
       >>> needle = (left := needle[:cut]) + (right := needle[cut:])
 | 
						|
       where the "local period" of the cut is maximal.
 | 
						|
 | 
						|
       The local period of the cut is the minimal length of a string w
 | 
						|
       such that (left endswith w or w endswith left)
 | 
						|
       and (right startswith w or w startswith left).
 | 
						|
 | 
						|
       The Critical Factorization Theorem says that this maximal local
 | 
						|
       period is the global period of the string.
 | 
						|
 | 
						|
       Crochemore and Perrin (1991) show that this cut can be computed
 | 
						|
       as the later of two cuts: one that gives a lexicographically
 | 
						|
       maximal right half, and one that gives the same with the
 | 
						|
       with respect to a reversed alphabet-ordering.
 | 
						|
 | 
						|
       This is what we want to happen:
 | 
						|
           >>> x = "GCAGAGAG"
 | 
						|
           >>> cut, period = factorize(x)
 | 
						|
           >>> x[:cut], (right := x[cut:])
 | 
						|
           ('GC', 'AGAGAG')
 | 
						|
           >>> period  # right half period
 | 
						|
           2
 | 
						|
           >>> right[period:] == right[:-period]
 | 
						|
           True
 | 
						|
 | 
						|
       This is how the local period lines up in the above example:
 | 
						|
                GC | AGAGAG
 | 
						|
           AGAGAGC = AGAGAGC
 | 
						|
       The length of this minimal repetition is 7, which is indeed the
 | 
						|
       period of the original string. */
 | 
						|
 | 
						|
    Py_ssize_t cut1, period1, cut2, period2, cut, period;
 | 
						|
    cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
 | 
						|
    cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
 | 
						|
 | 
						|
    // Take the later cut.
 | 
						|
    if (cut1 > cut2) {
 | 
						|
        period = period1;
 | 
						|
        cut = cut1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        period = period2;
 | 
						|
        cut = cut2;
 | 
						|
    }
 | 
						|
 | 
						|
    LOG("split: "); LOG_STRING(needle, cut);
 | 
						|
    LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
 | 
						|
    LOG("\n");
 | 
						|
 | 
						|
    *return_period = period;
 | 
						|
    return cut;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define SHIFT_TYPE uint8_t
 | 
						|
#define MAX_SHIFT UINT8_MAX
 | 
						|
 | 
						|
#define TABLE_SIZE_BITS 6u
 | 
						|
#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
 | 
						|
#define TABLE_MASK (TABLE_SIZE - 1U)
 | 
						|
 | 
						|
typedef struct STRINGLIB(_pre) {
 | 
						|
    const STRINGLIB_CHAR *needle;
 | 
						|
    Py_ssize_t len_needle;
 | 
						|
    Py_ssize_t cut;
 | 
						|
    Py_ssize_t period;
 | 
						|
    Py_ssize_t gap;
 | 
						|
    int is_periodic;
 | 
						|
    SHIFT_TYPE table[TABLE_SIZE];
 | 
						|
} STRINGLIB(prework);
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
 | 
						|
                       STRINGLIB(prework) *p)
 | 
						|
{
 | 
						|
    p->needle = needle;
 | 
						|
    p->len_needle = len_needle;
 | 
						|
    p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
 | 
						|
    assert(p->period + p->cut <= len_needle);
 | 
						|
    p->is_periodic = (0 == memcmp(needle,
 | 
						|
                                  needle + p->period,
 | 
						|
                                  p->cut * STRINGLIB_SIZEOF_CHAR));
 | 
						|
    if (p->is_periodic) {
 | 
						|
        assert(p->cut <= len_needle/2);
 | 
						|
        assert(p->cut < p->period);
 | 
						|
        p->gap = 0; // unused
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        // A lower bound on the period
 | 
						|
        p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
 | 
						|
        // The gap between the last character and the previous
 | 
						|
        // occurrence of an equivalent character (modulo TABLE_SIZE)
 | 
						|
        p->gap = len_needle;
 | 
						|
        STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
 | 
						|
        for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
 | 
						|
            STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
 | 
						|
            if (x == last) {
 | 
						|
                p->gap = len_needle - 1 - i;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // Fill up a compressed Boyer-Moore "Bad Character" table
 | 
						|
    Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
 | 
						|
    for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
 | 
						|
        p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
 | 
						|
                                       Py_ssize_t, SHIFT_TYPE);
 | 
						|
    }
 | 
						|
    for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
 | 
						|
        SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
 | 
						|
                                            Py_ssize_t, SHIFT_TYPE);
 | 
						|
        p->table[needle[i] & TABLE_MASK] = shift;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
 | 
						|
                    STRINGLIB(prework) *p)
 | 
						|
{
 | 
						|
    // Crochemore and Perrin's (1991) Two-Way algorithm.
 | 
						|
    // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
 | 
						|
    const Py_ssize_t len_needle = p->len_needle;
 | 
						|
    const Py_ssize_t cut = p->cut;
 | 
						|
    Py_ssize_t period = p->period;
 | 
						|
    const STRINGLIB_CHAR *const needle = p->needle;
 | 
						|
    const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
 | 
						|
    const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
 | 
						|
    SHIFT_TYPE *table = p->table;
 | 
						|
    const STRINGLIB_CHAR *window;
 | 
						|
    LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
 | 
						|
 | 
						|
    if (p->is_periodic) {
 | 
						|
        LOG("Needle is periodic.\n");
 | 
						|
        Py_ssize_t memory = 0;
 | 
						|
      periodicwindowloop:
 | 
						|
        while (window_last < haystack_end) {
 | 
						|
            assert(memory == 0);
 | 
						|
            for (;;) {
 | 
						|
                LOG_LINEUP();
 | 
						|
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
 | 
						|
                window_last += shift;
 | 
						|
                if (shift == 0) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                if (window_last >= haystack_end) {
 | 
						|
                    return -1;
 | 
						|
                }
 | 
						|
                LOG("Horspool skip\n");
 | 
						|
            }
 | 
						|
          no_shift:
 | 
						|
            window = window_last - len_needle + 1;
 | 
						|
            assert((window[len_needle - 1] & TABLE_MASK) ==
 | 
						|
                   (needle[len_needle - 1] & TABLE_MASK));
 | 
						|
            Py_ssize_t i = Py_MAX(cut, memory);
 | 
						|
            for (; i < len_needle; i++) {
 | 
						|
                if (needle[i] != window[i]) {
 | 
						|
                    LOG("Right half does not match.\n");
 | 
						|
                    window_last += i - cut + 1;
 | 
						|
                    memory = 0;
 | 
						|
                    goto periodicwindowloop;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            for (i = memory; i < cut; i++) {
 | 
						|
                if (needle[i] != window[i]) {
 | 
						|
                    LOG("Left half does not match.\n");
 | 
						|
                    window_last += period;
 | 
						|
                    memory = len_needle - period;
 | 
						|
                    if (window_last >= haystack_end) {
 | 
						|
                        return -1;
 | 
						|
                    }
 | 
						|
                    Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
 | 
						|
                    if (shift) {
 | 
						|
                        // A mismatch has been identified to the right
 | 
						|
                        // of where i will next start, so we can jump
 | 
						|
                        // at least as far as if the mismatch occurred
 | 
						|
                        // on the first comparison.
 | 
						|
                        Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
 | 
						|
                        LOG("Skip with Memory.\n");
 | 
						|
                        memory = 0;
 | 
						|
                        window_last += Py_MAX(shift, mem_jump);
 | 
						|
                        goto periodicwindowloop;
 | 
						|
                    }
 | 
						|
                    goto no_shift;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            LOG("Found a match!\n");
 | 
						|
            return window - haystack;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_ssize_t gap = p->gap;
 | 
						|
        period = Py_MAX(gap, period);
 | 
						|
        LOG("Needle is not periodic.\n");
 | 
						|
        Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
 | 
						|
      windowloop:
 | 
						|
        while (window_last < haystack_end) {
 | 
						|
            for (;;) {
 | 
						|
                LOG_LINEUP();
 | 
						|
                Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
 | 
						|
                window_last += shift;
 | 
						|
                if (shift == 0) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                if (window_last >= haystack_end) {
 | 
						|
                    return -1;
 | 
						|
                }
 | 
						|
                LOG("Horspool skip\n");
 | 
						|
            }
 | 
						|
            window = window_last - len_needle + 1;
 | 
						|
            assert((window[len_needle - 1] & TABLE_MASK) ==
 | 
						|
                   (needle[len_needle - 1] & TABLE_MASK));
 | 
						|
            for (Py_ssize_t i = cut; i < gap_jump_end; i++) {
 | 
						|
                if (needle[i] != window[i]) {
 | 
						|
                    LOG("Early right half mismatch: jump by gap.\n");
 | 
						|
                    assert(gap >= i - cut + 1);
 | 
						|
                    window_last += gap;
 | 
						|
                    goto windowloop;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            for (Py_ssize_t i = gap_jump_end; i < len_needle; i++) {
 | 
						|
                if (needle[i] != window[i]) {
 | 
						|
                    LOG("Late right half mismatch.\n");
 | 
						|
                    assert(i - cut + 1 > gap);
 | 
						|
                    window_last += i - cut + 1;
 | 
						|
                    goto windowloop;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            for (Py_ssize_t i = 0; i < cut; i++) {
 | 
						|
                if (needle[i] != window[i]) {
 | 
						|
                    LOG("Left half does not match.\n");
 | 
						|
                    window_last += period;
 | 
						|
                    goto windowloop;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            LOG("Found a match!\n");
 | 
						|
            return window - haystack;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    LOG("Not found. Returning -1.\n");
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
 | 
						|
                         Py_ssize_t len_haystack,
 | 
						|
                         const STRINGLIB_CHAR *needle,
 | 
						|
                         Py_ssize_t len_needle)
 | 
						|
{
 | 
						|
    LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
 | 
						|
    STRINGLIB(prework) p;
 | 
						|
    STRINGLIB(_preprocess)(needle, len_needle, &p);
 | 
						|
    return STRINGLIB(_two_way)(haystack, len_haystack, &p);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
 | 
						|
                          Py_ssize_t len_haystack,
 | 
						|
                          const STRINGLIB_CHAR *needle,
 | 
						|
                          Py_ssize_t len_needle,
 | 
						|
                          Py_ssize_t maxcount)
 | 
						|
{
 | 
						|
    LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
 | 
						|
    STRINGLIB(prework) p;
 | 
						|
    STRINGLIB(_preprocess)(needle, len_needle, &p);
 | 
						|
    Py_ssize_t index = 0, count = 0;
 | 
						|
    while (1) {
 | 
						|
        Py_ssize_t result;
 | 
						|
        result = STRINGLIB(_two_way)(haystack + index,
 | 
						|
                                     len_haystack - index, &p);
 | 
						|
        if (result == -1) {
 | 
						|
            return count;
 | 
						|
        }
 | 
						|
        count++;
 | 
						|
        if (count == maxcount) {
 | 
						|
            return maxcount;
 | 
						|
        }
 | 
						|
        index += result + len_needle;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
#undef SHIFT_TYPE
 | 
						|
#undef NOT_FOUND
 | 
						|
#undef SHIFT_OVERFLOW
 | 
						|
#undef TABLE_SIZE_BITS
 | 
						|
#undef TABLE_SIZE
 | 
						|
#undef TABLE_MASK
 | 
						|
 | 
						|
#undef LOG
 | 
						|
#undef LOG_STRING
 | 
						|
#undef LOG_LINEUP
 | 
						|
 | 
						|
static inline Py_ssize_t
 | 
						|
STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
 | 
						|
                        const STRINGLIB_CHAR* p, Py_ssize_t m,
 | 
						|
                        Py_ssize_t maxcount, int mode)
 | 
						|
{
 | 
						|
    const Py_ssize_t w = n - m;
 | 
						|
    Py_ssize_t mlast = m - 1, count = 0;
 | 
						|
    Py_ssize_t gap = mlast;
 | 
						|
    const STRINGLIB_CHAR last = p[mlast];
 | 
						|
    const STRINGLIB_CHAR *const ss = &s[mlast];
 | 
						|
 | 
						|
    unsigned long mask = 0;
 | 
						|
    for (Py_ssize_t i = 0; i < mlast; i++) {
 | 
						|
        STRINGLIB_BLOOM_ADD(mask, p[i]);
 | 
						|
        if (p[i] == last) {
 | 
						|
            gap = mlast - i - 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    STRINGLIB_BLOOM_ADD(mask, last);
 | 
						|
 | 
						|
    for (Py_ssize_t i = 0; i <= w; i++) {
 | 
						|
        if (ss[i] == last) {
 | 
						|
            /* candidate match */
 | 
						|
            Py_ssize_t j;
 | 
						|
            for (j = 0; j < mlast; j++) {
 | 
						|
                if (s[i+j] != p[j]) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (j == mlast) {
 | 
						|
                /* got a match! */
 | 
						|
                if (mode != FAST_COUNT) {
 | 
						|
                    return i;
 | 
						|
                }
 | 
						|
                count++;
 | 
						|
                if (count == maxcount) {
 | 
						|
                    return maxcount;
 | 
						|
                }
 | 
						|
                i = i + mlast;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            /* miss: check if next character is part of pattern */
 | 
						|
            if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | 
						|
                i = i + m;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                i = i + gap;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* skip: check if next character is part of pattern */
 | 
						|
            if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | 
						|
                i = i + m;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return mode == FAST_COUNT ? count : -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
 | 
						|
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
 | 
						|
                         Py_ssize_t maxcount, int mode)
 | 
						|
{
 | 
						|
    const Py_ssize_t w = n - m;
 | 
						|
    Py_ssize_t mlast = m - 1, count = 0;
 | 
						|
    Py_ssize_t gap = mlast;
 | 
						|
    Py_ssize_t hits = 0, res;
 | 
						|
    const STRINGLIB_CHAR last = p[mlast];
 | 
						|
    const STRINGLIB_CHAR *const ss = &s[mlast];
 | 
						|
 | 
						|
    unsigned long mask = 0;
 | 
						|
    for (Py_ssize_t i = 0; i < mlast; i++) {
 | 
						|
        STRINGLIB_BLOOM_ADD(mask, p[i]);
 | 
						|
        if (p[i] == last) {
 | 
						|
            gap = mlast - i - 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    STRINGLIB_BLOOM_ADD(mask, last);
 | 
						|
 | 
						|
    for (Py_ssize_t i = 0; i <= w; i++) {
 | 
						|
        if (ss[i] == last) {
 | 
						|
            /* candidate match */
 | 
						|
            Py_ssize_t j;
 | 
						|
            for (j = 0; j < mlast; j++) {
 | 
						|
                if (s[i+j] != p[j]) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (j == mlast) {
 | 
						|
                /* got a match! */
 | 
						|
                if (mode != FAST_COUNT) {
 | 
						|
                    return i;
 | 
						|
                }
 | 
						|
                count++;
 | 
						|
                if (count == maxcount) {
 | 
						|
                    return maxcount;
 | 
						|
                }
 | 
						|
                i = i + mlast;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            hits += j + 1;
 | 
						|
            if (hits > m / 4 && w - i > 2000) {
 | 
						|
                if (mode == FAST_SEARCH) {
 | 
						|
                    res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
 | 
						|
                    return res == -1 ? -1 : res + i;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
 | 
						|
                                                    maxcount - count);
 | 
						|
                    return res + count;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /* miss: check if next character is part of pattern */
 | 
						|
            if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | 
						|
                i = i + m;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                i = i + gap;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* skip: check if next character is part of pattern */
 | 
						|
            if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
 | 
						|
                i = i + m;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return mode == FAST_COUNT ? count : -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Py_ssize_t
 | 
						|
STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
 | 
						|
                         const STRINGLIB_CHAR* p, Py_ssize_t m,
 | 
						|
                         Py_ssize_t maxcount, int mode)
 | 
						|
{
 | 
						|
    /* create compressed boyer-moore delta 1 table */
 | 
						|
    unsigned long mask = 0;
 | 
						|
    Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
 | 
						|
 | 
						|
    /* process pattern[0] outside the loop */
 | 
						|
    STRINGLIB_BLOOM_ADD(mask, p[0]);
 | 
						|
    /* process pattern[:0:-1] */
 | 
						|
    for (i = mlast; i > 0; i--) {
 | 
						|
        STRINGLIB_BLOOM_ADD(mask, p[i]);
 | 
						|
        if (p[i] == p[0]) {
 | 
						|
            skip = i - 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = w; i >= 0; i--) {
 | 
						|
        if (s[i] == p[0]) {
 | 
						|
            /* candidate match */
 | 
						|
            for (j = mlast; j > 0; j--) {
 | 
						|
                if (s[i+j] != p[j]) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (j == 0) {
 | 
						|
                /* got a match! */
 | 
						|
                return i;
 | 
						|
            }
 | 
						|
            /* miss: check if previous character is part of pattern */
 | 
						|
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
 | 
						|
                i = i - m;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                i = i - skip;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* skip: check if previous character is part of pattern */
 | 
						|
            if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
 | 
						|
                i = i - m;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline Py_ssize_t
 | 
						|
STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
 | 
						|
                      const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
 | 
						|
{
 | 
						|
    Py_ssize_t i, count = 0;
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
        if (s[i] == p0) {
 | 
						|
            count++;
 | 
						|
            if (count == maxcount) {
 | 
						|
                return maxcount;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Py_LOCAL_INLINE(Py_ssize_t)
 | 
						|
FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
 | 
						|
           const STRINGLIB_CHAR* p, Py_ssize_t m,
 | 
						|
           Py_ssize_t maxcount, int mode)
 | 
						|
{
 | 
						|
    if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* look for special cases */
 | 
						|
    if (m <= 1) {
 | 
						|
        if (m <= 0) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        /* use special case for 1-character strings */
 | 
						|
        if (mode == FAST_SEARCH)
 | 
						|
            return STRINGLIB(find_char)(s, n, p[0]);
 | 
						|
        else if (mode == FAST_RSEARCH)
 | 
						|
            return STRINGLIB(rfind_char)(s, n, p[0]);
 | 
						|
        else {
 | 
						|
            return STRINGLIB(count_char)(s, n, p[0], maxcount);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode != FAST_RSEARCH) {
 | 
						|
        if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
 | 
						|
            return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
 | 
						|
        }
 | 
						|
        else if ((m >> 2) * 3 < (n >> 2)) {
 | 
						|
            /* 33% threshold, but don't overflow. */
 | 
						|
            /* For larger problems where the needle isn't a huge
 | 
						|
               percentage of the size of the haystack, the relatively
 | 
						|
               expensive O(m) startup cost of the two-way algorithm
 | 
						|
               will surely pay off. */
 | 
						|
            if (mode == FAST_SEARCH) {
 | 
						|
                return STRINGLIB(_two_way_find)(s, n, p, m);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* To ensure that we have good worst-case behavior,
 | 
						|
               here's an adaptive version of the algorithm, where if
 | 
						|
               we match O(m) characters without any matches of the
 | 
						|
               entire needle, then we predict that the startup cost of
 | 
						|
               the two-way algorithm will probably be worth it. */
 | 
						|
            return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* FAST_RSEARCH */
 | 
						|
        return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
 | 
						|
    }
 | 
						|
}
 | 
						|
 |