mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 02:15:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			519 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*[clinic input]
 | |
| preserve
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| PyDoc_STRVAR(math_gcd__doc__,
 | |
| "gcd($module, x, y, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "greatest common divisor of x and y");
 | |
| 
 | |
| #define MATH_GCD_METHODDEF    \
 | |
|     {"gcd", (PyCFunction)math_gcd, METH_FASTCALL, math_gcd__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_gcd_impl(PyObject *module, PyObject *a, PyObject *b);
 | |
| 
 | |
| static PyObject *
 | |
| math_gcd(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     PyObject *a;
 | |
|     PyObject *b;
 | |
| 
 | |
|     if (!_PyArg_UnpackStack(args, nargs, "gcd",
 | |
|         2, 2,
 | |
|         &a, &b)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_gcd_impl(module, a, b);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_ceil__doc__,
 | |
| "ceil($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the ceiling of x as an Integral.\n"
 | |
| "\n"
 | |
| "This is the smallest integer >= x.");
 | |
| 
 | |
| #define MATH_CEIL_METHODDEF    \
 | |
|     {"ceil", (PyCFunction)math_ceil, METH_O, math_ceil__doc__},
 | |
| 
 | |
| PyDoc_STRVAR(math_floor__doc__,
 | |
| "floor($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the floor of x as an Integral.\n"
 | |
| "\n"
 | |
| "This is the largest integer <= x.");
 | |
| 
 | |
| #define MATH_FLOOR_METHODDEF    \
 | |
|     {"floor", (PyCFunction)math_floor, METH_O, math_floor__doc__},
 | |
| 
 | |
| PyDoc_STRVAR(math_fsum__doc__,
 | |
| "fsum($module, seq, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return an accurate floating point sum of values in the iterable seq.\n"
 | |
| "\n"
 | |
| "Assumes IEEE-754 floating point arithmetic.");
 | |
| 
 | |
| #define MATH_FSUM_METHODDEF    \
 | |
|     {"fsum", (PyCFunction)math_fsum, METH_O, math_fsum__doc__},
 | |
| 
 | |
| PyDoc_STRVAR(math_factorial__doc__,
 | |
| "factorial($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Find x!.\n"
 | |
| "\n"
 | |
| "Raise a ValueError if x is negative or non-integral.");
 | |
| 
 | |
| #define MATH_FACTORIAL_METHODDEF    \
 | |
|     {"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__},
 | |
| 
 | |
| PyDoc_STRVAR(math_trunc__doc__,
 | |
| "trunc($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Truncates the Real x to the nearest Integral toward 0.\n"
 | |
| "\n"
 | |
| "Uses the __trunc__ magic method.");
 | |
| 
 | |
| #define MATH_TRUNC_METHODDEF    \
 | |
|     {"trunc", (PyCFunction)math_trunc, METH_O, math_trunc__doc__},
 | |
| 
 | |
| PyDoc_STRVAR(math_frexp__doc__,
 | |
| "frexp($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the mantissa and exponent of x, as pair (m, e).\n"
 | |
| "\n"
 | |
| "m is a float and e is an int, such that x = m * 2.**e.\n"
 | |
| "If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");
 | |
| 
 | |
| #define MATH_FREXP_METHODDEF    \
 | |
|     {"frexp", (PyCFunction)math_frexp, METH_O, math_frexp__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_frexp_impl(PyObject *module, double x);
 | |
| 
 | |
| static PyObject *
 | |
| math_frexp(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
| 
 | |
|     if (!PyArg_Parse(arg, "d:frexp", &x)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_frexp_impl(module, x);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_ldexp__doc__,
 | |
| "ldexp($module, x, i, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return x * (2**i).\n"
 | |
| "\n"
 | |
| "This is essentially the inverse of frexp().");
 | |
| 
 | |
| #define MATH_LDEXP_METHODDEF    \
 | |
|     {"ldexp", (PyCFunction)math_ldexp, METH_FASTCALL, math_ldexp__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_ldexp_impl(PyObject *module, double x, PyObject *i);
 | |
| 
 | |
| static PyObject *
 | |
| math_ldexp(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
|     PyObject *i;
 | |
| 
 | |
|     if (!_PyArg_ParseStack(args, nargs, "dO:ldexp",
 | |
|         &x, &i)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_ldexp_impl(module, x, i);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_modf__doc__,
 | |
| "modf($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the fractional and integer parts of x.\n"
 | |
| "\n"
 | |
| "Both results carry the sign of x and are floats.");
 | |
| 
 | |
| #define MATH_MODF_METHODDEF    \
 | |
|     {"modf", (PyCFunction)math_modf, METH_O, math_modf__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_modf_impl(PyObject *module, double x);
 | |
| 
 | |
| static PyObject *
 | |
| math_modf(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
| 
 | |
|     if (!PyArg_Parse(arg, "d:modf", &x)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_modf_impl(module, x);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_log__doc__,
 | |
| "log(x, [base=math.e])\n"
 | |
| "Return the logarithm of x to the given base.\n"
 | |
| "\n"
 | |
| "If the base not specified, returns the natural logarithm (base e) of x.");
 | |
| 
 | |
| #define MATH_LOG_METHODDEF    \
 | |
|     {"log", (PyCFunction)math_log, METH_VARARGS, math_log__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_log_impl(PyObject *module, PyObject *x, int group_right_1,
 | |
|               PyObject *base);
 | |
| 
 | |
| static PyObject *
 | |
| math_log(PyObject *module, PyObject *args)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     PyObject *x;
 | |
|     int group_right_1 = 0;
 | |
|     PyObject *base = NULL;
 | |
| 
 | |
|     switch (PyTuple_GET_SIZE(args)) {
 | |
|         case 1:
 | |
|             if (!PyArg_ParseTuple(args, "O:log", &x)) {
 | |
|                 goto exit;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             if (!PyArg_ParseTuple(args, "OO:log", &x, &base)) {
 | |
|                 goto exit;
 | |
|             }
 | |
|             group_right_1 = 1;
 | |
|             break;
 | |
|         default:
 | |
|             PyErr_SetString(PyExc_TypeError, "math.log requires 1 to 2 arguments");
 | |
|             goto exit;
 | |
|     }
 | |
|     return_value = math_log_impl(module, x, group_right_1, base);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_log2__doc__,
 | |
| "log2($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the base 2 logarithm of x.");
 | |
| 
 | |
| #define MATH_LOG2_METHODDEF    \
 | |
|     {"log2", (PyCFunction)math_log2, METH_O, math_log2__doc__},
 | |
| 
 | |
| PyDoc_STRVAR(math_log10__doc__,
 | |
| "log10($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the base 10 logarithm of x.");
 | |
| 
 | |
| #define MATH_LOG10_METHODDEF    \
 | |
|     {"log10", (PyCFunction)math_log10, METH_O, math_log10__doc__},
 | |
| 
 | |
| PyDoc_STRVAR(math_fmod__doc__,
 | |
| "fmod($module, x, y, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return fmod(x, y), according to platform C.\n"
 | |
| "\n"
 | |
| "x % y may differ.");
 | |
| 
 | |
| #define MATH_FMOD_METHODDEF    \
 | |
|     {"fmod", (PyCFunction)math_fmod, METH_FASTCALL, math_fmod__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_fmod_impl(PyObject *module, double x, double y);
 | |
| 
 | |
| static PyObject *
 | |
| math_fmod(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
|     double y;
 | |
| 
 | |
|     if (!_PyArg_ParseStack(args, nargs, "dd:fmod",
 | |
|         &x, &y)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_fmod_impl(module, x, y);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_hypot__doc__,
 | |
| "hypot($module, x, y, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return the Euclidean distance, sqrt(x*x + y*y).");
 | |
| 
 | |
| #define MATH_HYPOT_METHODDEF    \
 | |
|     {"hypot", (PyCFunction)math_hypot, METH_FASTCALL, math_hypot__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_hypot_impl(PyObject *module, double x, double y);
 | |
| 
 | |
| static PyObject *
 | |
| math_hypot(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
|     double y;
 | |
| 
 | |
|     if (!_PyArg_ParseStack(args, nargs, "dd:hypot",
 | |
|         &x, &y)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_hypot_impl(module, x, y);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_pow__doc__,
 | |
| "pow($module, x, y, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return x**y (x to the power of y).");
 | |
| 
 | |
| #define MATH_POW_METHODDEF    \
 | |
|     {"pow", (PyCFunction)math_pow, METH_FASTCALL, math_pow__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_pow_impl(PyObject *module, double x, double y);
 | |
| 
 | |
| static PyObject *
 | |
| math_pow(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
|     double y;
 | |
| 
 | |
|     if (!_PyArg_ParseStack(args, nargs, "dd:pow",
 | |
|         &x, &y)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_pow_impl(module, x, y);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_degrees__doc__,
 | |
| "degrees($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Convert angle x from radians to degrees.");
 | |
| 
 | |
| #define MATH_DEGREES_METHODDEF    \
 | |
|     {"degrees", (PyCFunction)math_degrees, METH_O, math_degrees__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_degrees_impl(PyObject *module, double x);
 | |
| 
 | |
| static PyObject *
 | |
| math_degrees(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
| 
 | |
|     if (!PyArg_Parse(arg, "d:degrees", &x)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_degrees_impl(module, x);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_radians__doc__,
 | |
| "radians($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Convert angle x from degrees to radians.");
 | |
| 
 | |
| #define MATH_RADIANS_METHODDEF    \
 | |
|     {"radians", (PyCFunction)math_radians, METH_O, math_radians__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_radians_impl(PyObject *module, double x);
 | |
| 
 | |
| static PyObject *
 | |
| math_radians(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
| 
 | |
|     if (!PyArg_Parse(arg, "d:radians", &x)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_radians_impl(module, x);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_isfinite__doc__,
 | |
| "isfinite($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return True if x is neither an infinity nor a NaN, and False otherwise.");
 | |
| 
 | |
| #define MATH_ISFINITE_METHODDEF    \
 | |
|     {"isfinite", (PyCFunction)math_isfinite, METH_O, math_isfinite__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_isfinite_impl(PyObject *module, double x);
 | |
| 
 | |
| static PyObject *
 | |
| math_isfinite(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
| 
 | |
|     if (!PyArg_Parse(arg, "d:isfinite", &x)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_isfinite_impl(module, x);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_isnan__doc__,
 | |
| "isnan($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return True if x is a NaN (not a number), and False otherwise.");
 | |
| 
 | |
| #define MATH_ISNAN_METHODDEF    \
 | |
|     {"isnan", (PyCFunction)math_isnan, METH_O, math_isnan__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_isnan_impl(PyObject *module, double x);
 | |
| 
 | |
| static PyObject *
 | |
| math_isnan(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
| 
 | |
|     if (!PyArg_Parse(arg, "d:isnan", &x)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_isnan_impl(module, x);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_isinf__doc__,
 | |
| "isinf($module, x, /)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Return True if x is a positive or negative infinity, and False otherwise.");
 | |
| 
 | |
| #define MATH_ISINF_METHODDEF    \
 | |
|     {"isinf", (PyCFunction)math_isinf, METH_O, math_isinf__doc__},
 | |
| 
 | |
| static PyObject *
 | |
| math_isinf_impl(PyObject *module, double x);
 | |
| 
 | |
| static PyObject *
 | |
| math_isinf(PyObject *module, PyObject *arg)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     double x;
 | |
| 
 | |
|     if (!PyArg_Parse(arg, "d:isinf", &x)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = math_isinf_impl(module, x);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(math_isclose__doc__,
 | |
| "isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n"
 | |
| "--\n"
 | |
| "\n"
 | |
| "Determine whether two floating point numbers are close in value.\n"
 | |
| "\n"
 | |
| "  rel_tol\n"
 | |
| "    maximum difference for being considered \"close\", relative to the\n"
 | |
| "    magnitude of the input values\n"
 | |
| "  abs_tol\n"
 | |
| "    maximum difference for being considered \"close\", regardless of the\n"
 | |
| "    magnitude of the input values\n"
 | |
| "\n"
 | |
| "Return True if a is close in value to b, and False otherwise.\n"
 | |
| "\n"
 | |
| "For the values to be considered close, the difference between them\n"
 | |
| "must be smaller than at least one of the tolerances.\n"
 | |
| "\n"
 | |
| "-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That\n"
 | |
| "is, NaN is not close to anything, even itself.  inf and -inf are\n"
 | |
| "only close to themselves.");
 | |
| 
 | |
| #define MATH_ISCLOSE_METHODDEF    \
 | |
|     {"isclose", (PyCFunction)math_isclose, METH_FASTCALL|METH_KEYWORDS, math_isclose__doc__},
 | |
| 
 | |
| static int
 | |
| math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
 | |
|                   double abs_tol);
 | |
| 
 | |
| static PyObject *
 | |
| math_isclose(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
 | |
| {
 | |
|     PyObject *return_value = NULL;
 | |
|     static const char * const _keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};
 | |
|     static _PyArg_Parser _parser = {"dd|$dd:isclose", _keywords, 0};
 | |
|     double a;
 | |
|     double b;
 | |
|     double rel_tol = 1e-09;
 | |
|     double abs_tol = 0.0;
 | |
|     int _return_value;
 | |
| 
 | |
|     if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
 | |
|         &a, &b, &rel_tol, &abs_tol)) {
 | |
|         goto exit;
 | |
|     }
 | |
|     _return_value = math_isclose_impl(module, a, b, rel_tol, abs_tol);
 | |
|     if ((_return_value == -1) && PyErr_Occurred()) {
 | |
|         goto exit;
 | |
|     }
 | |
|     return_value = PyBool_FromLong((long)_return_value);
 | |
| 
 | |
| exit:
 | |
|     return return_value;
 | |
| }
 | |
| /*[clinic end generated code: output=e554bad553045546 input=a9049054013a1b77]*/
 | 
