mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	It is an alternative constructor which only accepts a single numeric argument. Unlike to Fraction.from_float() and Fraction.from_decimal() it accepts any real numbers supported by the standard constructor (int, float, Decimal, Rational numbers, objects with as_integer_ratio()). Unlike to the standard constructor, it does not accept strings.
		
			
				
	
	
		
			1065 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1065 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Originally contributed by Sjoerd Mullender.
 | 
						|
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
 | 
						|
 | 
						|
"""Fraction, infinite-precision, rational numbers."""
 | 
						|
 | 
						|
import functools
 | 
						|
import math
 | 
						|
import numbers
 | 
						|
import operator
 | 
						|
import re
 | 
						|
import sys
 | 
						|
 | 
						|
__all__ = ['Fraction']
 | 
						|
 | 
						|
 | 
						|
# Constants related to the hash implementation;  hash(x) is based
 | 
						|
# on the reduction of x modulo the prime _PyHASH_MODULUS.
 | 
						|
_PyHASH_MODULUS = sys.hash_info.modulus
 | 
						|
# Value to be used for rationals that reduce to infinity modulo
 | 
						|
# _PyHASH_MODULUS.
 | 
						|
_PyHASH_INF = sys.hash_info.inf
 | 
						|
 | 
						|
@functools.lru_cache(maxsize = 1 << 14)
 | 
						|
def _hash_algorithm(numerator, denominator):
 | 
						|
 | 
						|
    # To make sure that the hash of a Fraction agrees with the hash
 | 
						|
    # of a numerically equal integer, float or Decimal instance, we
 | 
						|
    # follow the rules for numeric hashes outlined in the
 | 
						|
    # documentation.  (See library docs, 'Built-in Types').
 | 
						|
 | 
						|
    try:
 | 
						|
        dinv = pow(denominator, -1, _PyHASH_MODULUS)
 | 
						|
    except ValueError:
 | 
						|
        # ValueError means there is no modular inverse.
 | 
						|
        hash_ = _PyHASH_INF
 | 
						|
    else:
 | 
						|
        # The general algorithm now specifies that the absolute value of
 | 
						|
        # the hash is
 | 
						|
        #    (|N| * dinv) % P
 | 
						|
        # where N is self._numerator and P is _PyHASH_MODULUS.  That's
 | 
						|
        # optimized here in two ways:  first, for a non-negative int i,
 | 
						|
        # hash(i) == i % P, but the int hash implementation doesn't need
 | 
						|
        # to divide, and is faster than doing % P explicitly.  So we do
 | 
						|
        #    hash(|N| * dinv)
 | 
						|
        # instead.  Second, N is unbounded, so its product with dinv may
 | 
						|
        # be arbitrarily expensive to compute.  The final answer is the
 | 
						|
        # same if we use the bounded |N| % P instead, which can again
 | 
						|
        # be done with an int hash() call.  If 0 <= i < P, hash(i) == i,
 | 
						|
        # so this nested hash() call wastes a bit of time making a
 | 
						|
        # redundant copy when |N| < P, but can save an arbitrarily large
 | 
						|
        # amount of computation for large |N|.
 | 
						|
        hash_ = hash(hash(abs(numerator)) * dinv)
 | 
						|
    result = hash_ if numerator >= 0 else -hash_
 | 
						|
    return -2 if result == -1 else result
 | 
						|
 | 
						|
_RATIONAL_FORMAT = re.compile(r"""
 | 
						|
    \A\s*                                  # optional whitespace at the start,
 | 
						|
    (?P<sign>[-+]?)                        # an optional sign, then
 | 
						|
    (?=\d|\.\d)                            # lookahead for digit or .digit
 | 
						|
    (?P<num>\d*|\d+(_\d+)*)                # numerator (possibly empty)
 | 
						|
    (?:                                    # followed by
 | 
						|
       (?:\s*/\s*(?P<denom>\d+(_\d+)*))?   # an optional denominator
 | 
						|
    |                                      # or
 | 
						|
       (?:\.(?P<decimal>\d*|\d+(_\d+)*))?  # an optional fractional part
 | 
						|
       (?:E(?P<exp>[-+]?\d+(_\d+)*))?      # and optional exponent
 | 
						|
    )
 | 
						|
    \s*\Z                                  # and optional whitespace to finish
 | 
						|
""", re.VERBOSE | re.IGNORECASE)
 | 
						|
 | 
						|
 | 
						|
# Helpers for formatting
 | 
						|
 | 
						|
def _round_to_exponent(n, d, exponent, no_neg_zero=False):
 | 
						|
    """Round a rational number to the nearest multiple of a given power of 10.
 | 
						|
 | 
						|
    Rounds the rational number n/d to the nearest integer multiple of
 | 
						|
    10**exponent, rounding to the nearest even integer multiple in the case of
 | 
						|
    a tie. Returns a pair (sign: bool, significand: int) representing the
 | 
						|
    rounded value (-1)**sign * significand * 10**exponent.
 | 
						|
 | 
						|
    If no_neg_zero is true, then the returned sign will always be False when
 | 
						|
    the significand is zero. Otherwise, the sign reflects the sign of the
 | 
						|
    input.
 | 
						|
 | 
						|
    d must be positive, but n and d need not be relatively prime.
 | 
						|
    """
 | 
						|
    if exponent >= 0:
 | 
						|
        d *= 10**exponent
 | 
						|
    else:
 | 
						|
        n *= 10**-exponent
 | 
						|
 | 
						|
    # The divmod quotient is correct for round-ties-towards-positive-infinity;
 | 
						|
    # In the case of a tie, we zero out the least significant bit of q.
 | 
						|
    q, r = divmod(n + (d >> 1), d)
 | 
						|
    if r == 0 and d & 1 == 0:
 | 
						|
        q &= -2
 | 
						|
 | 
						|
    sign = q < 0 if no_neg_zero else n < 0
 | 
						|
    return sign, abs(q)
 | 
						|
 | 
						|
 | 
						|
def _round_to_figures(n, d, figures):
 | 
						|
    """Round a rational number to a given number of significant figures.
 | 
						|
 | 
						|
    Rounds the rational number n/d to the given number of significant figures
 | 
						|
    using the round-ties-to-even rule, and returns a triple
 | 
						|
    (sign: bool, significand: int, exponent: int) representing the rounded
 | 
						|
    value (-1)**sign * significand * 10**exponent.
 | 
						|
 | 
						|
    In the special case where n = 0, returns a significand of zero and
 | 
						|
    an exponent of 1 - figures, for compatibility with formatting.
 | 
						|
    Otherwise, the returned significand satisfies
 | 
						|
    10**(figures - 1) <= significand < 10**figures.
 | 
						|
 | 
						|
    d must be positive, but n and d need not be relatively prime.
 | 
						|
    figures must be positive.
 | 
						|
    """
 | 
						|
    # Special case for n == 0.
 | 
						|
    if n == 0:
 | 
						|
        return False, 0, 1 - figures
 | 
						|
 | 
						|
    # Find integer m satisfying 10**(m - 1) <= abs(n)/d <= 10**m. (If abs(n)/d
 | 
						|
    # is a power of 10, either of the two possible values for m is fine.)
 | 
						|
    str_n, str_d = str(abs(n)), str(d)
 | 
						|
    m = len(str_n) - len(str_d) + (str_d <= str_n)
 | 
						|
 | 
						|
    # Round to a multiple of 10**(m - figures). The significand we get
 | 
						|
    # satisfies 10**(figures - 1) <= significand <= 10**figures.
 | 
						|
    exponent = m - figures
 | 
						|
    sign, significand = _round_to_exponent(n, d, exponent)
 | 
						|
 | 
						|
    # Adjust in the case where significand == 10**figures, to ensure that
 | 
						|
    # 10**(figures - 1) <= significand < 10**figures.
 | 
						|
    if len(str(significand)) == figures + 1:
 | 
						|
        significand //= 10
 | 
						|
        exponent += 1
 | 
						|
 | 
						|
    return sign, significand, exponent
 | 
						|
 | 
						|
 | 
						|
# Pattern for matching non-float-style format specifications.
 | 
						|
_GENERAL_FORMAT_SPECIFICATION_MATCHER = re.compile(r"""
 | 
						|
    (?:
 | 
						|
        (?P<fill>.)?
 | 
						|
        (?P<align>[<>=^])
 | 
						|
    )?
 | 
						|
    (?P<sign>[-+ ]?)
 | 
						|
    # Alt flag forces a slash and denominator in the output, even for
 | 
						|
    # integer-valued Fraction objects.
 | 
						|
    (?P<alt>\#)?
 | 
						|
    # We don't implement the zeropad flag since there's no single obvious way
 | 
						|
    # to interpret it.
 | 
						|
    (?P<minimumwidth>0|[1-9][0-9]*)?
 | 
						|
    (?P<thousands_sep>[,_])?
 | 
						|
""", re.DOTALL | re.VERBOSE).fullmatch
 | 
						|
 | 
						|
 | 
						|
# Pattern for matching float-style format specifications;
 | 
						|
# supports 'e', 'E', 'f', 'F', 'g', 'G' and '%' presentation types.
 | 
						|
_FLOAT_FORMAT_SPECIFICATION_MATCHER = re.compile(r"""
 | 
						|
    (?:
 | 
						|
        (?P<fill>.)?
 | 
						|
        (?P<align>[<>=^])
 | 
						|
    )?
 | 
						|
    (?P<sign>[-+ ]?)
 | 
						|
    (?P<no_neg_zero>z)?
 | 
						|
    (?P<alt>\#)?
 | 
						|
    # A '0' that's *not* followed by another digit is parsed as a minimum width
 | 
						|
    # rather than a zeropad flag.
 | 
						|
    (?P<zeropad>0(?=[0-9]))?
 | 
						|
    (?P<minimumwidth>0|[1-9][0-9]*)?
 | 
						|
    (?P<thousands_sep>[,_])?
 | 
						|
    (?:\.(?P<precision>0|[1-9][0-9]*))?
 | 
						|
    (?P<presentation_type>[eEfFgG%])
 | 
						|
""", re.DOTALL | re.VERBOSE).fullmatch
 | 
						|
 | 
						|
 | 
						|
class Fraction(numbers.Rational):
 | 
						|
    """This class implements rational numbers.
 | 
						|
 | 
						|
    In the two-argument form of the constructor, Fraction(8, 6) will
 | 
						|
    produce a rational number equivalent to 4/3. Both arguments must
 | 
						|
    be Rational. The numerator defaults to 0 and the denominator
 | 
						|
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
 | 
						|
 | 
						|
    Fractions can also be constructed from:
 | 
						|
 | 
						|
      - numeric strings similar to those accepted by the
 | 
						|
        float constructor (for example, '-2.3' or '1e10')
 | 
						|
 | 
						|
      - strings of the form '123/456'
 | 
						|
 | 
						|
      - float and Decimal instances
 | 
						|
 | 
						|
      - other Rational instances (including integers)
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    __slots__ = ('_numerator', '_denominator')
 | 
						|
 | 
						|
    # We're immutable, so use __new__ not __init__
 | 
						|
    def __new__(cls, numerator=0, denominator=None):
 | 
						|
        """Constructs a Rational.
 | 
						|
 | 
						|
        Takes a string like '3/2' or '1.5', another Rational instance, a
 | 
						|
        numerator/denominator pair, or a float.
 | 
						|
 | 
						|
        Examples
 | 
						|
        --------
 | 
						|
 | 
						|
        >>> Fraction(10, -8)
 | 
						|
        Fraction(-5, 4)
 | 
						|
        >>> Fraction(Fraction(1, 7), 5)
 | 
						|
        Fraction(1, 35)
 | 
						|
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
 | 
						|
        Fraction(3, 14)
 | 
						|
        >>> Fraction('314')
 | 
						|
        Fraction(314, 1)
 | 
						|
        >>> Fraction('-35/4')
 | 
						|
        Fraction(-35, 4)
 | 
						|
        >>> Fraction('3.1415') # conversion from numeric string
 | 
						|
        Fraction(6283, 2000)
 | 
						|
        >>> Fraction('-47e-2') # string may include a decimal exponent
 | 
						|
        Fraction(-47, 100)
 | 
						|
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
 | 
						|
        Fraction(6620291452234629, 4503599627370496)
 | 
						|
        >>> Fraction(2.25)
 | 
						|
        Fraction(9, 4)
 | 
						|
        >>> Fraction(Decimal('1.47'))
 | 
						|
        Fraction(147, 100)
 | 
						|
 | 
						|
        """
 | 
						|
        self = super(Fraction, cls).__new__(cls)
 | 
						|
 | 
						|
        if denominator is None:
 | 
						|
            if type(numerator) is int:
 | 
						|
                self._numerator = numerator
 | 
						|
                self._denominator = 1
 | 
						|
                return self
 | 
						|
 | 
						|
            elif isinstance(numerator, numbers.Rational):
 | 
						|
                self._numerator = numerator.numerator
 | 
						|
                self._denominator = numerator.denominator
 | 
						|
                return self
 | 
						|
 | 
						|
            elif (isinstance(numerator, float) or
 | 
						|
                  (not isinstance(numerator, type) and
 | 
						|
                   hasattr(numerator, 'as_integer_ratio'))):
 | 
						|
                # Exact conversion
 | 
						|
                self._numerator, self._denominator = numerator.as_integer_ratio()
 | 
						|
                return self
 | 
						|
 | 
						|
            elif isinstance(numerator, str):
 | 
						|
                # Handle construction from strings.
 | 
						|
                m = _RATIONAL_FORMAT.match(numerator)
 | 
						|
                if m is None:
 | 
						|
                    raise ValueError('Invalid literal for Fraction: %r' %
 | 
						|
                                     numerator)
 | 
						|
                numerator = int(m.group('num') or '0')
 | 
						|
                denom = m.group('denom')
 | 
						|
                if denom:
 | 
						|
                    denominator = int(denom)
 | 
						|
                else:
 | 
						|
                    denominator = 1
 | 
						|
                    decimal = m.group('decimal')
 | 
						|
                    if decimal:
 | 
						|
                        decimal = decimal.replace('_', '')
 | 
						|
                        scale = 10**len(decimal)
 | 
						|
                        numerator = numerator * scale + int(decimal)
 | 
						|
                        denominator *= scale
 | 
						|
                    exp = m.group('exp')
 | 
						|
                    if exp:
 | 
						|
                        exp = int(exp)
 | 
						|
                        if exp >= 0:
 | 
						|
                            numerator *= 10**exp
 | 
						|
                        else:
 | 
						|
                            denominator *= 10**-exp
 | 
						|
                if m.group('sign') == '-':
 | 
						|
                    numerator = -numerator
 | 
						|
 | 
						|
            else:
 | 
						|
                raise TypeError("argument should be a string or a Rational "
 | 
						|
                                "instance or have the as_integer_ratio() method")
 | 
						|
 | 
						|
        elif type(numerator) is int is type(denominator):
 | 
						|
            pass # *very* normal case
 | 
						|
 | 
						|
        elif (isinstance(numerator, numbers.Rational) and
 | 
						|
            isinstance(denominator, numbers.Rational)):
 | 
						|
            numerator, denominator = (
 | 
						|
                numerator.numerator * denominator.denominator,
 | 
						|
                denominator.numerator * numerator.denominator
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            raise TypeError("both arguments should be "
 | 
						|
                            "Rational instances")
 | 
						|
 | 
						|
        if denominator == 0:
 | 
						|
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
 | 
						|
        g = math.gcd(numerator, denominator)
 | 
						|
        if denominator < 0:
 | 
						|
            g = -g
 | 
						|
        numerator //= g
 | 
						|
        denominator //= g
 | 
						|
        self._numerator = numerator
 | 
						|
        self._denominator = denominator
 | 
						|
        return self
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_number(cls, number):
 | 
						|
        """Converts a finite real number to a rational number, exactly.
 | 
						|
 | 
						|
        Beware that Fraction.from_number(0.3) != Fraction(3, 10).
 | 
						|
 | 
						|
        """
 | 
						|
        if type(number) is int:
 | 
						|
            return cls._from_coprime_ints(number, 1)
 | 
						|
 | 
						|
        elif isinstance(number, numbers.Rational):
 | 
						|
            return cls._from_coprime_ints(number.numerator, number.denominator)
 | 
						|
 | 
						|
        elif (isinstance(number, float) or
 | 
						|
              (not isinstance(number, type) and
 | 
						|
               hasattr(number, 'as_integer_ratio'))):
 | 
						|
            return cls._from_coprime_ints(*number.as_integer_ratio())
 | 
						|
 | 
						|
        else:
 | 
						|
            raise TypeError("argument should be a Rational instance or "
 | 
						|
                            "have the as_integer_ratio() method")
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_float(cls, f):
 | 
						|
        """Converts a finite float to a rational number, exactly.
 | 
						|
 | 
						|
        Beware that Fraction.from_float(0.3) != Fraction(3, 10).
 | 
						|
 | 
						|
        """
 | 
						|
        if isinstance(f, numbers.Integral):
 | 
						|
            return cls(f)
 | 
						|
        elif not isinstance(f, float):
 | 
						|
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
 | 
						|
                            (cls.__name__, f, type(f).__name__))
 | 
						|
        return cls._from_coprime_ints(*f.as_integer_ratio())
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_decimal(cls, dec):
 | 
						|
        """Converts a finite Decimal instance to a rational number, exactly."""
 | 
						|
        from decimal import Decimal
 | 
						|
        if isinstance(dec, numbers.Integral):
 | 
						|
            dec = Decimal(int(dec))
 | 
						|
        elif not isinstance(dec, Decimal):
 | 
						|
            raise TypeError(
 | 
						|
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
 | 
						|
                (cls.__name__, dec, type(dec).__name__))
 | 
						|
        return cls._from_coprime_ints(*dec.as_integer_ratio())
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def _from_coprime_ints(cls, numerator, denominator, /):
 | 
						|
        """Convert a pair of ints to a rational number, for internal use.
 | 
						|
 | 
						|
        The ratio of integers should be in lowest terms and the denominator
 | 
						|
        should be positive.
 | 
						|
        """
 | 
						|
        obj = super(Fraction, cls).__new__(cls)
 | 
						|
        obj._numerator = numerator
 | 
						|
        obj._denominator = denominator
 | 
						|
        return obj
 | 
						|
 | 
						|
    def is_integer(self):
 | 
						|
        """Return True if the Fraction is an integer."""
 | 
						|
        return self._denominator == 1
 | 
						|
 | 
						|
    def as_integer_ratio(self):
 | 
						|
        """Return a pair of integers, whose ratio is equal to the original Fraction.
 | 
						|
 | 
						|
        The ratio is in lowest terms and has a positive denominator.
 | 
						|
        """
 | 
						|
        return (self._numerator, self._denominator)
 | 
						|
 | 
						|
    def limit_denominator(self, max_denominator=1000000):
 | 
						|
        """Closest Fraction to self with denominator at most max_denominator.
 | 
						|
 | 
						|
        >>> Fraction('3.141592653589793').limit_denominator(10)
 | 
						|
        Fraction(22, 7)
 | 
						|
        >>> Fraction('3.141592653589793').limit_denominator(100)
 | 
						|
        Fraction(311, 99)
 | 
						|
        >>> Fraction(4321, 8765).limit_denominator(10000)
 | 
						|
        Fraction(4321, 8765)
 | 
						|
 | 
						|
        """
 | 
						|
        # Algorithm notes: For any real number x, define a *best upper
 | 
						|
        # approximation* to x to be a rational number p/q such that:
 | 
						|
        #
 | 
						|
        #   (1) p/q >= x, and
 | 
						|
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
 | 
						|
        #
 | 
						|
        # Define *best lower approximation* similarly.  Then it can be
 | 
						|
        # proved that a rational number is a best upper or lower
 | 
						|
        # approximation to x if, and only if, it is a convergent or
 | 
						|
        # semiconvergent of the (unique shortest) continued fraction
 | 
						|
        # associated to x.
 | 
						|
        #
 | 
						|
        # To find a best rational approximation with denominator <= M,
 | 
						|
        # we find the best upper and lower approximations with
 | 
						|
        # denominator <= M and take whichever of these is closer to x.
 | 
						|
        # In the event of a tie, the bound with smaller denominator is
 | 
						|
        # chosen.  If both denominators are equal (which can happen
 | 
						|
        # only when max_denominator == 1 and self is midway between
 | 
						|
        # two integers) the lower bound---i.e., the floor of self, is
 | 
						|
        # taken.
 | 
						|
 | 
						|
        if max_denominator < 1:
 | 
						|
            raise ValueError("max_denominator should be at least 1")
 | 
						|
        if self._denominator <= max_denominator:
 | 
						|
            return Fraction(self)
 | 
						|
 | 
						|
        p0, q0, p1, q1 = 0, 1, 1, 0
 | 
						|
        n, d = self._numerator, self._denominator
 | 
						|
        while True:
 | 
						|
            a = n//d
 | 
						|
            q2 = q0+a*q1
 | 
						|
            if q2 > max_denominator:
 | 
						|
                break
 | 
						|
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
 | 
						|
            n, d = d, n-a*d
 | 
						|
        k = (max_denominator-q0)//q1
 | 
						|
 | 
						|
        # Determine which of the candidates (p0+k*p1)/(q0+k*q1) and p1/q1 is
 | 
						|
        # closer to self. The distance between them is 1/(q1*(q0+k*q1)), while
 | 
						|
        # the distance from p1/q1 to self is d/(q1*self._denominator). So we
 | 
						|
        # need to compare 2*(q0+k*q1) with self._denominator/d.
 | 
						|
        if 2*d*(q0+k*q1) <= self._denominator:
 | 
						|
            return Fraction._from_coprime_ints(p1, q1)
 | 
						|
        else:
 | 
						|
            return Fraction._from_coprime_ints(p0+k*p1, q0+k*q1)
 | 
						|
 | 
						|
    @property
 | 
						|
    def numerator(a):
 | 
						|
        return a._numerator
 | 
						|
 | 
						|
    @property
 | 
						|
    def denominator(a):
 | 
						|
        return a._denominator
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        """repr(self)"""
 | 
						|
        return '%s(%s, %s)' % (self.__class__.__name__,
 | 
						|
                               self._numerator, self._denominator)
 | 
						|
 | 
						|
    def __str__(self):
 | 
						|
        """str(self)"""
 | 
						|
        if self._denominator == 1:
 | 
						|
            return str(self._numerator)
 | 
						|
        else:
 | 
						|
            return '%s/%s' % (self._numerator, self._denominator)
 | 
						|
 | 
						|
    def _format_general(self, match):
 | 
						|
        """Helper method for __format__.
 | 
						|
 | 
						|
        Handles fill, alignment, signs, and thousands separators in the
 | 
						|
        case of no presentation type.
 | 
						|
        """
 | 
						|
        # Validate and parse the format specifier.
 | 
						|
        fill = match["fill"] or " "
 | 
						|
        align = match["align"] or ">"
 | 
						|
        pos_sign = "" if match["sign"] == "-" else match["sign"]
 | 
						|
        alternate_form = bool(match["alt"])
 | 
						|
        minimumwidth = int(match["minimumwidth"] or "0")
 | 
						|
        thousands_sep = match["thousands_sep"] or ''
 | 
						|
 | 
						|
        # Determine the body and sign representation.
 | 
						|
        n, d = self._numerator, self._denominator
 | 
						|
        if d > 1 or alternate_form:
 | 
						|
            body = f"{abs(n):{thousands_sep}}/{d:{thousands_sep}}"
 | 
						|
        else:
 | 
						|
            body = f"{abs(n):{thousands_sep}}"
 | 
						|
        sign = '-' if n < 0 else pos_sign
 | 
						|
 | 
						|
        # Pad with fill character if necessary and return.
 | 
						|
        padding = fill * (minimumwidth - len(sign) - len(body))
 | 
						|
        if align == ">":
 | 
						|
            return padding + sign + body
 | 
						|
        elif align == "<":
 | 
						|
            return sign + body + padding
 | 
						|
        elif align == "^":
 | 
						|
            half = len(padding) // 2
 | 
						|
            return padding[:half] + sign + body + padding[half:]
 | 
						|
        else:  # align == "="
 | 
						|
            return sign + padding + body
 | 
						|
 | 
						|
    def _format_float_style(self, match):
 | 
						|
        """Helper method for __format__; handles float presentation types."""
 | 
						|
        fill = match["fill"] or " "
 | 
						|
        align = match["align"] or ">"
 | 
						|
        pos_sign = "" if match["sign"] == "-" else match["sign"]
 | 
						|
        no_neg_zero = bool(match["no_neg_zero"])
 | 
						|
        alternate_form = bool(match["alt"])
 | 
						|
        zeropad = bool(match["zeropad"])
 | 
						|
        minimumwidth = int(match["minimumwidth"] or "0")
 | 
						|
        thousands_sep = match["thousands_sep"]
 | 
						|
        precision = int(match["precision"] or "6")
 | 
						|
        presentation_type = match["presentation_type"]
 | 
						|
        trim_zeros = presentation_type in "gG" and not alternate_form
 | 
						|
        trim_point = not alternate_form
 | 
						|
        exponent_indicator = "E" if presentation_type in "EFG" else "e"
 | 
						|
 | 
						|
        # Round to get the digits we need, figure out where to place the point,
 | 
						|
        # and decide whether to use scientific notation. 'point_pos' is the
 | 
						|
        # relative to the _end_ of the digit string: that is, it's the number
 | 
						|
        # of digits that should follow the point.
 | 
						|
        if presentation_type in "fF%":
 | 
						|
            exponent = -precision
 | 
						|
            if presentation_type == "%":
 | 
						|
                exponent -= 2
 | 
						|
            negative, significand = _round_to_exponent(
 | 
						|
                self._numerator, self._denominator, exponent, no_neg_zero)
 | 
						|
            scientific = False
 | 
						|
            point_pos = precision
 | 
						|
        else:  # presentation_type in "eEgG"
 | 
						|
            figures = (
 | 
						|
                max(precision, 1)
 | 
						|
                if presentation_type in "gG"
 | 
						|
                else precision + 1
 | 
						|
            )
 | 
						|
            negative, significand, exponent = _round_to_figures(
 | 
						|
                self._numerator, self._denominator, figures)
 | 
						|
            scientific = (
 | 
						|
                presentation_type in "eE"
 | 
						|
                or exponent > 0
 | 
						|
                or exponent + figures <= -4
 | 
						|
            )
 | 
						|
            point_pos = figures - 1 if scientific else -exponent
 | 
						|
 | 
						|
        # Get the suffix - the part following the digits, if any.
 | 
						|
        if presentation_type == "%":
 | 
						|
            suffix = "%"
 | 
						|
        elif scientific:
 | 
						|
            suffix = f"{exponent_indicator}{exponent + point_pos:+03d}"
 | 
						|
        else:
 | 
						|
            suffix = ""
 | 
						|
 | 
						|
        # String of output digits, padded sufficiently with zeros on the left
 | 
						|
        # so that we'll have at least one digit before the decimal point.
 | 
						|
        digits = f"{significand:0{point_pos + 1}d}"
 | 
						|
 | 
						|
        # Before padding, the output has the form f"{sign}{leading}{trailing}",
 | 
						|
        # where `leading` includes thousands separators if necessary and
 | 
						|
        # `trailing` includes the decimal separator where appropriate.
 | 
						|
        sign = "-" if negative else pos_sign
 | 
						|
        leading = digits[: len(digits) - point_pos]
 | 
						|
        frac_part = digits[len(digits) - point_pos :]
 | 
						|
        if trim_zeros:
 | 
						|
            frac_part = frac_part.rstrip("0")
 | 
						|
        separator = "" if trim_point and not frac_part else "."
 | 
						|
        trailing = separator + frac_part + suffix
 | 
						|
 | 
						|
        # Do zero padding if required.
 | 
						|
        if zeropad:
 | 
						|
            min_leading = minimumwidth - len(sign) - len(trailing)
 | 
						|
            # When adding thousands separators, they'll be added to the
 | 
						|
            # zero-padded portion too, so we need to compensate.
 | 
						|
            leading = leading.zfill(
 | 
						|
                3 * min_leading // 4 + 1 if thousands_sep else min_leading
 | 
						|
            )
 | 
						|
 | 
						|
        # Insert thousands separators if required.
 | 
						|
        if thousands_sep:
 | 
						|
            first_pos = 1 + (len(leading) - 1) % 3
 | 
						|
            leading = leading[:first_pos] + "".join(
 | 
						|
                thousands_sep + leading[pos : pos + 3]
 | 
						|
                for pos in range(first_pos, len(leading), 3)
 | 
						|
            )
 | 
						|
 | 
						|
        # We now have a sign and a body. Pad with fill character if necessary
 | 
						|
        # and return.
 | 
						|
        body = leading + trailing
 | 
						|
        padding = fill * (minimumwidth - len(sign) - len(body))
 | 
						|
        if align == ">":
 | 
						|
            return padding + sign + body
 | 
						|
        elif align == "<":
 | 
						|
            return sign + body + padding
 | 
						|
        elif align == "^":
 | 
						|
            half = len(padding) // 2
 | 
						|
            return padding[:half] + sign + body + padding[half:]
 | 
						|
        else:  # align == "="
 | 
						|
            return sign + padding + body
 | 
						|
 | 
						|
    def __format__(self, format_spec, /):
 | 
						|
        """Format this fraction according to the given format specification."""
 | 
						|
 | 
						|
        if match := _GENERAL_FORMAT_SPECIFICATION_MATCHER(format_spec):
 | 
						|
            return self._format_general(match)
 | 
						|
 | 
						|
        if match := _FLOAT_FORMAT_SPECIFICATION_MATCHER(format_spec):
 | 
						|
            # Refuse the temptation to guess if both alignment _and_
 | 
						|
            # zero padding are specified.
 | 
						|
            if match["align"] is None or match["zeropad"] is None:
 | 
						|
                return self._format_float_style(match)
 | 
						|
 | 
						|
        raise ValueError(
 | 
						|
            f"Invalid format specifier {format_spec!r} "
 | 
						|
            f"for object of type {type(self).__name__!r}"
 | 
						|
        )
 | 
						|
 | 
						|
    def _operator_fallbacks(monomorphic_operator, fallback_operator,
 | 
						|
                            handle_complex=True):
 | 
						|
        """Generates forward and reverse operators given a purely-rational
 | 
						|
        operator and a function from the operator module.
 | 
						|
 | 
						|
        Use this like:
 | 
						|
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
 | 
						|
 | 
						|
        In general, we want to implement the arithmetic operations so
 | 
						|
        that mixed-mode operations either call an implementation whose
 | 
						|
        author knew about the types of both arguments, or convert both
 | 
						|
        to the nearest built in type and do the operation there. In
 | 
						|
        Fraction, that means that we define __add__ and __radd__ as:
 | 
						|
 | 
						|
            def __add__(self, other):
 | 
						|
                # Both types have numerators/denominator attributes,
 | 
						|
                # so do the operation directly
 | 
						|
                if isinstance(other, (int, Fraction)):
 | 
						|
                    return Fraction(self.numerator * other.denominator +
 | 
						|
                                    other.numerator * self.denominator,
 | 
						|
                                    self.denominator * other.denominator)
 | 
						|
                # float and complex don't have those operations, but we
 | 
						|
                # know about those types, so special case them.
 | 
						|
                elif isinstance(other, float):
 | 
						|
                    return float(self) + other
 | 
						|
                elif isinstance(other, complex):
 | 
						|
                    return complex(self) + other
 | 
						|
                # Let the other type take over.
 | 
						|
                return NotImplemented
 | 
						|
 | 
						|
            def __radd__(self, other):
 | 
						|
                # radd handles more types than add because there's
 | 
						|
                # nothing left to fall back to.
 | 
						|
                if isinstance(other, numbers.Rational):
 | 
						|
                    return Fraction(self.numerator * other.denominator +
 | 
						|
                                    other.numerator * self.denominator,
 | 
						|
                                    self.denominator * other.denominator)
 | 
						|
                elif isinstance(other, Real):
 | 
						|
                    return float(other) + float(self)
 | 
						|
                elif isinstance(other, Complex):
 | 
						|
                    return complex(other) + complex(self)
 | 
						|
                return NotImplemented
 | 
						|
 | 
						|
 | 
						|
        There are 5 different cases for a mixed-type addition on
 | 
						|
        Fraction. I'll refer to all of the above code that doesn't
 | 
						|
        refer to Fraction, float, or complex as "boilerplate". 'r'
 | 
						|
        will be an instance of Fraction, which is a subtype of
 | 
						|
        Rational (r : Fraction <: Rational), and b : B <:
 | 
						|
        Complex. The first three involve 'r + b':
 | 
						|
 | 
						|
            1. If B <: Fraction, int, float, or complex, we handle
 | 
						|
               that specially, and all is well.
 | 
						|
            2. If Fraction falls back to the boilerplate code, and it
 | 
						|
               were to return a value from __add__, we'd miss the
 | 
						|
               possibility that B defines a more intelligent __radd__,
 | 
						|
               so the boilerplate should return NotImplemented from
 | 
						|
               __add__. In particular, we don't handle Rational
 | 
						|
               here, even though we could get an exact answer, in case
 | 
						|
               the other type wants to do something special.
 | 
						|
            3. If B <: Fraction, Python tries B.__radd__ before
 | 
						|
               Fraction.__add__. This is ok, because it was
 | 
						|
               implemented with knowledge of Fraction, so it can
 | 
						|
               handle those instances before delegating to Real or
 | 
						|
               Complex.
 | 
						|
 | 
						|
        The next two situations describe 'b + r'. We assume that b
 | 
						|
        didn't know about Fraction in its implementation, and that it
 | 
						|
        uses similar boilerplate code:
 | 
						|
 | 
						|
            4. If B <: Rational, then __radd_ converts both to the
 | 
						|
               builtin rational type (hey look, that's us) and
 | 
						|
               proceeds.
 | 
						|
            5. Otherwise, __radd__ tries to find the nearest common
 | 
						|
               base ABC, and fall back to its builtin type. Since this
 | 
						|
               class doesn't subclass a concrete type, there's no
 | 
						|
               implementation to fall back to, so we need to try as
 | 
						|
               hard as possible to return an actual value, or the user
 | 
						|
               will get a TypeError.
 | 
						|
 | 
						|
        """
 | 
						|
        def forward(a, b):
 | 
						|
            if isinstance(b, Fraction):
 | 
						|
                return monomorphic_operator(a, b)
 | 
						|
            elif isinstance(b, int):
 | 
						|
                return monomorphic_operator(a, Fraction(b))
 | 
						|
            elif isinstance(b, float):
 | 
						|
                return fallback_operator(float(a), b)
 | 
						|
            elif handle_complex and isinstance(b, complex):
 | 
						|
                return fallback_operator(float(a), b)
 | 
						|
            else:
 | 
						|
                return NotImplemented
 | 
						|
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
 | 
						|
        forward.__doc__ = monomorphic_operator.__doc__
 | 
						|
 | 
						|
        def reverse(b, a):
 | 
						|
            if isinstance(a, numbers.Rational):
 | 
						|
                # Includes ints.
 | 
						|
                return monomorphic_operator(Fraction(a), b)
 | 
						|
            elif isinstance(a, numbers.Real):
 | 
						|
                return fallback_operator(float(a), float(b))
 | 
						|
            elif handle_complex and isinstance(a, numbers.Complex):
 | 
						|
                return fallback_operator(complex(a), float(b))
 | 
						|
            else:
 | 
						|
                return NotImplemented
 | 
						|
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
 | 
						|
        reverse.__doc__ = monomorphic_operator.__doc__
 | 
						|
 | 
						|
        return forward, reverse
 | 
						|
 | 
						|
    # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1.
 | 
						|
    #
 | 
						|
    # Assume input fractions a and b are normalized.
 | 
						|
    #
 | 
						|
    # 1) Consider addition/subtraction.
 | 
						|
    #
 | 
						|
    # Let g = gcd(da, db). Then
 | 
						|
    #
 | 
						|
    #              na   nb    na*db ± nb*da
 | 
						|
    #     a ± b == -- ± -- == ------------- ==
 | 
						|
    #              da   db        da*db
 | 
						|
    #
 | 
						|
    #              na*(db//g) ± nb*(da//g)    t
 | 
						|
    #           == ----------------------- == -
 | 
						|
    #                      (da*db)//g         d
 | 
						|
    #
 | 
						|
    # Now, if g > 1, we're working with smaller integers.
 | 
						|
    #
 | 
						|
    # Note, that t, (da//g) and (db//g) are pairwise coprime.
 | 
						|
    #
 | 
						|
    # Indeed, (da//g) and (db//g) share no common factors (they were
 | 
						|
    # removed) and da is coprime with na (since input fractions are
 | 
						|
    # normalized), hence (da//g) and na are coprime.  By symmetry,
 | 
						|
    # (db//g) and nb are coprime too.  Then,
 | 
						|
    #
 | 
						|
    #     gcd(t, da//g) == gcd(na*(db//g), da//g) == 1
 | 
						|
    #     gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1
 | 
						|
    #
 | 
						|
    # Above allows us optimize reduction of the result to lowest
 | 
						|
    # terms.  Indeed,
 | 
						|
    #
 | 
						|
    #     g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g)
 | 
						|
    #
 | 
						|
    #                       t//g2                   t//g2
 | 
						|
    #     a ± b == ----------------------- == ----------------
 | 
						|
    #              (da//g)*(db//g)*(g//g2)    (da//g)*(db//g2)
 | 
						|
    #
 | 
						|
    # is a normalized fraction.  This is useful because the unnormalized
 | 
						|
    # denominator d could be much larger than g.
 | 
						|
    #
 | 
						|
    # We should special-case g == 1 (and g2 == 1), since 60.8% of
 | 
						|
    # randomly-chosen integers are coprime:
 | 
						|
    # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality
 | 
						|
    # Note, that g2 == 1 always for fractions, obtained from floats: here
 | 
						|
    # g is a power of 2 and the unnormalized numerator t is an odd integer.
 | 
						|
    #
 | 
						|
    # 2) Consider multiplication
 | 
						|
    #
 | 
						|
    # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then
 | 
						|
    #
 | 
						|
    #            na*nb    na*nb    (na//g1)*(nb//g2)
 | 
						|
    #     a*b == ----- == ----- == -----------------
 | 
						|
    #            da*db    db*da    (db//g1)*(da//g2)
 | 
						|
    #
 | 
						|
    # Note, that after divisions we're multiplying smaller integers.
 | 
						|
    #
 | 
						|
    # Also, the resulting fraction is normalized, because each of
 | 
						|
    # two factors in the numerator is coprime to each of the two factors
 | 
						|
    # in the denominator.
 | 
						|
    #
 | 
						|
    # Indeed, pick (na//g1).  It's coprime with (da//g2), because input
 | 
						|
    # fractions are normalized.  It's also coprime with (db//g1), because
 | 
						|
    # common factors are removed by g1 == gcd(na, db).
 | 
						|
    #
 | 
						|
    # As for addition/subtraction, we should special-case g1 == 1
 | 
						|
    # and g2 == 1 for same reason.  That happens also for multiplying
 | 
						|
    # rationals, obtained from floats.
 | 
						|
 | 
						|
    def _add(a, b):
 | 
						|
        """a + b"""
 | 
						|
        na, da = a._numerator, a._denominator
 | 
						|
        nb, db = b._numerator, b._denominator
 | 
						|
        g = math.gcd(da, db)
 | 
						|
        if g == 1:
 | 
						|
            return Fraction._from_coprime_ints(na * db + da * nb, da * db)
 | 
						|
        s = da // g
 | 
						|
        t = na * (db // g) + nb * s
 | 
						|
        g2 = math.gcd(t, g)
 | 
						|
        if g2 == 1:
 | 
						|
            return Fraction._from_coprime_ints(t, s * db)
 | 
						|
        return Fraction._from_coprime_ints(t // g2, s * (db // g2))
 | 
						|
 | 
						|
    __add__, __radd__ = _operator_fallbacks(_add, operator.add)
 | 
						|
 | 
						|
    def _sub(a, b):
 | 
						|
        """a - b"""
 | 
						|
        na, da = a._numerator, a._denominator
 | 
						|
        nb, db = b._numerator, b._denominator
 | 
						|
        g = math.gcd(da, db)
 | 
						|
        if g == 1:
 | 
						|
            return Fraction._from_coprime_ints(na * db - da * nb, da * db)
 | 
						|
        s = da // g
 | 
						|
        t = na * (db // g) - nb * s
 | 
						|
        g2 = math.gcd(t, g)
 | 
						|
        if g2 == 1:
 | 
						|
            return Fraction._from_coprime_ints(t, s * db)
 | 
						|
        return Fraction._from_coprime_ints(t // g2, s * (db // g2))
 | 
						|
 | 
						|
    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
 | 
						|
 | 
						|
    def _mul(a, b):
 | 
						|
        """a * b"""
 | 
						|
        na, da = a._numerator, a._denominator
 | 
						|
        nb, db = b._numerator, b._denominator
 | 
						|
        g1 = math.gcd(na, db)
 | 
						|
        if g1 > 1:
 | 
						|
            na //= g1
 | 
						|
            db //= g1
 | 
						|
        g2 = math.gcd(nb, da)
 | 
						|
        if g2 > 1:
 | 
						|
            nb //= g2
 | 
						|
            da //= g2
 | 
						|
        return Fraction._from_coprime_ints(na * nb, db * da)
 | 
						|
 | 
						|
    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
 | 
						|
 | 
						|
    def _div(a, b):
 | 
						|
        """a / b"""
 | 
						|
        # Same as _mul(), with inversed b.
 | 
						|
        nb, db = b._numerator, b._denominator
 | 
						|
        if nb == 0:
 | 
						|
            raise ZeroDivisionError('Fraction(%s, 0)' % db)
 | 
						|
        na, da = a._numerator, a._denominator
 | 
						|
        g1 = math.gcd(na, nb)
 | 
						|
        if g1 > 1:
 | 
						|
            na //= g1
 | 
						|
            nb //= g1
 | 
						|
        g2 = math.gcd(db, da)
 | 
						|
        if g2 > 1:
 | 
						|
            da //= g2
 | 
						|
            db //= g2
 | 
						|
        n, d = na * db, nb * da
 | 
						|
        if d < 0:
 | 
						|
            n, d = -n, -d
 | 
						|
        return Fraction._from_coprime_ints(n, d)
 | 
						|
 | 
						|
    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
 | 
						|
 | 
						|
    def _floordiv(a, b):
 | 
						|
        """a // b"""
 | 
						|
        return (a.numerator * b.denominator) // (a.denominator * b.numerator)
 | 
						|
 | 
						|
    __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv, False)
 | 
						|
 | 
						|
    def _divmod(a, b):
 | 
						|
        """(a // b, a % b)"""
 | 
						|
        da, db = a.denominator, b.denominator
 | 
						|
        div, n_mod = divmod(a.numerator * db, da * b.numerator)
 | 
						|
        return div, Fraction(n_mod, da * db)
 | 
						|
 | 
						|
    __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod, False)
 | 
						|
 | 
						|
    def _mod(a, b):
 | 
						|
        """a % b"""
 | 
						|
        da, db = a.denominator, b.denominator
 | 
						|
        return Fraction((a.numerator * db) % (b.numerator * da), da * db)
 | 
						|
 | 
						|
    __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod, False)
 | 
						|
 | 
						|
    def __pow__(a, b, modulo=None):
 | 
						|
        """a ** b
 | 
						|
 | 
						|
        If b is not an integer, the result will be a float or complex
 | 
						|
        since roots are generally irrational. If b is an integer, the
 | 
						|
        result will be rational.
 | 
						|
 | 
						|
        """
 | 
						|
        if modulo is not None:
 | 
						|
            return NotImplemented
 | 
						|
        if isinstance(b, numbers.Rational):
 | 
						|
            if b.denominator == 1:
 | 
						|
                power = b.numerator
 | 
						|
                if power >= 0:
 | 
						|
                    return Fraction._from_coprime_ints(a._numerator ** power,
 | 
						|
                                                       a._denominator ** power)
 | 
						|
                elif a._numerator > 0:
 | 
						|
                    return Fraction._from_coprime_ints(a._denominator ** -power,
 | 
						|
                                                       a._numerator ** -power)
 | 
						|
                elif a._numerator == 0:
 | 
						|
                    raise ZeroDivisionError('Fraction(%s, 0)' %
 | 
						|
                                            a._denominator ** -power)
 | 
						|
                else:
 | 
						|
                    return Fraction._from_coprime_ints((-a._denominator) ** -power,
 | 
						|
                                                       (-a._numerator) ** -power)
 | 
						|
            else:
 | 
						|
                # A fractional power will generally produce an
 | 
						|
                # irrational number.
 | 
						|
                return float(a) ** float(b)
 | 
						|
        elif isinstance(b, (float, complex)):
 | 
						|
            return float(a) ** b
 | 
						|
        else:
 | 
						|
            return NotImplemented
 | 
						|
 | 
						|
    def __rpow__(b, a):
 | 
						|
        """a ** b"""
 | 
						|
        if b._denominator == 1 and b._numerator >= 0:
 | 
						|
            # If a is an int, keep it that way if possible.
 | 
						|
            return a ** b._numerator
 | 
						|
 | 
						|
        if isinstance(a, numbers.Rational):
 | 
						|
            return Fraction(a.numerator, a.denominator) ** b
 | 
						|
 | 
						|
        if b._denominator == 1:
 | 
						|
            return a ** b._numerator
 | 
						|
 | 
						|
        return a ** float(b)
 | 
						|
 | 
						|
    def __pos__(a):
 | 
						|
        """+a: Coerces a subclass instance to Fraction"""
 | 
						|
        return Fraction._from_coprime_ints(a._numerator, a._denominator)
 | 
						|
 | 
						|
    def __neg__(a):
 | 
						|
        """-a"""
 | 
						|
        return Fraction._from_coprime_ints(-a._numerator, a._denominator)
 | 
						|
 | 
						|
    def __abs__(a):
 | 
						|
        """abs(a)"""
 | 
						|
        return Fraction._from_coprime_ints(abs(a._numerator), a._denominator)
 | 
						|
 | 
						|
    def __int__(a, _index=operator.index):
 | 
						|
        """int(a)"""
 | 
						|
        if a._numerator < 0:
 | 
						|
            return _index(-(-a._numerator // a._denominator))
 | 
						|
        else:
 | 
						|
            return _index(a._numerator // a._denominator)
 | 
						|
 | 
						|
    def __trunc__(a):
 | 
						|
        """math.trunc(a)"""
 | 
						|
        if a._numerator < 0:
 | 
						|
            return -(-a._numerator // a._denominator)
 | 
						|
        else:
 | 
						|
            return a._numerator // a._denominator
 | 
						|
 | 
						|
    def __floor__(a):
 | 
						|
        """math.floor(a)"""
 | 
						|
        return a._numerator // a._denominator
 | 
						|
 | 
						|
    def __ceil__(a):
 | 
						|
        """math.ceil(a)"""
 | 
						|
        # The negations cleverly convince floordiv to return the ceiling.
 | 
						|
        return -(-a._numerator // a._denominator)
 | 
						|
 | 
						|
    def __round__(self, ndigits=None):
 | 
						|
        """round(self, ndigits)
 | 
						|
 | 
						|
        Rounds half toward even.
 | 
						|
        """
 | 
						|
        if ndigits is None:
 | 
						|
            d = self._denominator
 | 
						|
            floor, remainder = divmod(self._numerator, d)
 | 
						|
            if remainder * 2 < d:
 | 
						|
                return floor
 | 
						|
            elif remainder * 2 > d:
 | 
						|
                return floor + 1
 | 
						|
            # Deal with the half case:
 | 
						|
            elif floor % 2 == 0:
 | 
						|
                return floor
 | 
						|
            else:
 | 
						|
                return floor + 1
 | 
						|
        shift = 10**abs(ndigits)
 | 
						|
        # See _operator_fallbacks.forward to check that the results of
 | 
						|
        # these operations will always be Fraction and therefore have
 | 
						|
        # round().
 | 
						|
        if ndigits > 0:
 | 
						|
            return Fraction(round(self * shift), shift)
 | 
						|
        else:
 | 
						|
            return Fraction(round(self / shift) * shift)
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        """hash(self)"""
 | 
						|
        return _hash_algorithm(self._numerator, self._denominator)
 | 
						|
 | 
						|
    def __eq__(a, b):
 | 
						|
        """a == b"""
 | 
						|
        if type(b) is int:
 | 
						|
            return a._numerator == b and a._denominator == 1
 | 
						|
        if isinstance(b, numbers.Rational):
 | 
						|
            return (a._numerator == b.numerator and
 | 
						|
                    a._denominator == b.denominator)
 | 
						|
        if isinstance(b, numbers.Complex) and b.imag == 0:
 | 
						|
            b = b.real
 | 
						|
        if isinstance(b, float):
 | 
						|
            if math.isnan(b) or math.isinf(b):
 | 
						|
                # comparisons with an infinity or nan should behave in
 | 
						|
                # the same way for any finite a, so treat a as zero.
 | 
						|
                return 0.0 == b
 | 
						|
            else:
 | 
						|
                return a == a.from_float(b)
 | 
						|
        else:
 | 
						|
            # Since a doesn't know how to compare with b, let's give b
 | 
						|
            # a chance to compare itself with a.
 | 
						|
            return NotImplemented
 | 
						|
 | 
						|
    def _richcmp(self, other, op):
 | 
						|
        """Helper for comparison operators, for internal use only.
 | 
						|
 | 
						|
        Implement comparison between a Rational instance `self`, and
 | 
						|
        either another Rational instance or a float `other`.  If
 | 
						|
        `other` is not a Rational instance or a float, return
 | 
						|
        NotImplemented. `op` should be one of the six standard
 | 
						|
        comparison operators.
 | 
						|
 | 
						|
        """
 | 
						|
        # convert other to a Rational instance where reasonable.
 | 
						|
        if isinstance(other, numbers.Rational):
 | 
						|
            return op(self._numerator * other.denominator,
 | 
						|
                      self._denominator * other.numerator)
 | 
						|
        if isinstance(other, float):
 | 
						|
            if math.isnan(other) or math.isinf(other):
 | 
						|
                return op(0.0, other)
 | 
						|
            else:
 | 
						|
                return op(self, self.from_float(other))
 | 
						|
        else:
 | 
						|
            return NotImplemented
 | 
						|
 | 
						|
    def __lt__(a, b):
 | 
						|
        """a < b"""
 | 
						|
        return a._richcmp(b, operator.lt)
 | 
						|
 | 
						|
    def __gt__(a, b):
 | 
						|
        """a > b"""
 | 
						|
        return a._richcmp(b, operator.gt)
 | 
						|
 | 
						|
    def __le__(a, b):
 | 
						|
        """a <= b"""
 | 
						|
        return a._richcmp(b, operator.le)
 | 
						|
 | 
						|
    def __ge__(a, b):
 | 
						|
        """a >= b"""
 | 
						|
        return a._richcmp(b, operator.ge)
 | 
						|
 | 
						|
    def __bool__(a):
 | 
						|
        """a != 0"""
 | 
						|
        # bpo-39274: Use bool() because (a._numerator != 0) can return an
 | 
						|
        # object which is not a bool.
 | 
						|
        return bool(a._numerator)
 | 
						|
 | 
						|
    # support for pickling, copy, and deepcopy
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return (self.__class__, (self._numerator, self._denominator))
 | 
						|
 | 
						|
    def __copy__(self):
 | 
						|
        if type(self) == Fraction:
 | 
						|
            return self     # I'm immutable; therefore I am my own clone
 | 
						|
        return self.__class__(self._numerator, self._denominator)
 | 
						|
 | 
						|
    def __deepcopy__(self, memo):
 | 
						|
        if type(self) == Fraction:
 | 
						|
            return self     # My components are also immutable
 | 
						|
        return self.__class__(self._numerator, self._denominator)
 |