mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			554 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			554 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
# Originally contributed by Sjoerd Mullender.
 | 
						|
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
 | 
						|
 | 
						|
"""Fraction, infinite-precision, real numbers."""
 | 
						|
 | 
						|
import math
 | 
						|
import numbers
 | 
						|
import operator
 | 
						|
import re
 | 
						|
 | 
						|
__all__ = ['Fraction', 'gcd']
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def gcd(a, b):
 | 
						|
    """Calculate the Greatest Common Divisor of a and b.
 | 
						|
 | 
						|
    Unless b==0, the result will have the same sign as b (so that when
 | 
						|
    b is divided by it, the result comes out positive).
 | 
						|
    """
 | 
						|
    while b:
 | 
						|
        a, b = b, a%b
 | 
						|
    return a
 | 
						|
 | 
						|
 | 
						|
_RATIONAL_FORMAT = re.compile(r"""
 | 
						|
    \A\s*                      # optional whitespace at the start, then
 | 
						|
    (?P<sign>[-+]?)            # an optional sign, then
 | 
						|
    (?=\d|\.\d)                # lookahead for digit or .digit
 | 
						|
    (?P<num>\d*)               # numerator (possibly empty)
 | 
						|
    (?:                        # followed by an optional
 | 
						|
       /(?P<denom>\d+)         # / and denominator
 | 
						|
    |                          # or
 | 
						|
       \.(?P<decimal>\d*)      # decimal point and fractional part
 | 
						|
    )?
 | 
						|
    \s*\Z                      # and optional whitespace to finish
 | 
						|
""", re.VERBOSE)
 | 
						|
 | 
						|
 | 
						|
class Fraction(numbers.Rational):
 | 
						|
    """This class implements rational numbers.
 | 
						|
 | 
						|
    Fraction(8, 6) will produce a rational number equivalent to
 | 
						|
    4/3. Both arguments must be Integral. The numerator defaults to 0
 | 
						|
    and the denominator defaults to 1 so that Fraction(3) == 3 and
 | 
						|
    Fraction() == 0.
 | 
						|
 | 
						|
    Fraction can also be constructed from strings of the form
 | 
						|
    '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    __slots__ = ('_numerator', '_denominator')
 | 
						|
 | 
						|
    # We're immutable, so use __new__ not __init__
 | 
						|
    def __new__(cls, numerator=0, denominator=1):
 | 
						|
        """Constructs a Rational.
 | 
						|
 | 
						|
        Takes a string like '3/2' or '1.5', another Rational, or a
 | 
						|
        numerator/denominator pair.
 | 
						|
 | 
						|
        """
 | 
						|
        self = super(Fraction, cls).__new__(cls)
 | 
						|
 | 
						|
        if not isinstance(numerator, int) and denominator == 1:
 | 
						|
            if isinstance(numerator, str):
 | 
						|
                # Handle construction from strings.
 | 
						|
                input = numerator
 | 
						|
                m = _RATIONAL_FORMAT.match(input)
 | 
						|
                if m is None:
 | 
						|
                    raise ValueError('Invalid literal for Fraction: %r' % input)
 | 
						|
                numerator = m.group('num')
 | 
						|
                decimal = m.group('decimal')
 | 
						|
                if decimal:
 | 
						|
                    # The literal is a decimal number.
 | 
						|
                    numerator = int(numerator + decimal)
 | 
						|
                    denominator = 10**len(decimal)
 | 
						|
                else:
 | 
						|
                    # The literal is an integer or fraction.
 | 
						|
                    numerator = int(numerator)
 | 
						|
                    # Default denominator to 1.
 | 
						|
                    denominator = int(m.group('denom') or 1)
 | 
						|
 | 
						|
                if m.group('sign') == '-':
 | 
						|
                    numerator = -numerator
 | 
						|
 | 
						|
            elif isinstance(numerator, numbers.Rational):
 | 
						|
                # Handle copies from other rationals. Integrals get
 | 
						|
                # caught here too, but it doesn't matter because
 | 
						|
                # denominator is already 1.
 | 
						|
                other_rational = numerator
 | 
						|
                numerator = other_rational.numerator
 | 
						|
                denominator = other_rational.denominator
 | 
						|
 | 
						|
        if denominator == 0:
 | 
						|
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
 | 
						|
        numerator = operator.index(numerator)
 | 
						|
        denominator = operator.index(denominator)
 | 
						|
        g = gcd(numerator, denominator)
 | 
						|
        self._numerator = numerator // g
 | 
						|
        self._denominator = denominator // g
 | 
						|
        return self
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_float(cls, f):
 | 
						|
        """Converts a finite float to a rational number, exactly.
 | 
						|
 | 
						|
        Beware that Fraction.from_float(0.3) != Fraction(3, 10).
 | 
						|
 | 
						|
        """
 | 
						|
        if isinstance(f, numbers.Integral):
 | 
						|
            return cls(f)
 | 
						|
        elif not isinstance(f, float):
 | 
						|
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
 | 
						|
                            (cls.__name__, f, type(f).__name__))
 | 
						|
        if math.isnan(f) or math.isinf(f):
 | 
						|
            raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
 | 
						|
        return cls(*f.as_integer_ratio())
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_decimal(cls, dec):
 | 
						|
        """Converts a finite Decimal instance to a rational number, exactly."""
 | 
						|
        from decimal import Decimal
 | 
						|
        if isinstance(dec, numbers.Integral):
 | 
						|
            dec = Decimal(int(dec))
 | 
						|
        elif not isinstance(dec, Decimal):
 | 
						|
            raise TypeError(
 | 
						|
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
 | 
						|
                (cls.__name__, dec, type(dec).__name__))
 | 
						|
        if not dec.is_finite():
 | 
						|
            # Catches infinities and nans.
 | 
						|
            raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
 | 
						|
        sign, digits, exp = dec.as_tuple()
 | 
						|
        digits = int(''.join(map(str, digits)))
 | 
						|
        if sign:
 | 
						|
            digits = -digits
 | 
						|
        if exp >= 0:
 | 
						|
            return cls(digits * 10 ** exp)
 | 
						|
        else:
 | 
						|
            return cls(digits, 10 ** -exp)
 | 
						|
 | 
						|
    def limit_denominator(self, max_denominator=1000000):
 | 
						|
        """Closest Fraction to self with denominator at most max_denominator.
 | 
						|
 | 
						|
        >>> Fraction('3.141592653589793').limit_denominator(10)
 | 
						|
        Fraction(22, 7)
 | 
						|
        >>> Fraction('3.141592653589793').limit_denominator(100)
 | 
						|
        Fraction(311, 99)
 | 
						|
        >>> Fraction(1234, 5678).limit_denominator(10000)
 | 
						|
        Fraction(1234, 5678)
 | 
						|
 | 
						|
        """
 | 
						|
        # Algorithm notes: For any real number x, define a *best upper
 | 
						|
        # approximation* to x to be a rational number p/q such that:
 | 
						|
        #
 | 
						|
        #   (1) p/q >= x, and
 | 
						|
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
 | 
						|
        #
 | 
						|
        # Define *best lower approximation* similarly.  Then it can be
 | 
						|
        # proved that a rational number is a best upper or lower
 | 
						|
        # approximation to x if, and only if, it is a convergent or
 | 
						|
        # semiconvergent of the (unique shortest) continued fraction
 | 
						|
        # associated to x.
 | 
						|
        #
 | 
						|
        # To find a best rational approximation with denominator <= M,
 | 
						|
        # we find the best upper and lower approximations with
 | 
						|
        # denominator <= M and take whichever of these is closer to x.
 | 
						|
        # In the event of a tie, the bound with smaller denominator is
 | 
						|
        # chosen.  If both denominators are equal (which can happen
 | 
						|
        # only when max_denominator == 1 and self is midway between
 | 
						|
        # two integers) the lower bound---i.e., the floor of self, is
 | 
						|
        # taken.
 | 
						|
 | 
						|
        if max_denominator < 1:
 | 
						|
            raise ValueError("max_denominator should be at least 1")
 | 
						|
        if self._denominator <= max_denominator:
 | 
						|
            return Fraction(self)
 | 
						|
 | 
						|
        p0, q0, p1, q1 = 0, 1, 1, 0
 | 
						|
        n, d = self._numerator, self._denominator
 | 
						|
        while True:
 | 
						|
            a = n//d
 | 
						|
            q2 = q0+a*q1
 | 
						|
            if q2 > max_denominator:
 | 
						|
                break
 | 
						|
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
 | 
						|
            n, d = d, n-a*d
 | 
						|
 | 
						|
        k = (max_denominator-q0)//q1
 | 
						|
        bound1 = Fraction(p0+k*p1, q0+k*q1)
 | 
						|
        bound2 = Fraction(p1, q1)
 | 
						|
        if abs(bound2 - self) <= abs(bound1-self):
 | 
						|
            return bound2
 | 
						|
        else:
 | 
						|
            return bound1
 | 
						|
 | 
						|
    @property
 | 
						|
    def numerator(a):
 | 
						|
        return a._numerator
 | 
						|
 | 
						|
    @property
 | 
						|
    def denominator(a):
 | 
						|
        return a._denominator
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        """repr(self)"""
 | 
						|
        return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
 | 
						|
 | 
						|
    def __str__(self):
 | 
						|
        """str(self)"""
 | 
						|
        if self._denominator == 1:
 | 
						|
            return str(self._numerator)
 | 
						|
        else:
 | 
						|
            return '%s/%s' % (self._numerator, self._denominator)
 | 
						|
 | 
						|
    def _operator_fallbacks(monomorphic_operator, fallback_operator):
 | 
						|
        """Generates forward and reverse operators given a purely-rational
 | 
						|
        operator and a function from the operator module.
 | 
						|
 | 
						|
        Use this like:
 | 
						|
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
 | 
						|
 | 
						|
        In general, we want to implement the arithmetic operations so
 | 
						|
        that mixed-mode operations either call an implementation whose
 | 
						|
        author knew about the types of both arguments, or convert both
 | 
						|
        to the nearest built in type and do the operation there. In
 | 
						|
        Fraction, that means that we define __add__ and __radd__ as:
 | 
						|
 | 
						|
            def __add__(self, other):
 | 
						|
                # Both types have numerators/denominator attributes,
 | 
						|
                # so do the operation directly
 | 
						|
                if isinstance(other, (int, Fraction)):
 | 
						|
                    return Fraction(self.numerator * other.denominator +
 | 
						|
                                    other.numerator * self.denominator,
 | 
						|
                                    self.denominator * other.denominator)
 | 
						|
                # float and complex don't have those operations, but we
 | 
						|
                # know about those types, so special case them.
 | 
						|
                elif isinstance(other, float):
 | 
						|
                    return float(self) + other
 | 
						|
                elif isinstance(other, complex):
 | 
						|
                    return complex(self) + other
 | 
						|
                # Let the other type take over.
 | 
						|
                return NotImplemented
 | 
						|
 | 
						|
            def __radd__(self, other):
 | 
						|
                # radd handles more types than add because there's
 | 
						|
                # nothing left to fall back to.
 | 
						|
                if isinstance(other, numbers.Rational):
 | 
						|
                    return Fraction(self.numerator * other.denominator +
 | 
						|
                                    other.numerator * self.denominator,
 | 
						|
                                    self.denominator * other.denominator)
 | 
						|
                elif isinstance(other, Real):
 | 
						|
                    return float(other) + float(self)
 | 
						|
                elif isinstance(other, Complex):
 | 
						|
                    return complex(other) + complex(self)
 | 
						|
                return NotImplemented
 | 
						|
 | 
						|
 | 
						|
        There are 5 different cases for a mixed-type addition on
 | 
						|
        Fraction. I'll refer to all of the above code that doesn't
 | 
						|
        refer to Fraction, float, or complex as "boilerplate". 'r'
 | 
						|
        will be an instance of Fraction, which is a subtype of
 | 
						|
        Rational (r : Fraction <: Rational), and b : B <:
 | 
						|
        Complex. The first three involve 'r + b':
 | 
						|
 | 
						|
            1. If B <: Fraction, int, float, or complex, we handle
 | 
						|
               that specially, and all is well.
 | 
						|
            2. If Fraction falls back to the boilerplate code, and it
 | 
						|
               were to return a value from __add__, we'd miss the
 | 
						|
               possibility that B defines a more intelligent __radd__,
 | 
						|
               so the boilerplate should return NotImplemented from
 | 
						|
               __add__. In particular, we don't handle Rational
 | 
						|
               here, even though we could get an exact answer, in case
 | 
						|
               the other type wants to do something special.
 | 
						|
            3. If B <: Fraction, Python tries B.__radd__ before
 | 
						|
               Fraction.__add__. This is ok, because it was
 | 
						|
               implemented with knowledge of Fraction, so it can
 | 
						|
               handle those instances before delegating to Real or
 | 
						|
               Complex.
 | 
						|
 | 
						|
        The next two situations describe 'b + r'. We assume that b
 | 
						|
        didn't know about Fraction in its implementation, and that it
 | 
						|
        uses similar boilerplate code:
 | 
						|
 | 
						|
            4. If B <: Rational, then __radd_ converts both to the
 | 
						|
               builtin rational type (hey look, that's us) and
 | 
						|
               proceeds.
 | 
						|
            5. Otherwise, __radd__ tries to find the nearest common
 | 
						|
               base ABC, and fall back to its builtin type. Since this
 | 
						|
               class doesn't subclass a concrete type, there's no
 | 
						|
               implementation to fall back to, so we need to try as
 | 
						|
               hard as possible to return an actual value, or the user
 | 
						|
               will get a TypeError.
 | 
						|
 | 
						|
        """
 | 
						|
        def forward(a, b):
 | 
						|
            if isinstance(b, (int, Fraction)):
 | 
						|
                return monomorphic_operator(a, b)
 | 
						|
            elif isinstance(b, float):
 | 
						|
                return fallback_operator(float(a), b)
 | 
						|
            elif isinstance(b, complex):
 | 
						|
                return fallback_operator(complex(a), b)
 | 
						|
            else:
 | 
						|
                return NotImplemented
 | 
						|
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
 | 
						|
        forward.__doc__ = monomorphic_operator.__doc__
 | 
						|
 | 
						|
        def reverse(b, a):
 | 
						|
            if isinstance(a, numbers.Rational):
 | 
						|
                # Includes ints.
 | 
						|
                return monomorphic_operator(a, b)
 | 
						|
            elif isinstance(a, numbers.Real):
 | 
						|
                return fallback_operator(float(a), float(b))
 | 
						|
            elif isinstance(a, numbers.Complex):
 | 
						|
                return fallback_operator(complex(a), complex(b))
 | 
						|
            else:
 | 
						|
                return NotImplemented
 | 
						|
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
 | 
						|
        reverse.__doc__ = monomorphic_operator.__doc__
 | 
						|
 | 
						|
        return forward, reverse
 | 
						|
 | 
						|
    def _add(a, b):
 | 
						|
        """a + b"""
 | 
						|
        return Fraction(a.numerator * b.denominator +
 | 
						|
                        b.numerator * a.denominator,
 | 
						|
                        a.denominator * b.denominator)
 | 
						|
 | 
						|
    __add__, __radd__ = _operator_fallbacks(_add, operator.add)
 | 
						|
 | 
						|
    def _sub(a, b):
 | 
						|
        """a - b"""
 | 
						|
        return Fraction(a.numerator * b.denominator -
 | 
						|
                        b.numerator * a.denominator,
 | 
						|
                        a.denominator * b.denominator)
 | 
						|
 | 
						|
    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
 | 
						|
 | 
						|
    def _mul(a, b):
 | 
						|
        """a * b"""
 | 
						|
        return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
 | 
						|
 | 
						|
    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
 | 
						|
 | 
						|
    def _div(a, b):
 | 
						|
        """a / b"""
 | 
						|
        return Fraction(a.numerator * b.denominator,
 | 
						|
                        a.denominator * b.numerator)
 | 
						|
 | 
						|
    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
 | 
						|
 | 
						|
    def __floordiv__(a, b):
 | 
						|
        """a // b"""
 | 
						|
        return math.floor(a / b)
 | 
						|
 | 
						|
    def __rfloordiv__(b, a):
 | 
						|
        """a // b"""
 | 
						|
        return math.floor(a / b)
 | 
						|
 | 
						|
    def __mod__(a, b):
 | 
						|
        """a % b"""
 | 
						|
        div = a // b
 | 
						|
        return a - b * div
 | 
						|
 | 
						|
    def __rmod__(b, a):
 | 
						|
        """a % b"""
 | 
						|
        div = a // b
 | 
						|
        return a - b * div
 | 
						|
 | 
						|
    def __pow__(a, b):
 | 
						|
        """a ** b
 | 
						|
 | 
						|
        If b is not an integer, the result will be a float or complex
 | 
						|
        since roots are generally irrational. If b is an integer, the
 | 
						|
        result will be rational.
 | 
						|
 | 
						|
        """
 | 
						|
        if isinstance(b, numbers.Rational):
 | 
						|
            if b.denominator == 1:
 | 
						|
                power = b.numerator
 | 
						|
                if power >= 0:
 | 
						|
                    return Fraction(a._numerator ** power,
 | 
						|
                                    a._denominator ** power)
 | 
						|
                else:
 | 
						|
                    return Fraction(a._denominator ** -power,
 | 
						|
                                    a._numerator ** -power)
 | 
						|
            else:
 | 
						|
                # A fractional power will generally produce an
 | 
						|
                # irrational number.
 | 
						|
                return float(a) ** float(b)
 | 
						|
        else:
 | 
						|
            return float(a) ** b
 | 
						|
 | 
						|
    def __rpow__(b, a):
 | 
						|
        """a ** b"""
 | 
						|
        if b._denominator == 1 and b._numerator >= 0:
 | 
						|
            # If a is an int, keep it that way if possible.
 | 
						|
            return a ** b._numerator
 | 
						|
 | 
						|
        if isinstance(a, numbers.Rational):
 | 
						|
            return Fraction(a.numerator, a.denominator) ** b
 | 
						|
 | 
						|
        if b._denominator == 1:
 | 
						|
            return a ** b._numerator
 | 
						|
 | 
						|
        return a ** float(b)
 | 
						|
 | 
						|
    def __pos__(a):
 | 
						|
        """+a: Coerces a subclass instance to Fraction"""
 | 
						|
        return Fraction(a._numerator, a._denominator)
 | 
						|
 | 
						|
    def __neg__(a):
 | 
						|
        """-a"""
 | 
						|
        return Fraction(-a._numerator, a._denominator)
 | 
						|
 | 
						|
    def __abs__(a):
 | 
						|
        """abs(a)"""
 | 
						|
        return Fraction(abs(a._numerator), a._denominator)
 | 
						|
 | 
						|
    def __trunc__(a):
 | 
						|
        """trunc(a)"""
 | 
						|
        if a._numerator < 0:
 | 
						|
            return -(-a._numerator // a._denominator)
 | 
						|
        else:
 | 
						|
            return a._numerator // a._denominator
 | 
						|
 | 
						|
    def __floor__(a):
 | 
						|
        """Will be math.floor(a) in 3.0."""
 | 
						|
        return a.numerator // a.denominator
 | 
						|
 | 
						|
    def __ceil__(a):
 | 
						|
        """Will be math.ceil(a) in 3.0."""
 | 
						|
        # The negations cleverly convince floordiv to return the ceiling.
 | 
						|
        return -(-a.numerator // a.denominator)
 | 
						|
 | 
						|
    def __round__(self, ndigits=None):
 | 
						|
        """Will be round(self, ndigits) in 3.0.
 | 
						|
 | 
						|
        Rounds half toward even.
 | 
						|
        """
 | 
						|
        if ndigits is None:
 | 
						|
            floor, remainder = divmod(self.numerator, self.denominator)
 | 
						|
            if remainder * 2 < self.denominator:
 | 
						|
                return floor
 | 
						|
            elif remainder * 2 > self.denominator:
 | 
						|
                return floor + 1
 | 
						|
            # Deal with the half case:
 | 
						|
            elif floor % 2 == 0:
 | 
						|
                return floor
 | 
						|
            else:
 | 
						|
                return floor + 1
 | 
						|
        shift = 10**abs(ndigits)
 | 
						|
        # See _operator_fallbacks.forward to check that the results of
 | 
						|
        # these operations will always be Fraction and therefore have
 | 
						|
        # round().
 | 
						|
        if ndigits > 0:
 | 
						|
            return Fraction(round(self * shift), shift)
 | 
						|
        else:
 | 
						|
            return Fraction(round(self / shift) * shift)
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        """hash(self)
 | 
						|
 | 
						|
        Tricky because values that are exactly representable as a
 | 
						|
        float must have the same hash as that float.
 | 
						|
 | 
						|
        """
 | 
						|
        # XXX since this method is expensive, consider caching the result
 | 
						|
        if self._denominator == 1:
 | 
						|
            # Get integers right.
 | 
						|
            return hash(self._numerator)
 | 
						|
        # Expensive check, but definitely correct.
 | 
						|
        if self == float(self):
 | 
						|
            return hash(float(self))
 | 
						|
        else:
 | 
						|
            # Use tuple's hash to avoid a high collision rate on
 | 
						|
            # simple fractions.
 | 
						|
            return hash((self._numerator, self._denominator))
 | 
						|
 | 
						|
    def __eq__(a, b):
 | 
						|
        """a == b"""
 | 
						|
        if isinstance(b, numbers.Rational):
 | 
						|
            return (a._numerator == b.numerator and
 | 
						|
                    a._denominator == b.denominator)
 | 
						|
        if isinstance(b, numbers.Complex) and b.imag == 0:
 | 
						|
            b = b.real
 | 
						|
        if isinstance(b, float):
 | 
						|
            return a == a.from_float(b)
 | 
						|
        else:
 | 
						|
            # XXX: If b.__eq__ is implemented like this method, it may
 | 
						|
            # give the wrong answer after float(a) changes a's
 | 
						|
            # value. Better ways of doing this are welcome.
 | 
						|
            return float(a) == b
 | 
						|
 | 
						|
    def _subtractAndCompareToZero(a, b, op):
 | 
						|
        """Helper function for comparison operators.
 | 
						|
 | 
						|
        Subtracts b from a, exactly if possible, and compares the
 | 
						|
        result with 0 using op, in such a way that the comparison
 | 
						|
        won't recurse. If the difference raises a TypeError, returns
 | 
						|
        NotImplemented instead.
 | 
						|
 | 
						|
        """
 | 
						|
        if isinstance(b, numbers.Complex) and b.imag == 0:
 | 
						|
            b = b.real
 | 
						|
        if isinstance(b, float):
 | 
						|
            b = a.from_float(b)
 | 
						|
        try:
 | 
						|
            # XXX: If b <: Real but not <: Rational, this is likely
 | 
						|
            # to fall back to a float. If the actual values differ by
 | 
						|
            # less than MIN_FLOAT, this could falsely call them equal,
 | 
						|
            # which would make <= inconsistent with ==. Better ways of
 | 
						|
            # doing this are welcome.
 | 
						|
            diff = a - b
 | 
						|
        except TypeError:
 | 
						|
            return NotImplemented
 | 
						|
        if isinstance(diff, numbers.Rational):
 | 
						|
            return op(diff.numerator, 0)
 | 
						|
        return op(diff, 0)
 | 
						|
 | 
						|
    def __lt__(a, b):
 | 
						|
        """a < b"""
 | 
						|
        return a._subtractAndCompareToZero(b, operator.lt)
 | 
						|
 | 
						|
    def __gt__(a, b):
 | 
						|
        """a > b"""
 | 
						|
        return a._subtractAndCompareToZero(b, operator.gt)
 | 
						|
 | 
						|
    def __le__(a, b):
 | 
						|
        """a <= b"""
 | 
						|
        return a._subtractAndCompareToZero(b, operator.le)
 | 
						|
 | 
						|
    def __ge__(a, b):
 | 
						|
        """a >= b"""
 | 
						|
        return a._subtractAndCompareToZero(b, operator.ge)
 | 
						|
 | 
						|
    def __bool__(a):
 | 
						|
        """a != 0"""
 | 
						|
        return a._numerator != 0
 | 
						|
 | 
						|
    # support for pickling, copy, and deepcopy
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return (self.__class__, (str(self),))
 | 
						|
 | 
						|
    def __copy__(self):
 | 
						|
        if type(self) == Fraction:
 | 
						|
            return self     # I'm immutable; therefore I am my own clone
 | 
						|
        return self.__class__(self._numerator, self._denominator)
 | 
						|
 | 
						|
    def __deepcopy__(self, memo):
 | 
						|
        if type(self) == Fraction:
 | 
						|
            return self     # My components are also immutable
 | 
						|
        return self.__class__(self._numerator, self._denominator)
 |