mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 10:26:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2305 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2305 lines
		
	
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Math module -- standard C math library functions, pi and e */
 | |
| 
 | |
| /* Here are some comments from Tim Peters, extracted from the
 | |
|    discussion attached to http://bugs.python.org/issue1640.  They
 | |
|    describe the general aims of the math module with respect to
 | |
|    special values, IEEE-754 floating-point exceptions, and Python
 | |
|    exceptions.
 | |
| 
 | |
| These are the "spirit of 754" rules:
 | |
| 
 | |
| 1. If the mathematical result is a real number, but of magnitude too
 | |
| large to approximate by a machine float, overflow is signaled and the
 | |
| result is an infinity (with the appropriate sign).
 | |
| 
 | |
| 2. If the mathematical result is a real number, but of magnitude too
 | |
| small to approximate by a machine float, underflow is signaled and the
 | |
| result is a zero (with the appropriate sign).
 | |
| 
 | |
| 3. At a singularity (a value x such that the limit of f(y) as y
 | |
| approaches x exists and is an infinity), "divide by zero" is signaled
 | |
| and the result is an infinity (with the appropriate sign).  This is
 | |
| complicated a little by that the left-side and right-side limits may
 | |
| not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
 | |
| from the positive or negative directions.  In that specific case, the
 | |
| sign of the zero determines the result of 1/0.
 | |
| 
 | |
| 4. At a point where a function has no defined result in the extended
 | |
| reals (i.e., the reals plus an infinity or two), invalid operation is
 | |
| signaled and a NaN is returned.
 | |
| 
 | |
| And these are what Python has historically /tried/ to do (but not
 | |
| always successfully, as platform libm behavior varies a lot):
 | |
| 
 | |
| For #1, raise OverflowError.
 | |
| 
 | |
| For #2, return a zero (with the appropriate sign if that happens by
 | |
| accident ;-)).
 | |
| 
 | |
| For #3 and #4, raise ValueError.  It may have made sense to raise
 | |
| Python's ZeroDivisionError in #3, but historically that's only been
 | |
| raised for division by zero and mod by zero.
 | |
| 
 | |
| */
 | |
| 
 | |
| /*
 | |
|    In general, on an IEEE-754 platform the aim is to follow the C99
 | |
|    standard, including Annex 'F', whenever possible.  Where the
 | |
|    standard recommends raising the 'divide-by-zero' or 'invalid'
 | |
|    floating-point exceptions, Python should raise a ValueError.  Where
 | |
|    the standard recommends raising 'overflow', Python should raise an
 | |
|    OverflowError.  In all other circumstances a value should be
 | |
|    returned.
 | |
|  */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "_math.h"
 | |
| 
 | |
| #include "clinic/mathmodule.c.h"
 | |
| 
 | |
| /*[clinic input]
 | |
| module math
 | |
| [clinic start generated code]*/
 | |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
 | |
| 
 | |
| 
 | |
| /*
 | |
|    sin(pi*x), giving accurate results for all finite x (especially x
 | |
|    integral or close to an integer).  This is here for use in the
 | |
|    reflection formula for the gamma function.  It conforms to IEEE
 | |
|    754-2008 for finite arguments, but not for infinities or nans.
 | |
| */
 | |
| 
 | |
| static const double pi = 3.141592653589793238462643383279502884197;
 | |
| static const double sqrtpi = 1.772453850905516027298167483341145182798;
 | |
| static const double logpi = 1.144729885849400174143427351353058711647;
 | |
| 
 | |
| static double
 | |
| sinpi(double x)
 | |
| {
 | |
|     double y, r;
 | |
|     int n;
 | |
|     /* this function should only ever be called for finite arguments */
 | |
|     assert(Py_IS_FINITE(x));
 | |
|     y = fmod(fabs(x), 2.0);
 | |
|     n = (int)round(2.0*y);
 | |
|     assert(0 <= n && n <= 4);
 | |
|     switch (n) {
 | |
|     case 0:
 | |
|         r = sin(pi*y);
 | |
|         break;
 | |
|     case 1:
 | |
|         r = cos(pi*(y-0.5));
 | |
|         break;
 | |
|     case 2:
 | |
|         /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
 | |
|            -0.0 instead of 0.0 when y == 1.0. */
 | |
|         r = sin(pi*(1.0-y));
 | |
|         break;
 | |
|     case 3:
 | |
|         r = -cos(pi*(y-1.5));
 | |
|         break;
 | |
|     case 4:
 | |
|         r = sin(pi*(y-2.0));
 | |
|         break;
 | |
|     default:
 | |
|         assert(0);  /* should never get here */
 | |
|         r = -1.23e200; /* silence gcc warning */
 | |
|     }
 | |
|     return copysign(1.0, x)*r;
 | |
| }
 | |
| 
 | |
| /* Implementation of the real gamma function.  In extensive but non-exhaustive
 | |
|    random tests, this function proved accurate to within <= 10 ulps across the
 | |
|    entire float domain.  Note that accuracy may depend on the quality of the
 | |
|    system math functions, the pow function in particular.  Special cases
 | |
|    follow C99 annex F.  The parameters and method are tailored to platforms
 | |
|    whose double format is the IEEE 754 binary64 format.
 | |
| 
 | |
|    Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
 | |
|    and g=6.024680040776729583740234375; these parameters are amongst those
 | |
|    used by the Boost library.  Following Boost (again), we re-express the
 | |
|    Lanczos sum as a rational function, and compute it that way.  The
 | |
|    coefficients below were computed independently using MPFR, and have been
 | |
|    double-checked against the coefficients in the Boost source code.
 | |
| 
 | |
|    For x < 0.0 we use the reflection formula.
 | |
| 
 | |
|    There's one minor tweak that deserves explanation: Lanczos' formula for
 | |
|    Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x
 | |
|    values, x+g-0.5 can be represented exactly.  However, in cases where it
 | |
|    can't be represented exactly the small error in x+g-0.5 can be magnified
 | |
|    significantly by the pow and exp calls, especially for large x.  A cheap
 | |
|    correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
 | |
|    involved in the computation of x+g-0.5 (that is, e = computed value of
 | |
|    x+g-0.5 - exact value of x+g-0.5).  Here's the proof:
 | |
| 
 | |
|    Correction factor
 | |
|    -----------------
 | |
|    Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
 | |
|    double, and e is tiny.  Then:
 | |
| 
 | |
|      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
 | |
|      = pow(y, x-0.5)/exp(y) * C,
 | |
| 
 | |
|    where the correction_factor C is given by
 | |
| 
 | |
|      C = pow(1-e/y, x-0.5) * exp(e)
 | |
| 
 | |
|    Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
 | |
| 
 | |
|      C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
 | |
| 
 | |
|    But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and
 | |
| 
 | |
|      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
 | |
| 
 | |
|    Note that for accuracy, when computing r*C it's better to do
 | |
| 
 | |
|      r + e*g/y*r;
 | |
| 
 | |
|    than
 | |
| 
 | |
|      r * (1 + e*g/y);
 | |
| 
 | |
|    since the addition in the latter throws away most of the bits of
 | |
|    information in e*g/y.
 | |
| */
 | |
| 
 | |
| #define LANCZOS_N 13
 | |
| static const double lanczos_g = 6.024680040776729583740234375;
 | |
| static const double lanczos_g_minus_half = 5.524680040776729583740234375;
 | |
| static const double lanczos_num_coeffs[LANCZOS_N] = {
 | |
|     23531376880.410759688572007674451636754734846804940,
 | |
|     42919803642.649098768957899047001988850926355848959,
 | |
|     35711959237.355668049440185451547166705960488635843,
 | |
|     17921034426.037209699919755754458931112671403265390,
 | |
|     6039542586.3520280050642916443072979210699388420708,
 | |
|     1439720407.3117216736632230727949123939715485786772,
 | |
|     248874557.86205415651146038641322942321632125127801,
 | |
|     31426415.585400194380614231628318205362874684987640,
 | |
|     2876370.6289353724412254090516208496135991145378768,
 | |
|     186056.26539522349504029498971604569928220784236328,
 | |
|     8071.6720023658162106380029022722506138218516325024,
 | |
|     210.82427775157934587250973392071336271166969580291,
 | |
|     2.5066282746310002701649081771338373386264310793408
 | |
| };
 | |
| 
 | |
| /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
 | |
| static const double lanczos_den_coeffs[LANCZOS_N] = {
 | |
|     0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
 | |
|     13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
 | |
| 
 | |
| /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
 | |
| #define NGAMMA_INTEGRAL 23
 | |
| static const double gamma_integral[NGAMMA_INTEGRAL] = {
 | |
|     1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
 | |
|     3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
 | |
|     1307674368000.0, 20922789888000.0, 355687428096000.0,
 | |
|     6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
 | |
|     51090942171709440000.0, 1124000727777607680000.0,
 | |
| };
 | |
| 
 | |
| /* Lanczos' sum L_g(x), for positive x */
 | |
| 
 | |
| static double
 | |
| lanczos_sum(double x)
 | |
| {
 | |
|     double num = 0.0, den = 0.0;
 | |
|     int i;
 | |
|     assert(x > 0.0);
 | |
|     /* evaluate the rational function lanczos_sum(x).  For large
 | |
|        x, the obvious algorithm risks overflow, so we instead
 | |
|        rescale the denominator and numerator of the rational
 | |
|        function by x**(1-LANCZOS_N) and treat this as a
 | |
|        rational function in 1/x.  This also reduces the error for
 | |
|        larger x values.  The choice of cutoff point (5.0 below) is
 | |
|        somewhat arbitrary; in tests, smaller cutoff values than
 | |
|        this resulted in lower accuracy. */
 | |
|     if (x < 5.0) {
 | |
|         for (i = LANCZOS_N; --i >= 0; ) {
 | |
|             num = num * x + lanczos_num_coeffs[i];
 | |
|             den = den * x + lanczos_den_coeffs[i];
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         for (i = 0; i < LANCZOS_N; i++) {
 | |
|             num = num / x + lanczos_num_coeffs[i];
 | |
|             den = den / x + lanczos_den_coeffs[i];
 | |
|         }
 | |
|     }
 | |
|     return num/den;
 | |
| }
 | |
| 
 | |
| /* Constant for +infinity, generated in the same way as float('inf'). */
 | |
| 
 | |
| static double
 | |
| m_inf(void)
 | |
| {
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
|     return _Py_dg_infinity(0);
 | |
| #else
 | |
|     return Py_HUGE_VAL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Constant nan value, generated in the same way as float('nan'). */
 | |
| /* We don't currently assume that Py_NAN is defined everywhere. */
 | |
| 
 | |
| #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
 | |
| 
 | |
| static double
 | |
| m_nan(void)
 | |
| {
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
|     return _Py_dg_stdnan(0);
 | |
| #else
 | |
|     return Py_NAN;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static double
 | |
| m_tgamma(double x)
 | |
| {
 | |
|     double absx, r, y, z, sqrtpow;
 | |
| 
 | |
|     /* special cases */
 | |
|     if (!Py_IS_FINITE(x)) {
 | |
|         if (Py_IS_NAN(x) || x > 0.0)
 | |
|             return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */
 | |
|         else {
 | |
|             errno = EDOM;
 | |
|             return Py_NAN;  /* tgamma(-inf) = nan, invalid */
 | |
|         }
 | |
|     }
 | |
|     if (x == 0.0) {
 | |
|         errno = EDOM;
 | |
|         /* tgamma(+-0.0) = +-inf, divide-by-zero */
 | |
|         return copysign(Py_HUGE_VAL, x);
 | |
|     }
 | |
| 
 | |
|     /* integer arguments */
 | |
|     if (x == floor(x)) {
 | |
|         if (x < 0.0) {
 | |
|             errno = EDOM;  /* tgamma(n) = nan, invalid for */
 | |
|             return Py_NAN; /* negative integers n */
 | |
|         }
 | |
|         if (x <= NGAMMA_INTEGRAL)
 | |
|             return gamma_integral[(int)x - 1];
 | |
|     }
 | |
|     absx = fabs(x);
 | |
| 
 | |
|     /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */
 | |
|     if (absx < 1e-20) {
 | |
|         r = 1.0/x;
 | |
|         if (Py_IS_INFINITY(r))
 | |
|             errno = ERANGE;
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
 | |
|        x > 200, and underflows to +-0.0 for x < -200, not a negative
 | |
|        integer. */
 | |
|     if (absx > 200.0) {
 | |
|         if (x < 0.0) {
 | |
|             return 0.0/sinpi(x);
 | |
|         }
 | |
|         else {
 | |
|             errno = ERANGE;
 | |
|             return Py_HUGE_VAL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     y = absx + lanczos_g_minus_half;
 | |
|     /* compute error in sum */
 | |
|     if (absx > lanczos_g_minus_half) {
 | |
|         /* note: the correction can be foiled by an optimizing
 | |
|            compiler that (incorrectly) thinks that an expression like
 | |
|            a + b - a - b can be optimized to 0.0.  This shouldn't
 | |
|            happen in a standards-conforming compiler. */
 | |
|         double q = y - absx;
 | |
|         z = q - lanczos_g_minus_half;
 | |
|     }
 | |
|     else {
 | |
|         double q = y - lanczos_g_minus_half;
 | |
|         z = q - absx;
 | |
|     }
 | |
|     z = z * lanczos_g / y;
 | |
|     if (x < 0.0) {
 | |
|         r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
 | |
|         r -= z * r;
 | |
|         if (absx < 140.0) {
 | |
|             r /= pow(y, absx - 0.5);
 | |
|         }
 | |
|         else {
 | |
|             sqrtpow = pow(y, absx / 2.0 - 0.25);
 | |
|             r /= sqrtpow;
 | |
|             r /= sqrtpow;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         r = lanczos_sum(absx) / exp(y);
 | |
|         r += z * r;
 | |
|         if (absx < 140.0) {
 | |
|             r *= pow(y, absx - 0.5);
 | |
|         }
 | |
|         else {
 | |
|             sqrtpow = pow(y, absx / 2.0 - 0.25);
 | |
|             r *= sqrtpow;
 | |
|             r *= sqrtpow;
 | |
|         }
 | |
|     }
 | |
|     if (Py_IS_INFINITY(r))
 | |
|         errno = ERANGE;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|    lgamma:  natural log of the absolute value of the Gamma function.
 | |
|    For large arguments, Lanczos' formula works extremely well here.
 | |
| */
 | |
| 
 | |
| static double
 | |
| m_lgamma(double x)
 | |
| {
 | |
|     double r;
 | |
|     double absx;
 | |
| 
 | |
|     /* special cases */
 | |
|     if (!Py_IS_FINITE(x)) {
 | |
|         if (Py_IS_NAN(x))
 | |
|             return x;  /* lgamma(nan) = nan */
 | |
|         else
 | |
|             return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
 | |
|     }
 | |
| 
 | |
|     /* integer arguments */
 | |
|     if (x == floor(x) && x <= 2.0) {
 | |
|         if (x <= 0.0) {
 | |
|             errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */
 | |
|             return Py_HUGE_VAL; /* integers n <= 0 */
 | |
|         }
 | |
|         else {
 | |
|             return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     absx = fabs(x);
 | |
|     /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
 | |
|     if (absx < 1e-20)
 | |
|         return -log(absx);
 | |
| 
 | |
|     /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by
 | |
|        having a second set of numerator coefficients for lanczos_sum that
 | |
|        absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
 | |
|        subtraction below; it's probably not worth it. */
 | |
|     r = log(lanczos_sum(absx)) - lanczos_g;
 | |
|     r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
 | |
|     if (x < 0.0)
 | |
|         /* Use reflection formula to get value for negative x. */
 | |
|         r = logpi - log(fabs(sinpi(absx))) - log(absx) - r;
 | |
|     if (Py_IS_INFINITY(r))
 | |
|         errno = ERANGE;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| #if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
 | |
| 
 | |
| /*
 | |
|    Implementations of the error function erf(x) and the complementary error
 | |
|    function erfc(x).
 | |
| 
 | |
|    Method: we use a series approximation for erf for small x, and a continued
 | |
|    fraction approximation for erfc(x) for larger x;
 | |
|    combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
 | |
|    this gives us erf(x) and erfc(x) for all x.
 | |
| 
 | |
|    The series expansion used is:
 | |
| 
 | |
|       erf(x) = x*exp(-x*x)/sqrt(pi) * [
 | |
|                      2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
 | |
| 
 | |
|    The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
 | |
|    This series converges well for smallish x, but slowly for larger x.
 | |
| 
 | |
|    The continued fraction expansion used is:
 | |
| 
 | |
|       erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
 | |
|                               3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
 | |
| 
 | |
|    after the first term, the general term has the form:
 | |
| 
 | |
|       k*(k-0.5)/(2*k+0.5 + x**2 - ...).
 | |
| 
 | |
|    This expansion converges fast for larger x, but convergence becomes
 | |
|    infinitely slow as x approaches 0.0.  The (somewhat naive) continued
 | |
|    fraction evaluation algorithm used below also risks overflow for large x;
 | |
|    but for large x, erfc(x) == 0.0 to within machine precision.  (For
 | |
|    example, erfc(30.0) is approximately 2.56e-393).
 | |
| 
 | |
|    Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
 | |
|    continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
 | |
|    ERFC_CONTFRAC_CUTOFF.  ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
 | |
|    numbers of terms to use for the relevant expansions.  */
 | |
| 
 | |
| #define ERF_SERIES_CUTOFF 1.5
 | |
| #define ERF_SERIES_TERMS 25
 | |
| #define ERFC_CONTFRAC_CUTOFF 30.0
 | |
| #define ERFC_CONTFRAC_TERMS 50
 | |
| 
 | |
| /*
 | |
|    Error function, via power series.
 | |
| 
 | |
|    Given a finite float x, return an approximation to erf(x).
 | |
|    Converges reasonably fast for small x.
 | |
| */
 | |
| 
 | |
| static double
 | |
| m_erf_series(double x)
 | |
| {
 | |
|     double x2, acc, fk, result;
 | |
|     int i, saved_errno;
 | |
| 
 | |
|     x2 = x * x;
 | |
|     acc = 0.0;
 | |
|     fk = (double)ERF_SERIES_TERMS + 0.5;
 | |
|     for (i = 0; i < ERF_SERIES_TERMS; i++) {
 | |
|         acc = 2.0 + x2 * acc / fk;
 | |
|         fk -= 1.0;
 | |
|     }
 | |
|     /* Make sure the exp call doesn't affect errno;
 | |
|        see m_erfc_contfrac for more. */
 | |
|     saved_errno = errno;
 | |
|     result = acc * x * exp(-x2) / sqrtpi;
 | |
|     errno = saved_errno;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|    Complementary error function, via continued fraction expansion.
 | |
| 
 | |
|    Given a positive float x, return an approximation to erfc(x).  Converges
 | |
|    reasonably fast for x large (say, x > 2.0), and should be safe from
 | |
|    overflow if x and nterms are not too large.  On an IEEE 754 machine, with x
 | |
|    <= 30.0, we're safe up to nterms = 100.  For x >= 30.0, erfc(x) is smaller
 | |
|    than the smallest representable nonzero float.  */
 | |
| 
 | |
| static double
 | |
| m_erfc_contfrac(double x)
 | |
| {
 | |
|     double x2, a, da, p, p_last, q, q_last, b, result;
 | |
|     int i, saved_errno;
 | |
| 
 | |
|     if (x >= ERFC_CONTFRAC_CUTOFF)
 | |
|         return 0.0;
 | |
| 
 | |
|     x2 = x*x;
 | |
|     a = 0.0;
 | |
|     da = 0.5;
 | |
|     p = 1.0; p_last = 0.0;
 | |
|     q = da + x2; q_last = 1.0;
 | |
|     for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
 | |
|         double temp;
 | |
|         a += da;
 | |
|         da += 2.0;
 | |
|         b = da + x2;
 | |
|         temp = p; p = b*p - a*p_last; p_last = temp;
 | |
|         temp = q; q = b*q - a*q_last; q_last = temp;
 | |
|     }
 | |
|     /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
 | |
|        save the current errno value so that we can restore it later. */
 | |
|     saved_errno = errno;
 | |
|     result = p / q * x * exp(-x2) / sqrtpi;
 | |
|     errno = saved_errno;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
 | |
| 
 | |
| /* Error function erf(x), for general x */
 | |
| 
 | |
| static double
 | |
| m_erf(double x)
 | |
| {
 | |
| #ifdef HAVE_ERF
 | |
|     return erf(x);
 | |
| #else
 | |
|     double absx, cf;
 | |
| 
 | |
|     if (Py_IS_NAN(x))
 | |
|         return x;
 | |
|     absx = fabs(x);
 | |
|     if (absx < ERF_SERIES_CUTOFF)
 | |
|         return m_erf_series(x);
 | |
|     else {
 | |
|         cf = m_erfc_contfrac(absx);
 | |
|         return x > 0.0 ? 1.0 - cf : cf - 1.0;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Complementary error function erfc(x), for general x. */
 | |
| 
 | |
| static double
 | |
| m_erfc(double x)
 | |
| {
 | |
| #ifdef HAVE_ERFC
 | |
|     return erfc(x);
 | |
| #else
 | |
|     double absx, cf;
 | |
| 
 | |
|     if (Py_IS_NAN(x))
 | |
|         return x;
 | |
|     absx = fabs(x);
 | |
|     if (absx < ERF_SERIES_CUTOFF)
 | |
|         return 1.0 - m_erf_series(x);
 | |
|     else {
 | |
|         cf = m_erfc_contfrac(absx);
 | |
|         return x > 0.0 ? cf : 2.0 - cf;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|    wrapper for atan2 that deals directly with special cases before
 | |
|    delegating to the platform libm for the remaining cases.  This
 | |
|    is necessary to get consistent behaviour across platforms.
 | |
|    Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
 | |
|    always follow C99.
 | |
| */
 | |
| 
 | |
| static double
 | |
| m_atan2(double y, double x)
 | |
| {
 | |
|     if (Py_IS_NAN(x) || Py_IS_NAN(y))
 | |
|         return Py_NAN;
 | |
|     if (Py_IS_INFINITY(y)) {
 | |
|         if (Py_IS_INFINITY(x)) {
 | |
|             if (copysign(1., x) == 1.)
 | |
|                 /* atan2(+-inf, +inf) == +-pi/4 */
 | |
|                 return copysign(0.25*Py_MATH_PI, y);
 | |
|             else
 | |
|                 /* atan2(+-inf, -inf) == +-pi*3/4 */
 | |
|                 return copysign(0.75*Py_MATH_PI, y);
 | |
|         }
 | |
|         /* atan2(+-inf, x) == +-pi/2 for finite x */
 | |
|         return copysign(0.5*Py_MATH_PI, y);
 | |
|     }
 | |
|     if (Py_IS_INFINITY(x) || y == 0.) {
 | |
|         if (copysign(1., x) == 1.)
 | |
|             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
 | |
|             return copysign(0., y);
 | |
|         else
 | |
|             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
 | |
|             return copysign(Py_MATH_PI, y);
 | |
|     }
 | |
|     return atan2(y, x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|     Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
 | |
|     log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with
 | |
|     special values directly, passing positive non-special values through to
 | |
|     the system log/log10.
 | |
|  */
 | |
| 
 | |
| static double
 | |
| m_log(double x)
 | |
| {
 | |
|     if (Py_IS_FINITE(x)) {
 | |
|         if (x > 0.0)
 | |
|             return log(x);
 | |
|         errno = EDOM;
 | |
|         if (x == 0.0)
 | |
|             return -Py_HUGE_VAL; /* log(0) = -inf */
 | |
|         else
 | |
|             return Py_NAN; /* log(-ve) = nan */
 | |
|     }
 | |
|     else if (Py_IS_NAN(x))
 | |
|         return x; /* log(nan) = nan */
 | |
|     else if (x > 0.0)
 | |
|         return x; /* log(inf) = inf */
 | |
|     else {
 | |
|         errno = EDOM;
 | |
|         return Py_NAN; /* log(-inf) = nan */
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|    log2: log to base 2.
 | |
| 
 | |
|    Uses an algorithm that should:
 | |
| 
 | |
|      (a) produce exact results for powers of 2, and
 | |
|      (b) give a monotonic log2 (for positive finite floats),
 | |
|          assuming that the system log is monotonic.
 | |
| */
 | |
| 
 | |
| static double
 | |
| m_log2(double x)
 | |
| {
 | |
|     if (!Py_IS_FINITE(x)) {
 | |
|         if (Py_IS_NAN(x))
 | |
|             return x; /* log2(nan) = nan */
 | |
|         else if (x > 0.0)
 | |
|             return x; /* log2(+inf) = +inf */
 | |
|         else {
 | |
|             errno = EDOM;
 | |
|             return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (x > 0.0) {
 | |
| #ifdef HAVE_LOG2
 | |
|         return log2(x);
 | |
| #else
 | |
|         double m;
 | |
|         int e;
 | |
|         m = frexp(x, &e);
 | |
|         /* We want log2(m * 2**e) == log(m) / log(2) + e.  Care is needed when
 | |
|          * x is just greater than 1.0: in that case e is 1, log(m) is negative,
 | |
|          * and we get significant cancellation error from the addition of
 | |
|          * log(m) / log(2) to e.  The slight rewrite of the expression below
 | |
|          * avoids this problem.
 | |
|          */
 | |
|         if (x >= 1.0) {
 | |
|             return log(2.0 * m) / log(2.0) + (e - 1);
 | |
|         }
 | |
|         else {
 | |
|             return log(m) / log(2.0) + e;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     else if (x == 0.0) {
 | |
|         errno = EDOM;
 | |
|         return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
 | |
|     }
 | |
|     else {
 | |
|         errno = EDOM;
 | |
|         return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static double
 | |
| m_log10(double x)
 | |
| {
 | |
|     if (Py_IS_FINITE(x)) {
 | |
|         if (x > 0.0)
 | |
|             return log10(x);
 | |
|         errno = EDOM;
 | |
|         if (x == 0.0)
 | |
|             return -Py_HUGE_VAL; /* log10(0) = -inf */
 | |
|         else
 | |
|             return Py_NAN; /* log10(-ve) = nan */
 | |
|     }
 | |
|     else if (Py_IS_NAN(x))
 | |
|         return x; /* log10(nan) = nan */
 | |
|     else if (x > 0.0)
 | |
|         return x; /* log10(inf) = inf */
 | |
|     else {
 | |
|         errno = EDOM;
 | |
|         return Py_NAN; /* log10(-inf) = nan */
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.gcd
 | |
| 
 | |
|     x as a: object
 | |
|     y as b: object
 | |
|     /
 | |
| 
 | |
| greatest common divisor of x and y
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_gcd_impl(PyObject *module, PyObject *a, PyObject *b)
 | |
| /*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/
 | |
| {
 | |
|     PyObject *g;
 | |
| 
 | |
|     a = PyNumber_Index(a);
 | |
|     if (a == NULL)
 | |
|         return NULL;
 | |
|     b = PyNumber_Index(b);
 | |
|     if (b == NULL) {
 | |
|         Py_DECREF(a);
 | |
|         return NULL;
 | |
|     }
 | |
|     g = _PyLong_GCD(a, b);
 | |
|     Py_DECREF(a);
 | |
|     Py_DECREF(b);
 | |
|     return g;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Call is_error when errno != 0, and where x is the result libm
 | |
|  * returned.  is_error will usually set up an exception and return
 | |
|  * true (1), but may return false (0) without setting up an exception.
 | |
|  */
 | |
| static int
 | |
| is_error(double x)
 | |
| {
 | |
|     int result = 1;     /* presumption of guilt */
 | |
|     assert(errno);      /* non-zero errno is a precondition for calling */
 | |
|     if (errno == EDOM)
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
| 
 | |
|     else if (errno == ERANGE) {
 | |
|         /* ANSI C generally requires libm functions to set ERANGE
 | |
|          * on overflow, but also generally *allows* them to set
 | |
|          * ERANGE on underflow too.  There's no consistency about
 | |
|          * the latter across platforms.
 | |
|          * Alas, C99 never requires that errno be set.
 | |
|          * Here we suppress the underflow errors (libm functions
 | |
|          * should return a zero on underflow, and +- HUGE_VAL on
 | |
|          * overflow, so testing the result for zero suffices to
 | |
|          * distinguish the cases).
 | |
|          *
 | |
|          * On some platforms (Ubuntu/ia64) it seems that errno can be
 | |
|          * set to ERANGE for subnormal results that do *not* underflow
 | |
|          * to zero.  So to be safe, we'll ignore ERANGE whenever the
 | |
|          * function result is less than one in absolute value.
 | |
|          */
 | |
|         if (fabs(x) < 1.0)
 | |
|             result = 0;
 | |
|         else
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "math range error");
 | |
|     }
 | |
|     else
 | |
|         /* Unexpected math error */
 | |
|         PyErr_SetFromErrno(PyExc_ValueError);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|    math_1 is used to wrap a libm function f that takes a double
 | |
|    argument and returns a double.
 | |
| 
 | |
|    The error reporting follows these rules, which are designed to do
 | |
|    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | |
|    platforms.
 | |
| 
 | |
|    - a NaN result from non-NaN inputs causes ValueError to be raised
 | |
|    - an infinite result from finite inputs causes OverflowError to be
 | |
|      raised if can_overflow is 1, or raises ValueError if can_overflow
 | |
|      is 0.
 | |
|    - if the result is finite and errno == EDOM then ValueError is
 | |
|      raised
 | |
|    - if the result is finite and nonzero and errno == ERANGE then
 | |
|      OverflowError is raised
 | |
| 
 | |
|    The last rule is used to catch overflow on platforms which follow
 | |
|    C89 but for which HUGE_VAL is not an infinity.
 | |
| 
 | |
|    For the majority of one-argument functions these rules are enough
 | |
|    to ensure that Python's functions behave as specified in 'Annex F'
 | |
|    of the C99 standard, with the 'invalid' and 'divide-by-zero'
 | |
|    floating-point exceptions mapping to Python's ValueError and the
 | |
|    'overflow' floating-point exception mapping to OverflowError.
 | |
|    math_1 only works for functions that don't have singularities *and*
 | |
|    the possibility of overflow; fortunately, that covers everything we
 | |
|    care about right now.
 | |
| */
 | |
| 
 | |
| static PyObject *
 | |
| math_1_to_whatever(PyObject *arg, double (*func) (double),
 | |
|                    PyObject *(*from_double_func) (double),
 | |
|                    int can_overflow)
 | |
| {
 | |
|     double x, r;
 | |
|     x = PyFloat_AsDouble(arg);
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("in math_1", return 0);
 | |
|     r = (*func)(x);
 | |
|     PyFPE_END_PROTECT(r);
 | |
|     if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "math domain error"); /* invalid arg */
 | |
|         return NULL;
 | |
|     }
 | |
|     if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
 | |
|         if (can_overflow)
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "math range error"); /* overflow */
 | |
|         else
 | |
|             PyErr_SetString(PyExc_ValueError,
 | |
|                             "math domain error"); /* singularity */
 | |
|         return NULL;
 | |
|     }
 | |
|     if (Py_IS_FINITE(r) && errno && is_error(r))
 | |
|         /* this branch unnecessary on most platforms */
 | |
|         return NULL;
 | |
| 
 | |
|     return (*from_double_func)(r);
 | |
| }
 | |
| 
 | |
| /* variant of math_1, to be used when the function being wrapped is known to
 | |
|    set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
 | |
|    errno = ERANGE for overflow). */
 | |
| 
 | |
| static PyObject *
 | |
| math_1a(PyObject *arg, double (*func) (double))
 | |
| {
 | |
|     double x, r;
 | |
|     x = PyFloat_AsDouble(arg);
 | |
|     if (x == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("in math_1a", return 0);
 | |
|     r = (*func)(x);
 | |
|     PyFPE_END_PROTECT(r);
 | |
|     if (errno && is_error(r))
 | |
|         return NULL;
 | |
|     return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| /*
 | |
|    math_2 is used to wrap a libm function f that takes two double
 | |
|    arguments and returns a double.
 | |
| 
 | |
|    The error reporting follows these rules, which are designed to do
 | |
|    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | |
|    platforms.
 | |
| 
 | |
|    - a NaN result from non-NaN inputs causes ValueError to be raised
 | |
|    - an infinite result from finite inputs causes OverflowError to be
 | |
|      raised.
 | |
|    - if the result is finite and errno == EDOM then ValueError is
 | |
|      raised
 | |
|    - if the result is finite and nonzero and errno == ERANGE then
 | |
|      OverflowError is raised
 | |
| 
 | |
|    The last rule is used to catch overflow on platforms which follow
 | |
|    C89 but for which HUGE_VAL is not an infinity.
 | |
| 
 | |
|    For most two-argument functions (copysign, fmod, hypot, atan2)
 | |
|    these rules are enough to ensure that Python's functions behave as
 | |
|    specified in 'Annex F' of the C99 standard, with the 'invalid' and
 | |
|    'divide-by-zero' floating-point exceptions mapping to Python's
 | |
|    ValueError and the 'overflow' floating-point exception mapping to
 | |
|    OverflowError.
 | |
| */
 | |
| 
 | |
| static PyObject *
 | |
| math_1(PyObject *arg, double (*func) (double), int can_overflow)
 | |
| {
 | |
|     return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
 | |
| {
 | |
|     return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_2(PyObject *args, double (*func) (double, double), const char *funcname)
 | |
| {
 | |
|     PyObject *ox, *oy;
 | |
|     double x, y, r;
 | |
|     if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
 | |
|         return NULL;
 | |
|     x = PyFloat_AsDouble(ox);
 | |
|     y = PyFloat_AsDouble(oy);
 | |
|     if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("in math_2", return 0);
 | |
|     r = (*func)(x, y);
 | |
|     PyFPE_END_PROTECT(r);
 | |
|     if (Py_IS_NAN(r)) {
 | |
|         if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|     }
 | |
|     else if (Py_IS_INFINITY(r)) {
 | |
|         if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | |
|             errno = ERANGE;
 | |
|         else
 | |
|             errno = 0;
 | |
|     }
 | |
|     if (errno && is_error(r))
 | |
|         return NULL;
 | |
|     else
 | |
|         return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| #define FUNC1(funcname, func, can_overflow, docstring)                  \
 | |
|     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | |
|         return math_1(args, func, can_overflow);                            \
 | |
|     }\
 | |
|     PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | |
| 
 | |
| #define FUNC1A(funcname, func, docstring)                               \
 | |
|     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | |
|         return math_1a(args, func);                                     \
 | |
|     }\
 | |
|     PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | |
| 
 | |
| #define FUNC2(funcname, func, docstring) \
 | |
|     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | |
|         return math_2(args, func, #funcname); \
 | |
|     }\
 | |
|     PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | |
| 
 | |
| FUNC1(acos, acos, 0,
 | |
|       "acos($module, x, /)\n--\n\n"
 | |
|       "Return the arc cosine (measured in radians) of x.")
 | |
| FUNC1(acosh, m_acosh, 0,
 | |
|       "acosh($module, x, /)\n--\n\n"
 | |
|       "Return the inverse hyperbolic cosine of x.")
 | |
| FUNC1(asin, asin, 0,
 | |
|       "asin($module, x, /)\n--\n\n"
 | |
|       "Return the arc sine (measured in radians) of x.")
 | |
| FUNC1(asinh, m_asinh, 0,
 | |
|       "asinh($module, x, /)\n--\n\n"
 | |
|       "Return the inverse hyperbolic sine of x.")
 | |
| FUNC1(atan, atan, 0,
 | |
|       "atan($module, x, /)\n--\n\n"
 | |
|       "Return the arc tangent (measured in radians) of x.")
 | |
| FUNC2(atan2, m_atan2,
 | |
|       "atan2($module, y, x, /)\n--\n\n"
 | |
|       "Return the arc tangent (measured in radians) of y/x.\n\n"
 | |
|       "Unlike atan(y/x), the signs of both x and y are considered.")
 | |
| FUNC1(atanh, m_atanh, 0,
 | |
|       "atanh($module, x, /)\n--\n\n"
 | |
|       "Return the inverse hyperbolic tangent of x.")
 | |
| 
 | |
| /*[clinic input]
 | |
| math.ceil
 | |
| 
 | |
|     x as number: object
 | |
|     /
 | |
| 
 | |
| Return the ceiling of x as an Integral.
 | |
| 
 | |
| This is the smallest integer >= x.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_ceil(PyObject *module, PyObject *number)
 | |
| /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
 | |
| {
 | |
|     _Py_IDENTIFIER(__ceil__);
 | |
|     PyObject *method, *result;
 | |
| 
 | |
|     method = _PyObject_LookupSpecial(number, &PyId___ceil__);
 | |
|     if (method == NULL) {
 | |
|         if (PyErr_Occurred())
 | |
|             return NULL;
 | |
|         return math_1_to_int(number, ceil, 0);
 | |
|     }
 | |
|     result = _PyObject_CallNoArg(method);
 | |
|     Py_DECREF(method);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FUNC2(copysign, copysign,
 | |
|       "copysign($module, x, y, /)\n--\n\n"
 | |
|        "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
 | |
|       "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
 | |
|       "returns -1.0.\n")
 | |
| FUNC1(cos, cos, 0,
 | |
|       "cos($module, x, /)\n--\n\n"
 | |
|       "Return the cosine of x (measured in radians).")
 | |
| FUNC1(cosh, cosh, 1,
 | |
|       "cosh($module, x, /)\n--\n\n"
 | |
|       "Return the hyperbolic cosine of x.")
 | |
| FUNC1A(erf, m_erf,
 | |
|        "erf($module, x, /)\n--\n\n"
 | |
|        "Error function at x.")
 | |
| FUNC1A(erfc, m_erfc,
 | |
|        "erfc($module, x, /)\n--\n\n"
 | |
|        "Complementary error function at x.")
 | |
| FUNC1(exp, exp, 1,
 | |
|       "exp($module, x, /)\n--\n\n"
 | |
|       "Return e raised to the power of x.")
 | |
| FUNC1(expm1, m_expm1, 1,
 | |
|       "expm1($module, x, /)\n--\n\n"
 | |
|       "Return exp(x)-1.\n\n"
 | |
|       "This function avoids the loss of precision involved in the direct "
 | |
|       "evaluation of exp(x)-1 for small x.")
 | |
| FUNC1(fabs, fabs, 0,
 | |
|       "fabs($module, x, /)\n--\n\n"
 | |
|       "Return the absolute value of the float x.")
 | |
| 
 | |
| /*[clinic input]
 | |
| math.floor
 | |
| 
 | |
|     x as number: object
 | |
|     /
 | |
| 
 | |
| Return the floor of x as an Integral.
 | |
| 
 | |
| This is the largest integer <= x.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_floor(PyObject *module, PyObject *number)
 | |
| /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
 | |
| {
 | |
|     _Py_IDENTIFIER(__floor__);
 | |
|     PyObject *method, *result;
 | |
| 
 | |
|     method = _PyObject_LookupSpecial(number, &PyId___floor__);
 | |
|     if (method == NULL) {
 | |
|         if (PyErr_Occurred())
 | |
|             return NULL;
 | |
|         return math_1_to_int(number, floor, 0);
 | |
|     }
 | |
|     result = _PyObject_CallNoArg(method);
 | |
|     Py_DECREF(method);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| FUNC1A(gamma, m_tgamma,
 | |
|       "gamma($module, x, /)\n--\n\n"
 | |
|       "Gamma function at x.")
 | |
| FUNC1A(lgamma, m_lgamma,
 | |
|       "lgamma($module, x, /)\n--\n\n"
 | |
|       "Natural logarithm of absolute value of Gamma function at x.")
 | |
| FUNC1(log1p, m_log1p, 0,
 | |
|       "log1p($module, x, /)\n--\n\n"
 | |
|       "Return the natural logarithm of 1+x (base e).\n\n"
 | |
|       "The result is computed in a way which is accurate for x near zero.")
 | |
| FUNC1(sin, sin, 0,
 | |
|       "sin($module, x, /)\n--\n\n"
 | |
|       "Return the sine of x (measured in radians).")
 | |
| FUNC1(sinh, sinh, 1,
 | |
|       "sinh($module, x, /)\n--\n\n"
 | |
|       "Return the hyperbolic sine of x.")
 | |
| FUNC1(sqrt, sqrt, 0,
 | |
|       "sqrt($module, x, /)\n--\n\n"
 | |
|       "Return the square root of x.")
 | |
| FUNC1(tan, tan, 0,
 | |
|       "tan($module, x, /)\n--\n\n"
 | |
|       "Return the tangent of x (measured in radians).")
 | |
| FUNC1(tanh, tanh, 0,
 | |
|       "tanh($module, x, /)\n--\n\n"
 | |
|       "Return the hyperbolic tangent of x.")
 | |
| 
 | |
| /* Precision summation function as msum() by Raymond Hettinger in
 | |
|    <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
 | |
|    enhanced with the exact partials sum and roundoff from Mark
 | |
|    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
 | |
|    See those links for more details, proofs and other references.
 | |
| 
 | |
|    Note 1: IEEE 754R floating point semantics are assumed,
 | |
|    but the current implementation does not re-establish special
 | |
|    value semantics across iterations (i.e. handling -Inf + Inf).
 | |
| 
 | |
|    Note 2:  No provision is made for intermediate overflow handling;
 | |
|    therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
 | |
|    sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
 | |
|    overflow of the first partial sum.
 | |
| 
 | |
|    Note 3: The intermediate values lo, yr, and hi are declared volatile so
 | |
|    aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
 | |
|    Also, the volatile declaration forces the values to be stored in memory as
 | |
|    regular doubles instead of extended long precision (80-bit) values.  This
 | |
|    prevents double rounding because any addition or subtraction of two doubles
 | |
|    can be resolved exactly into double-sized hi and lo values.  As long as the
 | |
|    hi value gets forced into a double before yr and lo are computed, the extra
 | |
|    bits in downstream extended precision operations (x87 for example) will be
 | |
|    exactly zero and therefore can be losslessly stored back into a double,
 | |
|    thereby preventing double rounding.
 | |
| 
 | |
|    Note 4: A similar implementation is in Modules/cmathmodule.c.
 | |
|    Be sure to update both when making changes.
 | |
| 
 | |
|    Note 5: The signature of math.fsum() differs from builtins.sum()
 | |
|    because the start argument doesn't make sense in the context of
 | |
|    accurate summation.  Since the partials table is collapsed before
 | |
|    returning a result, sum(seq2, start=sum(seq1)) may not equal the
 | |
|    accurate result returned by sum(itertools.chain(seq1, seq2)).
 | |
| */
 | |
| 
 | |
| #define NUM_PARTIALS  32  /* initial partials array size, on stack */
 | |
| 
 | |
| /* Extend the partials array p[] by doubling its size. */
 | |
| static int                          /* non-zero on error */
 | |
| _fsum_realloc(double **p_ptr, Py_ssize_t  n,
 | |
|              double  *ps,    Py_ssize_t *m_ptr)
 | |
| {
 | |
|     void *v = NULL;
 | |
|     Py_ssize_t m = *m_ptr;
 | |
| 
 | |
|     m += m;  /* double */
 | |
|     if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
 | |
|         double *p = *p_ptr;
 | |
|         if (p == ps) {
 | |
|             v = PyMem_Malloc(sizeof(double) * m);
 | |
|             if (v != NULL)
 | |
|                 memcpy(v, ps, sizeof(double) * n);
 | |
|         }
 | |
|         else
 | |
|             v = PyMem_Realloc(p, sizeof(double) * m);
 | |
|     }
 | |
|     if (v == NULL) {        /* size overflow or no memory */
 | |
|         PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
 | |
|         return 1;
 | |
|     }
 | |
|     *p_ptr = (double*) v;
 | |
|     *m_ptr = m;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Full precision summation of a sequence of floats.
 | |
| 
 | |
|    def msum(iterable):
 | |
|        partials = []  # sorted, non-overlapping partial sums
 | |
|        for x in iterable:
 | |
|            i = 0
 | |
|            for y in partials:
 | |
|                if abs(x) < abs(y):
 | |
|                    x, y = y, x
 | |
|                hi = x + y
 | |
|                lo = y - (hi - x)
 | |
|                if lo:
 | |
|                    partials[i] = lo
 | |
|                    i += 1
 | |
|                x = hi
 | |
|            partials[i:] = [x]
 | |
|        return sum_exact(partials)
 | |
| 
 | |
|    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
 | |
|    are exactly equal to x+y.  The inner loop applies hi/lo summation to each
 | |
|    partial so that the list of partial sums remains exact.
 | |
| 
 | |
|    Sum_exact() adds the partial sums exactly and correctly rounds the final
 | |
|    result (using the round-half-to-even rule).  The items in partials remain
 | |
|    non-zero, non-special, non-overlapping and strictly increasing in
 | |
|    magnitude, but possibly not all having the same sign.
 | |
| 
 | |
|    Depends on IEEE 754 arithmetic guarantees and half-even rounding.
 | |
| */
 | |
| 
 | |
| /*[clinic input]
 | |
| math.fsum
 | |
| 
 | |
|     seq: object
 | |
|     /
 | |
| 
 | |
| Return an accurate floating point sum of values in the iterable seq.
 | |
| 
 | |
| Assumes IEEE-754 floating point arithmetic.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_fsum(PyObject *module, PyObject *seq)
 | |
| /*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
 | |
| {
 | |
|     PyObject *item, *iter, *sum = NULL;
 | |
|     Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
 | |
|     double x, y, t, ps[NUM_PARTIALS], *p = ps;
 | |
|     double xsave, special_sum = 0.0, inf_sum = 0.0;
 | |
|     volatile double hi, yr, lo;
 | |
| 
 | |
|     iter = PyObject_GetIter(seq);
 | |
|     if (iter == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
 | |
| 
 | |
|     for(;;) {           /* for x in iterable */
 | |
|         assert(0 <= n && n <= m);
 | |
|         assert((m == NUM_PARTIALS && p == ps) ||
 | |
|                (m >  NUM_PARTIALS && p != NULL));
 | |
| 
 | |
|         item = PyIter_Next(iter);
 | |
|         if (item == NULL) {
 | |
|             if (PyErr_Occurred())
 | |
|                 goto _fsum_error;
 | |
|             break;
 | |
|         }
 | |
|         x = PyFloat_AsDouble(item);
 | |
|         Py_DECREF(item);
 | |
|         if (PyErr_Occurred())
 | |
|             goto _fsum_error;
 | |
| 
 | |
|         xsave = x;
 | |
|         for (i = j = 0; j < n; j++) {       /* for y in partials */
 | |
|             y = p[j];
 | |
|             if (fabs(x) < fabs(y)) {
 | |
|                 t = x; x = y; y = t;
 | |
|             }
 | |
|             hi = x + y;
 | |
|             yr = hi - x;
 | |
|             lo = y - yr;
 | |
|             if (lo != 0.0)
 | |
|                 p[i++] = lo;
 | |
|             x = hi;
 | |
|         }
 | |
| 
 | |
|         n = i;                              /* ps[i:] = [x] */
 | |
|         if (x != 0.0) {
 | |
|             if (! Py_IS_FINITE(x)) {
 | |
|                 /* a nonfinite x could arise either as
 | |
|                    a result of intermediate overflow, or
 | |
|                    as a result of a nan or inf in the
 | |
|                    summands */
 | |
|                 if (Py_IS_FINITE(xsave)) {
 | |
|                     PyErr_SetString(PyExc_OverflowError,
 | |
|                           "intermediate overflow in fsum");
 | |
|                     goto _fsum_error;
 | |
|                 }
 | |
|                 if (Py_IS_INFINITY(xsave))
 | |
|                     inf_sum += xsave;
 | |
|                 special_sum += xsave;
 | |
|                 /* reset partials */
 | |
|                 n = 0;
 | |
|             }
 | |
|             else if (n >= m && _fsum_realloc(&p, n, ps, &m))
 | |
|                 goto _fsum_error;
 | |
|             else
 | |
|                 p[n++] = x;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (special_sum != 0.0) {
 | |
|         if (Py_IS_NAN(inf_sum))
 | |
|             PyErr_SetString(PyExc_ValueError,
 | |
|                             "-inf + inf in fsum");
 | |
|         else
 | |
|             sum = PyFloat_FromDouble(special_sum);
 | |
|         goto _fsum_error;
 | |
|     }
 | |
| 
 | |
|     hi = 0.0;
 | |
|     if (n > 0) {
 | |
|         hi = p[--n];
 | |
|         /* sum_exact(ps, hi) from the top, stop when the sum becomes
 | |
|            inexact. */
 | |
|         while (n > 0) {
 | |
|             x = hi;
 | |
|             y = p[--n];
 | |
|             assert(fabs(y) < fabs(x));
 | |
|             hi = x + y;
 | |
|             yr = hi - x;
 | |
|             lo = y - yr;
 | |
|             if (lo != 0.0)
 | |
|                 break;
 | |
|         }
 | |
|         /* Make half-even rounding work across multiple partials.
 | |
|            Needed so that sum([1e-16, 1, 1e16]) will round-up the last
 | |
|            digit to two instead of down to zero (the 1e-16 makes the 1
 | |
|            slightly closer to two).  With a potential 1 ULP rounding
 | |
|            error fixed-up, math.fsum() can guarantee commutativity. */
 | |
|         if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
 | |
|                       (lo > 0.0 && p[n-1] > 0.0))) {
 | |
|             y = lo * 2.0;
 | |
|             x = hi + y;
 | |
|             yr = x - hi;
 | |
|             if (y == yr)
 | |
|                 hi = x;
 | |
|         }
 | |
|     }
 | |
|     sum = PyFloat_FromDouble(hi);
 | |
| 
 | |
| _fsum_error:
 | |
|     PyFPE_END_PROTECT(hi)
 | |
|     Py_DECREF(iter);
 | |
|     if (p != ps)
 | |
|         PyMem_Free(p);
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| #undef NUM_PARTIALS
 | |
| 
 | |
| 
 | |
| /* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
 | |
|  * Equivalent to floor(lg(x))+1.  Also equivalent to: bitwidth_of_type -
 | |
|  * count_leading_zero_bits(x)
 | |
|  */
 | |
| 
 | |
| /* XXX: This routine does more or less the same thing as
 | |
|  * bits_in_digit() in Objects/longobject.c.  Someday it would be nice to
 | |
|  * consolidate them.  On BSD, there's a library function called fls()
 | |
|  * that we could use, and GCC provides __builtin_clz().
 | |
|  */
 | |
| 
 | |
| static unsigned long
 | |
| bit_length(unsigned long n)
 | |
| {
 | |
|     unsigned long len = 0;
 | |
|     while (n != 0) {
 | |
|         ++len;
 | |
|         n >>= 1;
 | |
|     }
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| count_set_bits(unsigned long n)
 | |
| {
 | |
|     unsigned long count = 0;
 | |
|     while (n != 0) {
 | |
|         ++count;
 | |
|         n &= n - 1; /* clear least significant bit */
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /* Divide-and-conquer factorial algorithm
 | |
|  *
 | |
|  * Based on the formula and pseudo-code provided at:
 | |
|  * http://www.luschny.de/math/factorial/binarysplitfact.html
 | |
|  *
 | |
|  * Faster algorithms exist, but they're more complicated and depend on
 | |
|  * a fast prime factorization algorithm.
 | |
|  *
 | |
|  * Notes on the algorithm
 | |
|  * ----------------------
 | |
|  *
 | |
|  * factorial(n) is written in the form 2**k * m, with m odd.  k and m are
 | |
|  * computed separately, and then combined using a left shift.
 | |
|  *
 | |
|  * The function factorial_odd_part computes the odd part m (i.e., the greatest
 | |
|  * odd divisor) of factorial(n), using the formula:
 | |
|  *
 | |
|  *   factorial_odd_part(n) =
 | |
|  *
 | |
|  *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
 | |
|  *
 | |
|  * Example: factorial_odd_part(20) =
 | |
|  *
 | |
|  *        (1) *
 | |
|  *        (1) *
 | |
|  *        (1 * 3 * 5) *
 | |
|  *        (1 * 3 * 5 * 7 * 9)
 | |
|  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | |
|  *
 | |
|  * Here i goes from large to small: the first term corresponds to i=4 (any
 | |
|  * larger i gives an empty product), and the last term corresponds to i=0.
 | |
|  * Each term can be computed from the last by multiplying by the extra odd
 | |
|  * numbers required: e.g., to get from the penultimate term to the last one,
 | |
|  * we multiply by (11 * 13 * 15 * 17 * 19).
 | |
|  *
 | |
|  * To see a hint of why this formula works, here are the same numbers as above
 | |
|  * but with the even parts (i.e., the appropriate powers of 2) included.  For
 | |
|  * each subterm in the product for i, we multiply that subterm by 2**i:
 | |
|  *
 | |
|  *   factorial(20) =
 | |
|  *
 | |
|  *        (16) *
 | |
|  *        (8) *
 | |
|  *        (4 * 12 * 20) *
 | |
|  *        (2 * 6 * 10 * 14 * 18) *
 | |
|  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | |
|  *
 | |
|  * The factorial_partial_product function computes the product of all odd j in
 | |
|  * range(start, stop) for given start and stop.  It's used to compute the
 | |
|  * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It
 | |
|  * operates recursively, repeatedly splitting the range into two roughly equal
 | |
|  * pieces until the subranges are small enough to be computed using only C
 | |
|  * integer arithmetic.
 | |
|  *
 | |
|  * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
 | |
|  * the factorial) is computed independently in the main math_factorial
 | |
|  * function.  By standard results, its value is:
 | |
|  *
 | |
|  *    two_valuation = n//2 + n//4 + n//8 + ....
 | |
|  *
 | |
|  * It can be shown (e.g., by complete induction on n) that two_valuation is
 | |
|  * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
 | |
|  * '1'-bits in the binary expansion of n.
 | |
|  */
 | |
| 
 | |
| /* factorial_partial_product: Compute product(range(start, stop, 2)) using
 | |
|  * divide and conquer.  Assumes start and stop are odd and stop > start.
 | |
|  * max_bits must be >= bit_length(stop - 2). */
 | |
| 
 | |
| static PyObject *
 | |
| factorial_partial_product(unsigned long start, unsigned long stop,
 | |
|                           unsigned long max_bits)
 | |
| {
 | |
|     unsigned long midpoint, num_operands;
 | |
|     PyObject *left = NULL, *right = NULL, *result = NULL;
 | |
| 
 | |
|     /* If the return value will fit an unsigned long, then we can
 | |
|      * multiply in a tight, fast loop where each multiply is O(1).
 | |
|      * Compute an upper bound on the number of bits required to store
 | |
|      * the answer.
 | |
|      *
 | |
|      * Storing some integer z requires floor(lg(z))+1 bits, which is
 | |
|      * conveniently the value returned by bit_length(z).  The
 | |
|      * product x*y will require at most
 | |
|      * bit_length(x) + bit_length(y) bits to store, based
 | |
|      * on the idea that lg product = lg x + lg y.
 | |
|      *
 | |
|      * We know that stop - 2 is the largest number to be multiplied.  From
 | |
|      * there, we have: bit_length(answer) <= num_operands *
 | |
|      * bit_length(stop - 2)
 | |
|      */
 | |
| 
 | |
|     num_operands = (stop - start) / 2;
 | |
|     /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
 | |
|      * unlikely case of an overflow in num_operands * max_bits. */
 | |
|     if (num_operands <= 8 * SIZEOF_LONG &&
 | |
|         num_operands * max_bits <= 8 * SIZEOF_LONG) {
 | |
|         unsigned long j, total;
 | |
|         for (total = start, j = start + 2; j < stop; j += 2)
 | |
|             total *= j;
 | |
|         return PyLong_FromUnsignedLong(total);
 | |
|     }
 | |
| 
 | |
|     /* find midpoint of range(start, stop), rounded up to next odd number. */
 | |
|     midpoint = (start + num_operands) | 1;
 | |
|     left = factorial_partial_product(start, midpoint,
 | |
|                                      bit_length(midpoint - 2));
 | |
|     if (left == NULL)
 | |
|         goto error;
 | |
|     right = factorial_partial_product(midpoint, stop, max_bits);
 | |
|     if (right == NULL)
 | |
|         goto error;
 | |
|     result = PyNumber_Multiply(left, right);
 | |
| 
 | |
|   error:
 | |
|     Py_XDECREF(left);
 | |
|     Py_XDECREF(right);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* factorial_odd_part:  compute the odd part of factorial(n). */
 | |
| 
 | |
| static PyObject *
 | |
| factorial_odd_part(unsigned long n)
 | |
| {
 | |
|     long i;
 | |
|     unsigned long v, lower, upper;
 | |
|     PyObject *partial, *tmp, *inner, *outer;
 | |
| 
 | |
|     inner = PyLong_FromLong(1);
 | |
|     if (inner == NULL)
 | |
|         return NULL;
 | |
|     outer = inner;
 | |
|     Py_INCREF(outer);
 | |
| 
 | |
|     upper = 3;
 | |
|     for (i = bit_length(n) - 2; i >= 0; i--) {
 | |
|         v = n >> i;
 | |
|         if (v <= 2)
 | |
|             continue;
 | |
|         lower = upper;
 | |
|         /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
 | |
|         upper = (v + 1) | 1;
 | |
|         /* Here inner is the product of all odd integers j in the range (0,
 | |
|            n/2**(i+1)].  The factorial_partial_product call below gives the
 | |
|            product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
 | |
|         partial = factorial_partial_product(lower, upper, bit_length(upper-2));
 | |
|         /* inner *= partial */
 | |
|         if (partial == NULL)
 | |
|             goto error;
 | |
|         tmp = PyNumber_Multiply(inner, partial);
 | |
|         Py_DECREF(partial);
 | |
|         if (tmp == NULL)
 | |
|             goto error;
 | |
|         Py_DECREF(inner);
 | |
|         inner = tmp;
 | |
|         /* Now inner is the product of all odd integers j in the range (0,
 | |
|            n/2**i], giving the inner product in the formula above. */
 | |
| 
 | |
|         /* outer *= inner; */
 | |
|         tmp = PyNumber_Multiply(outer, inner);
 | |
|         if (tmp == NULL)
 | |
|             goto error;
 | |
|         Py_DECREF(outer);
 | |
|         outer = tmp;
 | |
|     }
 | |
|     Py_DECREF(inner);
 | |
|     return outer;
 | |
| 
 | |
|   error:
 | |
|     Py_DECREF(outer);
 | |
|     Py_DECREF(inner);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Lookup table for small factorial values */
 | |
| 
 | |
| static const unsigned long SmallFactorials[] = {
 | |
|     1, 1, 2, 6, 24, 120, 720, 5040, 40320,
 | |
|     362880, 3628800, 39916800, 479001600,
 | |
| #if SIZEOF_LONG >= 8
 | |
|     6227020800, 87178291200, 1307674368000,
 | |
|     20922789888000, 355687428096000, 6402373705728000,
 | |
|     121645100408832000, 2432902008176640000
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*[clinic input]
 | |
| math.factorial
 | |
| 
 | |
|     x as arg: object
 | |
|     /
 | |
| 
 | |
| Find x!.
 | |
| 
 | |
| Raise a ValueError if x is negative or non-integral.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_factorial(PyObject *module, PyObject *arg)
 | |
| /*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
 | |
| {
 | |
|     long x;
 | |
|     int overflow;
 | |
|     PyObject *result, *odd_part, *two_valuation;
 | |
| 
 | |
|     if (PyFloat_Check(arg)) {
 | |
|         PyObject *lx;
 | |
|         double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
 | |
|         if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
 | |
|             PyErr_SetString(PyExc_ValueError,
 | |
|                             "factorial() only accepts integral values");
 | |
|             return NULL;
 | |
|         }
 | |
|         lx = PyLong_FromDouble(dx);
 | |
|         if (lx == NULL)
 | |
|             return NULL;
 | |
|         x = PyLong_AsLongAndOverflow(lx, &overflow);
 | |
|         Py_DECREF(lx);
 | |
|     }
 | |
|     else
 | |
|         x = PyLong_AsLongAndOverflow(arg, &overflow);
 | |
| 
 | |
|     if (x == -1 && PyErr_Occurred()) {
 | |
|         return NULL;
 | |
|     }
 | |
|     else if (overflow == 1) {
 | |
|         PyErr_Format(PyExc_OverflowError,
 | |
|                      "factorial() argument should not exceed %ld",
 | |
|                      LONG_MAX);
 | |
|         return NULL;
 | |
|     }
 | |
|     else if (overflow == -1 || x < 0) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "factorial() not defined for negative values");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* use lookup table if x is small */
 | |
|     if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
 | |
|         return PyLong_FromUnsignedLong(SmallFactorials[x]);
 | |
| 
 | |
|     /* else express in the form odd_part * 2**two_valuation, and compute as
 | |
|        odd_part << two_valuation. */
 | |
|     odd_part = factorial_odd_part(x);
 | |
|     if (odd_part == NULL)
 | |
|         return NULL;
 | |
|     two_valuation = PyLong_FromLong(x - count_set_bits(x));
 | |
|     if (two_valuation == NULL) {
 | |
|         Py_DECREF(odd_part);
 | |
|         return NULL;
 | |
|     }
 | |
|     result = PyNumber_Lshift(odd_part, two_valuation);
 | |
|     Py_DECREF(two_valuation);
 | |
|     Py_DECREF(odd_part);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.trunc
 | |
| 
 | |
|     x: object
 | |
|     /
 | |
| 
 | |
| Truncates the Real x to the nearest Integral toward 0.
 | |
| 
 | |
| Uses the __trunc__ magic method.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_trunc(PyObject *module, PyObject *x)
 | |
| /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
 | |
| {
 | |
|     _Py_IDENTIFIER(__trunc__);
 | |
|     PyObject *trunc, *result;
 | |
| 
 | |
|     if (Py_TYPE(x)->tp_dict == NULL) {
 | |
|         if (PyType_Ready(Py_TYPE(x)) < 0)
 | |
|             return NULL;
 | |
|     }
 | |
| 
 | |
|     trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
 | |
|     if (trunc == NULL) {
 | |
|         if (!PyErr_Occurred())
 | |
|             PyErr_Format(PyExc_TypeError,
 | |
|                          "type %.100s doesn't define __trunc__ method",
 | |
|                          Py_TYPE(x)->tp_name);
 | |
|         return NULL;
 | |
|     }
 | |
|     result = _PyObject_CallNoArg(trunc);
 | |
|     Py_DECREF(trunc);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.frexp
 | |
| 
 | |
|     x: double
 | |
|     /
 | |
| 
 | |
| Return the mantissa and exponent of x, as pair (m, e).
 | |
| 
 | |
| m is a float and e is an int, such that x = m * 2.**e.
 | |
| If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_frexp_impl(PyObject *module, double x)
 | |
| /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
 | |
| {
 | |
|     int i;
 | |
|     /* deal with special cases directly, to sidestep platform
 | |
|        differences */
 | |
|     if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
 | |
|         i = 0;
 | |
|     }
 | |
|     else {
 | |
|         PyFPE_START_PROTECT("in math_frexp", return 0);
 | |
|         x = frexp(x, &i);
 | |
|         PyFPE_END_PROTECT(x);
 | |
|     }
 | |
|     return Py_BuildValue("(di)", x, i);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.ldexp
 | |
| 
 | |
|     x: double
 | |
|     i: object
 | |
|     /
 | |
| 
 | |
| Return x * (2**i).
 | |
| 
 | |
| This is essentially the inverse of frexp().
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_ldexp_impl(PyObject *module, double x, PyObject *i)
 | |
| /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
 | |
| {
 | |
|     double r;
 | |
|     long exp;
 | |
|     int overflow;
 | |
| 
 | |
|     if (PyLong_Check(i)) {
 | |
|         /* on overflow, replace exponent with either LONG_MAX
 | |
|            or LONG_MIN, depending on the sign. */
 | |
|         exp = PyLong_AsLongAndOverflow(i, &overflow);
 | |
|         if (exp == -1 && PyErr_Occurred())
 | |
|             return NULL;
 | |
|         if (overflow)
 | |
|             exp = overflow < 0 ? LONG_MIN : LONG_MAX;
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "Expected an int as second argument to ldexp.");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (x == 0. || !Py_IS_FINITE(x)) {
 | |
|         /* NaNs, zeros and infinities are returned unchanged */
 | |
|         r = x;
 | |
|         errno = 0;
 | |
|     } else if (exp > INT_MAX) {
 | |
|         /* overflow */
 | |
|         r = copysign(Py_HUGE_VAL, x);
 | |
|         errno = ERANGE;
 | |
|     } else if (exp < INT_MIN) {
 | |
|         /* underflow to +-0 */
 | |
|         r = copysign(0., x);
 | |
|         errno = 0;
 | |
|     } else {
 | |
|         errno = 0;
 | |
|         PyFPE_START_PROTECT("in math_ldexp", return 0);
 | |
|         r = ldexp(x, (int)exp);
 | |
|         PyFPE_END_PROTECT(r);
 | |
|         if (Py_IS_INFINITY(r))
 | |
|             errno = ERANGE;
 | |
|     }
 | |
| 
 | |
|     if (errno && is_error(r))
 | |
|         return NULL;
 | |
|     return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.modf
 | |
| 
 | |
|     x: double
 | |
|     /
 | |
| 
 | |
| Return the fractional and integer parts of x.
 | |
| 
 | |
| Both results carry the sign of x and are floats.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_modf_impl(PyObject *module, double x)
 | |
| /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
 | |
| {
 | |
|     double y;
 | |
|     /* some platforms don't do the right thing for NaNs and
 | |
|        infinities, so we take care of special cases directly. */
 | |
|     if (!Py_IS_FINITE(x)) {
 | |
|         if (Py_IS_INFINITY(x))
 | |
|             return Py_BuildValue("(dd)", copysign(0., x), x);
 | |
|         else if (Py_IS_NAN(x))
 | |
|             return Py_BuildValue("(dd)", x, x);
 | |
|     }
 | |
| 
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("in math_modf", return 0);
 | |
|     x = modf(x, &y);
 | |
|     PyFPE_END_PROTECT(x);
 | |
|     return Py_BuildValue("(dd)", x, y);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* A decent logarithm is easy to compute even for huge ints, but libm can't
 | |
|    do that by itself -- loghelper can.  func is log or log10, and name is
 | |
|    "log" or "log10".  Note that overflow of the result isn't possible: an int
 | |
|    can contain no more than INT_MAX * SHIFT bits, so has value certainly less
 | |
|    than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
 | |
|    small enough to fit in an IEEE single.  log and log10 are even smaller.
 | |
|    However, intermediate overflow is possible for an int if the number of bits
 | |
|    in that int is larger than PY_SSIZE_T_MAX. */
 | |
| 
 | |
| static PyObject*
 | |
| loghelper(PyObject* arg, double (*func)(double), const char *funcname)
 | |
| {
 | |
|     /* If it is int, do it ourselves. */
 | |
|     if (PyLong_Check(arg)) {
 | |
|         double x, result;
 | |
|         Py_ssize_t e;
 | |
| 
 | |
|         /* Negative or zero inputs give a ValueError. */
 | |
|         if (Py_SIZE(arg) <= 0) {
 | |
|             PyErr_SetString(PyExc_ValueError,
 | |
|                             "math domain error");
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         x = PyLong_AsDouble(arg);
 | |
|         if (x == -1.0 && PyErr_Occurred()) {
 | |
|             if (!PyErr_ExceptionMatches(PyExc_OverflowError))
 | |
|                 return NULL;
 | |
|             /* Here the conversion to double overflowed, but it's possible
 | |
|                to compute the log anyway.  Clear the exception and continue. */
 | |
|             PyErr_Clear();
 | |
|             x = _PyLong_Frexp((PyLongObject *)arg, &e);
 | |
|             if (x == -1.0 && PyErr_Occurred())
 | |
|                 return NULL;
 | |
|             /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
 | |
|             result = func(x) + func(2.0) * e;
 | |
|         }
 | |
|         else
 | |
|             /* Successfully converted x to a double. */
 | |
|             result = func(x);
 | |
|         return PyFloat_FromDouble(result);
 | |
|     }
 | |
| 
 | |
|     /* Else let libm handle it by itself. */
 | |
|     return math_1(arg, func, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.log
 | |
| 
 | |
|     x:    object
 | |
|     [
 | |
|     base: object(c_default="NULL") = math.e
 | |
|     ]
 | |
|     /
 | |
| 
 | |
| Return the logarithm of x to the given base.
 | |
| 
 | |
| If the base not specified, returns the natural logarithm (base e) of x.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_log_impl(PyObject *module, PyObject *x, int group_right_1,
 | |
|               PyObject *base)
 | |
| /*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
 | |
| {
 | |
|     PyObject *num, *den;
 | |
|     PyObject *ans;
 | |
| 
 | |
|     num = loghelper(x, m_log, "log");
 | |
|     if (num == NULL || base == NULL)
 | |
|         return num;
 | |
| 
 | |
|     den = loghelper(base, m_log, "log");
 | |
|     if (den == NULL) {
 | |
|         Py_DECREF(num);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ans = PyNumber_TrueDivide(num, den);
 | |
|     Py_DECREF(num);
 | |
|     Py_DECREF(den);
 | |
|     return ans;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.log2
 | |
| 
 | |
|     x: object
 | |
|     /
 | |
| 
 | |
| Return the base 2 logarithm of x.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_log2(PyObject *module, PyObject *x)
 | |
| /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
 | |
| {
 | |
|     return loghelper(x, m_log2, "log2");
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.log10
 | |
| 
 | |
|     x: object
 | |
|     /
 | |
| 
 | |
| Return the base 10 logarithm of x.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_log10(PyObject *module, PyObject *x)
 | |
| /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
 | |
| {
 | |
|     return loghelper(x, m_log10, "log10");
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.fmod
 | |
| 
 | |
|     x: double
 | |
|     y: double
 | |
|     /
 | |
| 
 | |
| Return fmod(x, y), according to platform C.
 | |
| 
 | |
| x % y may differ.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_fmod_impl(PyObject *module, double x, double y)
 | |
| /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
 | |
| {
 | |
|     double r;
 | |
|     /* fmod(x, +/-Inf) returns x for finite x. */
 | |
|     if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
 | |
|         return PyFloat_FromDouble(x);
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("in math_fmod", return 0);
 | |
|     r = fmod(x, y);
 | |
|     PyFPE_END_PROTECT(r);
 | |
|     if (Py_IS_NAN(r)) {
 | |
|         if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|     }
 | |
|     if (errno && is_error(r))
 | |
|         return NULL;
 | |
|     else
 | |
|         return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.hypot
 | |
| 
 | |
|     x: double
 | |
|     y: double
 | |
|     /
 | |
| 
 | |
| Return the Euclidean distance, sqrt(x*x + y*y).
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_hypot_impl(PyObject *module, double x, double y)
 | |
| /*[clinic end generated code: output=b7686e5be468ef87 input=7f8eea70406474aa]*/
 | |
| {
 | |
|     double r;
 | |
|     /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
 | |
|     if (Py_IS_INFINITY(x))
 | |
|         return PyFloat_FromDouble(fabs(x));
 | |
|     if (Py_IS_INFINITY(y))
 | |
|         return PyFloat_FromDouble(fabs(y));
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("in math_hypot", return 0);
 | |
|     r = hypot(x, y);
 | |
|     PyFPE_END_PROTECT(r);
 | |
|     if (Py_IS_NAN(r)) {
 | |
|         if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|     }
 | |
|     else if (Py_IS_INFINITY(r)) {
 | |
|         if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | |
|             errno = ERANGE;
 | |
|         else
 | |
|             errno = 0;
 | |
|     }
 | |
|     if (errno && is_error(r))
 | |
|         return NULL;
 | |
|     else
 | |
|         return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* pow can't use math_2, but needs its own wrapper: the problem is
 | |
|    that an infinite result can arise either as a result of overflow
 | |
|    (in which case OverflowError should be raised) or as a result of
 | |
|    e.g. 0.**-5. (for which ValueError needs to be raised.)
 | |
| */
 | |
| 
 | |
| /*[clinic input]
 | |
| math.pow
 | |
| 
 | |
|     x: double
 | |
|     y: double
 | |
|     /
 | |
| 
 | |
| Return x**y (x to the power of y).
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_pow_impl(PyObject *module, double x, double y)
 | |
| /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
 | |
| {
 | |
|     double r;
 | |
|     int odd_y;
 | |
| 
 | |
|     /* deal directly with IEEE specials, to cope with problems on various
 | |
|        platforms whose semantics don't exactly match C99 */
 | |
|     r = 0.; /* silence compiler warning */
 | |
|     if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
 | |
|         errno = 0;
 | |
|         if (Py_IS_NAN(x))
 | |
|             r = y == 0. ? 1. : x; /* NaN**0 = 1 */
 | |
|         else if (Py_IS_NAN(y))
 | |
|             r = x == 1. ? 1. : y; /* 1**NaN = 1 */
 | |
|         else if (Py_IS_INFINITY(x)) {
 | |
|             odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
 | |
|             if (y > 0.)
 | |
|                 r = odd_y ? x : fabs(x);
 | |
|             else if (y == 0.)
 | |
|                 r = 1.;
 | |
|             else /* y < 0. */
 | |
|                 r = odd_y ? copysign(0., x) : 0.;
 | |
|         }
 | |
|         else if (Py_IS_INFINITY(y)) {
 | |
|             if (fabs(x) == 1.0)
 | |
|                 r = 1.;
 | |
|             else if (y > 0. && fabs(x) > 1.0)
 | |
|                 r = y;
 | |
|             else if (y < 0. && fabs(x) < 1.0) {
 | |
|                 r = -y; /* result is +inf */
 | |
|                 if (x == 0.) /* 0**-inf: divide-by-zero */
 | |
|                     errno = EDOM;
 | |
|             }
 | |
|             else
 | |
|                 r = 0.;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* let libm handle finite**finite */
 | |
|         errno = 0;
 | |
|         PyFPE_START_PROTECT("in math_pow", return 0);
 | |
|         r = pow(x, y);
 | |
|         PyFPE_END_PROTECT(r);
 | |
|         /* a NaN result should arise only from (-ve)**(finite
 | |
|            non-integer); in this case we want to raise ValueError. */
 | |
|         if (!Py_IS_FINITE(r)) {
 | |
|             if (Py_IS_NAN(r)) {
 | |
|                 errno = EDOM;
 | |
|             }
 | |
|             /*
 | |
|                an infinite result here arises either from:
 | |
|                (A) (+/-0.)**negative (-> divide-by-zero)
 | |
|                (B) overflow of x**y with x and y finite
 | |
|             */
 | |
|             else if (Py_IS_INFINITY(r)) {
 | |
|                 if (x == 0.)
 | |
|                     errno = EDOM;
 | |
|                 else
 | |
|                     errno = ERANGE;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (errno && is_error(r))
 | |
|         return NULL;
 | |
|     else
 | |
|         return PyFloat_FromDouble(r);
 | |
| }
 | |
| 
 | |
| 
 | |
| static const double degToRad = Py_MATH_PI / 180.0;
 | |
| static const double radToDeg = 180.0 / Py_MATH_PI;
 | |
| 
 | |
| /*[clinic input]
 | |
| math.degrees
 | |
| 
 | |
|     x: double
 | |
|     /
 | |
| 
 | |
| Convert angle x from radians to degrees.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_degrees_impl(PyObject *module, double x)
 | |
| /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
 | |
| {
 | |
|     return PyFloat_FromDouble(x * radToDeg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.radians
 | |
| 
 | |
|     x: double
 | |
|     /
 | |
| 
 | |
| Convert angle x from degrees to radians.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_radians_impl(PyObject *module, double x)
 | |
| /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
 | |
| {
 | |
|     return PyFloat_FromDouble(x * degToRad);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.isfinite
 | |
| 
 | |
|     x: double
 | |
|     /
 | |
| 
 | |
| Return True if x is neither an infinity nor a NaN, and False otherwise.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_isfinite_impl(PyObject *module, double x)
 | |
| /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
 | |
| {
 | |
|     return PyBool_FromLong((long)Py_IS_FINITE(x));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.isnan
 | |
| 
 | |
|     x: double
 | |
|     /
 | |
| 
 | |
| Return True if x is a NaN (not a number), and False otherwise.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_isnan_impl(PyObject *module, double x)
 | |
| /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
 | |
| {
 | |
|     return PyBool_FromLong((long)Py_IS_NAN(x));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.isinf
 | |
| 
 | |
|     x: double
 | |
|     /
 | |
| 
 | |
| Return True if x is a positive or negative infinity, and False otherwise.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| math_isinf_impl(PyObject *module, double x)
 | |
| /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
 | |
| {
 | |
|     return PyBool_FromLong((long)Py_IS_INFINITY(x));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| math.isclose -> bool
 | |
| 
 | |
|     a: double
 | |
|     b: double
 | |
|     *
 | |
|     rel_tol: double = 1e-09
 | |
|         maximum difference for being considered "close", relative to the
 | |
|         magnitude of the input values
 | |
|     abs_tol: double = 0.0
 | |
|         maximum difference for being considered "close", regardless of the
 | |
|         magnitude of the input values
 | |
| 
 | |
| Determine whether two floating point numbers are close in value.
 | |
| 
 | |
| Return True if a is close in value to b, and False otherwise.
 | |
| 
 | |
| For the values to be considered close, the difference between them
 | |
| must be smaller than at least one of the tolerances.
 | |
| 
 | |
| -inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
 | |
| is, NaN is not close to anything, even itself.  inf and -inf are
 | |
| only close to themselves.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static int
 | |
| math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
 | |
|                   double abs_tol)
 | |
| /*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
 | |
| {
 | |
|     double diff = 0.0;
 | |
| 
 | |
|     /* sanity check on the inputs */
 | |
|     if (rel_tol < 0.0 || abs_tol < 0.0 ) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "tolerances must be non-negative");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if ( a == b ) {
 | |
|         /* short circuit exact equality -- needed to catch two infinities of
 | |
|            the same sign. And perhaps speeds things up a bit sometimes.
 | |
|         */
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* This catches the case of two infinities of opposite sign, or
 | |
|        one infinity and one finite number. Two infinities of opposite
 | |
|        sign would otherwise have an infinite relative tolerance.
 | |
|        Two infinities of the same sign are caught by the equality check
 | |
|        above.
 | |
|     */
 | |
| 
 | |
|     if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* now do the regular computation
 | |
|        this is essentially the "weak" test from the Boost library
 | |
|     */
 | |
| 
 | |
|     diff = fabs(b - a);
 | |
| 
 | |
|     return (((diff <= fabs(rel_tol * b)) ||
 | |
|              (diff <= fabs(rel_tol * a))) ||
 | |
|             (diff <= abs_tol));
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyMethodDef math_methods[] = {
 | |
|     {"acos",            math_acos,      METH_O,         math_acos_doc},
 | |
|     {"acosh",           math_acosh,     METH_O,         math_acosh_doc},
 | |
|     {"asin",            math_asin,      METH_O,         math_asin_doc},
 | |
|     {"asinh",           math_asinh,     METH_O,         math_asinh_doc},
 | |
|     {"atan",            math_atan,      METH_O,         math_atan_doc},
 | |
|     {"atan2",           math_atan2,     METH_VARARGS,   math_atan2_doc},
 | |
|     {"atanh",           math_atanh,     METH_O,         math_atanh_doc},
 | |
|     MATH_CEIL_METHODDEF
 | |
|     {"copysign",        math_copysign,  METH_VARARGS,   math_copysign_doc},
 | |
|     {"cos",             math_cos,       METH_O,         math_cos_doc},
 | |
|     {"cosh",            math_cosh,      METH_O,         math_cosh_doc},
 | |
|     MATH_DEGREES_METHODDEF
 | |
|     {"erf",             math_erf,       METH_O,         math_erf_doc},
 | |
|     {"erfc",            math_erfc,      METH_O,         math_erfc_doc},
 | |
|     {"exp",             math_exp,       METH_O,         math_exp_doc},
 | |
|     {"expm1",           math_expm1,     METH_O,         math_expm1_doc},
 | |
|     {"fabs",            math_fabs,      METH_O,         math_fabs_doc},
 | |
|     MATH_FACTORIAL_METHODDEF
 | |
|     MATH_FLOOR_METHODDEF
 | |
|     MATH_FMOD_METHODDEF
 | |
|     MATH_FREXP_METHODDEF
 | |
|     MATH_FSUM_METHODDEF
 | |
|     {"gamma",           math_gamma,     METH_O,         math_gamma_doc},
 | |
|     MATH_GCD_METHODDEF
 | |
|     MATH_HYPOT_METHODDEF
 | |
|     MATH_ISCLOSE_METHODDEF
 | |
|     MATH_ISFINITE_METHODDEF
 | |
|     MATH_ISINF_METHODDEF
 | |
|     MATH_ISNAN_METHODDEF
 | |
|     MATH_LDEXP_METHODDEF
 | |
|     {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc},
 | |
|     MATH_LOG_METHODDEF
 | |
|     {"log1p",           math_log1p,     METH_O,         math_log1p_doc},
 | |
|     MATH_LOG10_METHODDEF
 | |
|     MATH_LOG2_METHODDEF
 | |
|     MATH_MODF_METHODDEF
 | |
|     MATH_POW_METHODDEF
 | |
|     MATH_RADIANS_METHODDEF
 | |
|     {"sin",             math_sin,       METH_O,         math_sin_doc},
 | |
|     {"sinh",            math_sinh,      METH_O,         math_sinh_doc},
 | |
|     {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc},
 | |
|     {"tan",             math_tan,       METH_O,         math_tan_doc},
 | |
|     {"tanh",            math_tanh,      METH_O,         math_tanh_doc},
 | |
|     MATH_TRUNC_METHODDEF
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "This module is always available.  It provides access to the\n"
 | |
| "mathematical functions defined by the C standard.");
 | |
| 
 | |
| 
 | |
| static struct PyModuleDef mathmodule = {
 | |
|     PyModuleDef_HEAD_INIT,
 | |
|     "math",
 | |
|     module_doc,
 | |
|     -1,
 | |
|     math_methods,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| PyInit_math(void)
 | |
| {
 | |
|     PyObject *m;
 | |
| 
 | |
|     m = PyModule_Create(&mathmodule);
 | |
|     if (m == NULL)
 | |
|         goto finally;
 | |
| 
 | |
|     PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
 | |
|     PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
 | |
|     PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU));  /* 2pi */
 | |
|     PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
 | |
| #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
 | |
|     PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
 | |
| #endif
 | |
| 
 | |
|   finally:
 | |
|     return m;
 | |
| }
 | 
