cpython/Lib/rational.py
Christian Heimes 969fe57baa Merged revisions 60245-60277 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk

........
  r60246 | guido.van.rossum | 2008-01-24 18:58:05 +0100 (Thu, 24 Jan 2008) | 2 lines

  Fix test67.py from issue #1303614.
........
  r60248 | raymond.hettinger | 2008-01-24 19:05:54 +0100 (Thu, 24 Jan 2008) | 1 line

  Clean-up and speed-up code by accessing numerator/denominator directly.  There's no reason to enforce readonliness
........
  r60249 | raymond.hettinger | 2008-01-24 19:12:23 +0100 (Thu, 24 Jan 2008) | 1 line

  Revert 60189 and restore performance.
........
  r60250 | guido.van.rossum | 2008-01-24 19:21:02 +0100 (Thu, 24 Jan 2008) | 5 lines

  News about recently fixed crashers:
  - A few crashers fixed: weakref_in_del.py (issue #1377858);
    loosing_dict_ref.py (issue #1303614, test67.py);
    borrowed_ref_[34].py (not in tracker).
........
  r60252 | thomas.heller | 2008-01-24 19:36:27 +0100 (Thu, 24 Jan 2008) | 7 lines

  Use a PyDictObject again for the array type cache; retrieving items
  from the WeakValueDictionary was slower by nearly a factor of 3.

  To avoid leaks, weakref proxies for the array types are put into the
  cache dict, with weakref callbacks that removes the entries when the
  type goes away.
........
  r60253 | thomas.heller | 2008-01-24 19:54:12 +0100 (Thu, 24 Jan 2008) | 2 lines

  Replace Py_BuildValue with PyTuple_Pack because it is faster.
  Also add a missing DECREF.
........
  r60254 | raymond.hettinger | 2008-01-24 20:05:29 +0100 (Thu, 24 Jan 2008) | 1 line

  Add support for trunc().
........
  r60255 | thomas.heller | 2008-01-24 20:15:02 +0100 (Thu, 24 Jan 2008) | 5 lines

  Invert the checks in get_[u]long and get_[u]longlong.  The intent was
  to not accept float types; the result was that integer-like objects
  were not accepted.

  Ported from release25-maint.
........
  r60256 | raymond.hettinger | 2008-01-24 20:30:19 +0100 (Thu, 24 Jan 2008) | 1 line

  Add support for int(r) just like the other numeric classes.
........
  r60263 | raymond.hettinger | 2008-01-24 22:23:58 +0100 (Thu, 24 Jan 2008) | 1 line

  Expand tests to include nested graph structures.
........
  r60264 | raymond.hettinger | 2008-01-24 22:47:56 +0100 (Thu, 24 Jan 2008) | 1 line

  Shorter pprint's for empty sets and frozensets.  Fix indentation of frozensets.  Add tests including two complex data structures.
........
  r60265 | amaury.forgeotdarc | 2008-01-24 23:51:18 +0100 (Thu, 24 Jan 2008) | 14 lines

  #1920: when considering a block starting by "while 0", the compiler optimized the
  whole construct away, even when an 'else' clause is present::

      while 0:
          print("no")
      else:
          print("yes")

  did not generate any code at all.

  Now the compiler emits the 'else' block, like it already does for 'if' statements.

  Will backport.
........
  r60266 | amaury.forgeotdarc | 2008-01-24 23:59:25 +0100 (Thu, 24 Jan 2008) | 2 lines

  News entry for r60265 (Issue 1920).
........
  r60269 | raymond.hettinger | 2008-01-25 00:50:26 +0100 (Fri, 25 Jan 2008) | 1 line

  More code cleanup.  Remove unnecessary indirection to useless class methods.
........
  r60270 | raymond.hettinger | 2008-01-25 01:21:54 +0100 (Fri, 25 Jan 2008) | 1 line

  Add support for copy, deepcopy, and pickle.
........
  r60271 | raymond.hettinger | 2008-01-25 01:33:45 +0100 (Fri, 25 Jan 2008) | 1 line

  Mark todos and review comments.
........
  r60272 | raymond.hettinger | 2008-01-25 02:13:12 +0100 (Fri, 25 Jan 2008) | 1 line

  Add one other review comment.
........
  r60273 | raymond.hettinger | 2008-01-25 02:23:38 +0100 (Fri, 25 Jan 2008) | 1 line

  Fix-up signature for approximation.
........
  r60274 | raymond.hettinger | 2008-01-25 02:46:33 +0100 (Fri, 25 Jan 2008) | 1 line

  More design notes
........
  r60276 | neal.norwitz | 2008-01-25 07:37:23 +0100 (Fri, 25 Jan 2008) | 6 lines

  Make the test more robust by trying to reconnect up to 3 times
  in case there were transient failures.  This will hopefully silence
  the buildbots for this test.  As we find other tests that have a problem,
  we can fix with a similar strategy assuming it is successful.  It worked
  on my box in a loop for 10+ runs where it would have an exception otherwise.
........
  r60277 | neal.norwitz | 2008-01-25 09:04:16 +0100 (Fri, 25 Jan 2008) | 4 lines

  Add prototypes to get the mathmodule.c to compile on OSF1 5.1 (Tru64)
  and eliminate a compiler warning in floatobject.c.  There might be
  a better way to go about this, but it should be good enough for now.
........
2008-01-25 11:23:10 +00:00

507 lines
16 KiB
Python
Executable file

# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
"""Rational, infinite-precision, real numbers."""
import math
import numbers
import operator
import re
__all__ = ["Rational"]
RationalAbc = numbers.Rational
def _gcd(a, b): # XXX This is a useful function. Consider making it public.
"""Calculate the Greatest Common Divisor.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
"""
while b:
a, b = b, a%b
return a
def _binary_float_to_ratio(x):
"""x -> (top, bot), a pair of ints s.t. x = top/bot.
The conversion is done exactly, without rounding.
bot > 0 guaranteed.
Some form of binary fp is assumed.
Pass NaNs or infinities at your own risk.
>>> _binary_float_to_ratio(10.0)
(10, 1)
>>> _binary_float_to_ratio(0.0)
(0, 1)
>>> _binary_float_to_ratio(-.25)
(-1, 4)
"""
# XXX Consider moving this to to floatobject.c
# with a name like float.as_intger_ratio()
if x == 0:
return 0, 1
f, e = math.frexp(x)
signbit = 1
if f < 0:
f = -f
signbit = -1
assert 0.5 <= f < 1.0
# x = signbit * f * 2**e exactly
# Suck up CHUNK bits at a time; 28 is enough so that we suck
# up all bits in 2 iterations for all known binary double-
# precision formats, and small enough to fit in an int.
CHUNK = 28
top = 0
# invariant: x = signbit * (top + f) * 2**e exactly
while f:
f = math.ldexp(f, CHUNK)
digit = trunc(f)
assert digit >> CHUNK == 0
top = (top << CHUNK) | digit
f = f - digit
assert 0.0 <= f < 1.0
e = e - CHUNK
assert top
# Add in the sign bit.
top = signbit * top
# now x = top * 2**e exactly; fold in 2**e
if e>0:
return (top * 2**e, 1)
else:
return (top, 2 ** -e)
_RATIONAL_FORMAT = re.compile(
r'^\s*(?P<sign>[-+]?)(?P<num>\d+)(?:/(?P<denom>\d+))?\s*$')
# XXX Consider accepting decimal strings as input since they are exact.
# Rational("2.01") --> s="2.01" ; Rational.from_decimal(Decimal(s)) --> Rational(201, 100)"
# If you want to avoid going through the decimal module, just parse the string directly:
# s.partition('.') --> ('2', '.', '01') --> Rational(int('2'+'01'), 10**len('01')) --> Rational(201, 100)
class Rational(RationalAbc):
"""This class implements rational numbers.
Rational(8, 6) will produce a rational number equivalent to
4/3. Both arguments must be Integral. The numerator defaults to 0
and the denominator defaults to 1 so that Rational(3) == 3 and
Rational() == 0.
Rationals can also be constructed from strings of the form
'[-+]?[0-9]+(/[0-9]+)?', optionally surrounded by spaces.
"""
__slots__ = ('numerator', 'denominator')
# We're immutable, so use __new__ not __init__
def __new__(cls, numerator=0, denominator=1):
"""Constructs a Rational.
Takes a string, another Rational, or a numerator/denominator pair.
"""
self = super(Rational, cls).__new__(cls)
if denominator == 1:
if isinstance(numerator, str):
# Handle construction from strings.
input = numerator
m = _RATIONAL_FORMAT.match(input)
if m is None:
raise ValueError('Invalid literal for Rational: ' + input)
numerator = int(m.group('num'))
# Default denominator to 1. That's the only optional group.
denominator = int(m.group('denom') or 1)
if m.group('sign') == '-':
numerator = -numerator
elif (not isinstance(numerator, numbers.Integral) and
isinstance(numerator, RationalAbc)):
# Handle copies from other rationals.
other_rational = numerator
numerator = other_rational.numerator
denominator = other_rational.denominator
if (not isinstance(numerator, numbers.Integral) or
not isinstance(denominator, numbers.Integral)):
raise TypeError("Rational(%(numerator)s, %(denominator)s):"
" Both arguments must be integral." % locals())
if denominator == 0:
raise ZeroDivisionError('Rational(%s, 0)' % numerator)
g = _gcd(numerator, denominator)
self.numerator = int(numerator // g)
self.denominator = int(denominator // g)
return self
@classmethod
def from_float(cls, f):
"""Converts a finite float to a rational number, exactly.
Beware that Rational.from_float(0.3) != Rational(3, 10).
"""
if not isinstance(f, float):
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
(cls.__name__, f, type(f).__name__))
if math.isnan(f) or math.isinf(f):
raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
return cls(*_binary_float_to_ratio(f))
@classmethod
def from_decimal(cls, dec):
"""Converts a finite Decimal instance to a rational number, exactly."""
from decimal import Decimal
if not isinstance(dec, Decimal):
raise TypeError(
"%s.from_decimal() only takes Decimals, not %r (%s)" %
(cls.__name__, dec, type(dec).__name__))
if not dec.is_finite():
# Catches infinities and nans.
raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
sign, digits, exp = dec.as_tuple()
digits = int(''.join(map(str, digits)))
if sign:
digits = -digits
if exp >= 0:
return cls(digits * 10 ** exp)
else:
return cls(digits, 10 ** -exp)
@classmethod
def from_continued_fraction(cls, seq):
'Build a Rational from a continued fraction expessed as a sequence'
n, d = 1, 0
for e in reversed(seq):
n, d = d, n
n += e * d
return cls(n, d) if seq else cls(0)
def as_continued_fraction(self):
'Return continued fraction expressed as a list'
n = self.numerator
d = self.denominator
cf = []
while d:
e = int(n // d)
cf.append(e)
n -= e * d
n, d = d, n
return cf
def approximate(self, max_denominator):
'Best rational approximation with a denominator <= max_denominator'
# XXX First cut at algorithm
# Still needs rounding rules as specified at
# http://en.wikipedia.org/wiki/Continued_fraction
if self.denominator <= max_denominator:
return self
cf = self.as_continued_fraction()
result = Rational(0)
for i in range(1, len(cf)):
new = self.from_continued_fraction(cf[:i])
if new.denominator > max_denominator:
break
result = new
return result
def __repr__(self):
"""repr(self)"""
return ('Rational(%r,%r)' % (self.numerator, self.denominator))
def __str__(self):
"""str(self)"""
if self.denominator == 1:
return str(self.numerator)
else:
return '%s/%s' % (self.numerator, self.denominator)
""" XXX This section needs a lot more commentary
* Explain the typical sequence of checks, calls, and fallbacks.
* Explain the subtle reasons why this logic was needed.
* It is not clear how common cases are handled (for example, how
does the ratio of two huge integers get converted to a float
without overflowing the long-->float conversion.
"""
def _operator_fallbacks(monomorphic_operator, fallback_operator):
"""Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
"""
def forward(a, b):
if isinstance(b, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, RationalAbc):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
def _add(a, b):
"""a + b"""
return Rational(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
def _sub(a, b):
"""a - b"""
return Rational(a.numerator * b.denominator -
b.numerator * a.denominator,
a.denominator * b.denominator)
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
def _mul(a, b):
"""a * b"""
return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
return Rational(a.numerator * b.denominator,
a.denominator * b.numerator)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
def __floordiv__(a, b):
"""a // b"""
return math.floor(a / b)
def __rfloordiv__(b, a):
"""a // b"""
return math.floor(a / b)
def __mod__(a, b):
"""a % b"""
div = a // b
return a - b * div
def __rmod__(b, a):
"""a % b"""
div = a // b
return a - b * div
def __pow__(a, b):
"""a ** b
If b is not an integer, the result will be a float or complex
since roots are generally irrational. If b is an integer, the
result will be rational.
"""
if isinstance(b, RationalAbc):
if b.denominator == 1:
power = b.numerator
if power >= 0:
return Rational(a.numerator ** power,
a.denominator ** power)
else:
return Rational(a.denominator ** -power,
a.numerator ** -power)
else:
# A fractional power will generally produce an
# irrational number.
return float(a) ** float(b)
else:
return float(a) ** b
def __rpow__(b, a):
"""a ** b"""
if b.denominator == 1 and b.numerator >= 0:
# If a is an int, keep it that way if possible.
return a ** b.numerator
if isinstance(a, RationalAbc):
return Rational(a.numerator, a.denominator) ** b
if b.denominator == 1:
return a ** b.numerator
return a ** float(b)
def __pos__(a):
"""+a: Coerces a subclass instance to Rational"""
return Rational(a.numerator, a.denominator)
def __neg__(a):
"""-a"""
return Rational(-a.numerator, a.denominator)
def __abs__(a):
"""abs(a)"""
return Rational(abs(a.numerator), a.denominator)
def __trunc__(a):
"""trunc(a)"""
if a.numerator < 0:
return -(-a.numerator // a.denominator)
else:
return a.numerator // a.denominator
__int__ = __trunc__
def __floor__(a):
"""Will be math.floor(a) in 3.0."""
return a.numerator // a.denominator
def __ceil__(a):
"""Will be math.ceil(a) in 3.0."""
# The negations cleverly convince floordiv to return the ceiling.
return -(-a.numerator // a.denominator)
def __round__(self, ndigits=None):
"""Will be round(self, ndigits) in 3.0.
Rounds half toward even.
"""
if ndigits is None:
floor, remainder = divmod(self.numerator, self.denominator)
if remainder * 2 < self.denominator:
return floor
elif remainder * 2 > self.denominator:
return floor + 1
# Deal with the half case:
elif floor % 2 == 0:
return floor
else:
return floor + 1
shift = 10**abs(ndigits)
# See _operator_fallbacks.forward to check that the results of
# these operations will always be Rational and therefore have
# round().
if ndigits > 0:
return Rational(round(self * shift), shift)
else:
return Rational(round(self / shift) * shift)
def __hash__(self):
"""hash(self)
Tricky because values that are exactly representable as a
float must have the same hash as that float.
"""
# XXX since this method is expensive, consider caching the result
if self.denominator == 1:
# Get integers right.
return hash(self.numerator)
# Expensive check, but definitely correct.
if self == float(self):
return hash(float(self))
else:
# Use tuple's hash to avoid a high collision rate on
# simple fractions.
return hash((self.numerator, self.denominator))
def __eq__(a, b):
"""a == b"""
if isinstance(b, RationalAbc):
return (a.numerator == b.numerator and
a.denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
return a == a.from_float(b)
else:
# XXX: If b.__eq__ is implemented like this method, it may
# give the wrong answer after float(a) changes a's
# value. Better ways of doing this are welcome.
return float(a) == b
def _subtractAndCompareToZero(a, b, op):
"""Helper function for comparison operators.
Subtracts b from a, exactly if possible, and compares the
result with 0 using op, in such a way that the comparison
won't recurse. If the difference raises a TypeError, returns
NotImplemented instead.
"""
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
b = a.from_float(b)
try:
# XXX: If b <: Real but not <: RationalAbc, this is likely
# to fall back to a float. If the actual values differ by
# less than MIN_FLOAT, this could falsely call them equal,
# which would make <= inconsistent with ==. Better ways of
# doing this are welcome.
diff = a - b
except TypeError:
return NotImplemented
if isinstance(diff, RationalAbc):
return op(diff.numerator, 0)
return op(diff, 0)
def __lt__(a, b):
"""a < b"""
return a._subtractAndCompareToZero(b, operator.lt)
def __gt__(a, b):
"""a > b"""
return a._subtractAndCompareToZero(b, operator.gt)
def __le__(a, b):
"""a <= b"""
return a._subtractAndCompareToZero(b, operator.le)
def __ge__(a, b):
"""a >= b"""
return a._subtractAndCompareToZero(b, operator.ge)
def __bool__(a):
"""a != 0"""
return a.numerator != 0
# support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
def __copy__(self):
if type(self) == Rational:
return self # I'm immutable; therefore I am my own clone
return self.__class__(self.numerator, self.denominator)
def __deepcopy__(self, memo):
if type(self) == Rational:
return self # My components are also immutable
return self.__class__(self.numerator, self.denominator)