mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 19:34:08 +00:00 
			
		
		
		
	For more comments, read the patches@python.org archives. For documentation read the comments in mymalloc.h and objimpl.h. (This is not exactly what Vladimir posted to the patches list; I've made a few changes, and Vladimir sent me a fix in private email for a problem that only occurs in debug mode. I'm also holding back on his change to main.c, which seems unnecessary to me.)
		
			
				
	
	
		
			815 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			815 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/***********************************************************
 | 
						|
Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
 | 
						|
The Netherlands.
 | 
						|
 | 
						|
                        All Rights Reserved
 | 
						|
 | 
						|
Permission to use, copy, modify, and distribute this software and its
 | 
						|
documentation for any purpose and without fee is hereby granted,
 | 
						|
provided that the above copyright notice appear in all copies and that
 | 
						|
both that copyright notice and this permission notice appear in
 | 
						|
supporting documentation, and that the names of Stichting Mathematisch
 | 
						|
Centrum or CWI or Corporation for National Research Initiatives or
 | 
						|
CNRI not be used in advertising or publicity pertaining to
 | 
						|
distribution of the software without specific, written prior
 | 
						|
permission.
 | 
						|
 | 
						|
While CWI is the initial source for this software, a modified version
 | 
						|
is made available by the Corporation for National Research Initiatives
 | 
						|
(CNRI) at the Internet address ftp://ftp.python.org.
 | 
						|
 | 
						|
STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
 | 
						|
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
 | 
						|
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
 | 
						|
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
 | 
						|
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 | 
						|
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
 | 
						|
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 | 
						|
PERFORMANCE OF THIS SOFTWARE.
 | 
						|
 | 
						|
******************************************************************/
 | 
						|
 | 
						|
/* Float object implementation */
 | 
						|
 | 
						|
/* XXX There should be overflow checks here, but it's hard to check
 | 
						|
   for any kind of float exception without losing portability. */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
#include <ctype.h>
 | 
						|
#include "mymath.h"
 | 
						|
 | 
						|
#ifdef i860
 | 
						|
/* Cray APP has bogus definition of HUGE_VAL in <math.h> */
 | 
						|
#undef HUGE_VAL
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(HUGE_VAL) && !defined(CHECK)
 | 
						|
#define CHECK(x) if (errno != 0) ; \
 | 
						|
	else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
 | 
						|
	else errno = ERANGE
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CHECK
 | 
						|
#define CHECK(x) /* Don't know how to check */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_LIMITS_H
 | 
						|
#include <limits.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef LONG_MAX
 | 
						|
#define LONG_MAX 0X7FFFFFFFL
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef LONG_MIN
 | 
						|
#define LONG_MIN (-LONG_MAX-1)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __NeXT__
 | 
						|
#ifdef __sparc__
 | 
						|
/*
 | 
						|
 * This works around a bug in the NS/Sparc 3.3 pre-release
 | 
						|
 * limits.h header file.
 | 
						|
 * 10-Feb-1995 bwarsaw@cnri.reston.va.us
 | 
						|
 */
 | 
						|
#undef LONG_MIN
 | 
						|
#define LONG_MIN (-LONG_MAX-1)
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(__STDC__) && !defined(macintosh)
 | 
						|
extern double fmod Py_PROTO((double, double));
 | 
						|
extern double pow Py_PROTO((double, double));
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef sun
 | 
						|
/* On SunOS4.1 only libm.a exists. Make sure that references to all
 | 
						|
   needed math functions exist in the executable, so that dynamic
 | 
						|
   loading of mathmodule does not fail. */
 | 
						|
double (*_Py_math_funcs_hack[])() = {
 | 
						|
	acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor,
 | 
						|
	fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
/* Special free list -- see comments for same code in intobject.c. */
 | 
						|
#define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
 | 
						|
#define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */
 | 
						|
#define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
 | 
						|
 | 
						|
struct _floatblock {
 | 
						|
	struct _floatblock *next;
 | 
						|
	PyFloatObject objects[N_FLOATOBJECTS];
 | 
						|
};
 | 
						|
 | 
						|
typedef struct _floatblock PyFloatBlock;
 | 
						|
 | 
						|
static PyFloatBlock *block_list = NULL;
 | 
						|
static PyFloatObject *free_list = NULL;
 | 
						|
 | 
						|
static PyFloatObject *
 | 
						|
fill_free_list()
 | 
						|
{
 | 
						|
	PyFloatObject *p, *q;
 | 
						|
	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
 | 
						|
	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
 | 
						|
	if (p == NULL)
 | 
						|
		return (PyFloatObject *) PyErr_NoMemory();
 | 
						|
	((PyFloatBlock *)p)->next = block_list;
 | 
						|
	block_list = (PyFloatBlock *)p;
 | 
						|
	p = &((PyFloatBlock *)p)->objects[0];
 | 
						|
	q = p + N_FLOATOBJECTS;
 | 
						|
	while (--q > p)
 | 
						|
		q->ob_type = (struct _typeobject *)(q-1);
 | 
						|
	q->ob_type = NULL;
 | 
						|
	return p + N_FLOATOBJECTS - 1;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
#ifdef __SC__
 | 
						|
PyFloat_FromDouble(double fval)
 | 
						|
#else
 | 
						|
PyFloat_FromDouble(fval)
 | 
						|
	double fval;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	register PyFloatObject *op;
 | 
						|
	if (free_list == NULL) {
 | 
						|
		if ((free_list = fill_free_list()) == NULL)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	/* PyObject_New is inlined */
 | 
						|
	op = free_list;
 | 
						|
	free_list = (PyFloatObject *)op->ob_type;
 | 
						|
	PyObject_INIT(op, &PyFloat_Type);
 | 
						|
	op->ob_fval = fval;
 | 
						|
	return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyFloat_FromString(v, pend)
 | 
						|
	PyObject *v;
 | 
						|
	char **pend;
 | 
						|
{
 | 
						|
	extern double strtod Py_PROTO((const char *, char **));
 | 
						|
	const char *s, *last, *end;
 | 
						|
	double x;
 | 
						|
	char buffer[256]; /* For errors */
 | 
						|
	int len;
 | 
						|
 | 
						|
	if (PyString_Check(v)) {
 | 
						|
		s = PyString_AS_STRING(v);
 | 
						|
		len = PyString_GET_SIZE(v);
 | 
						|
	}
 | 
						|
	else if (PyUnicode_Check(v)) {
 | 
						|
		char s_buffer[256];
 | 
						|
 | 
						|
		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) {
 | 
						|
			PyErr_SetString(PyExc_ValueError,
 | 
						|
				 "float() literal too large to convert");
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), 
 | 
						|
					    PyUnicode_GET_SIZE(v),
 | 
						|
					    s_buffer, 
 | 
						|
					    NULL))
 | 
						|
			return NULL;
 | 
						|
		s = s_buffer;
 | 
						|
		len = strlen(s);
 | 
						|
	}
 | 
						|
	else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"float() needs a string argument");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	last = s + len;
 | 
						|
	while (*s && isspace(Py_CHARMASK(*s)))
 | 
						|
		s++;
 | 
						|
	if (s[0] == '\0') {
 | 
						|
		PyErr_SetString(PyExc_ValueError, "empty string for float()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	errno = 0;
 | 
						|
	PyFPE_START_PROTECT("PyFloat_FromString", return 0)
 | 
						|
	x = strtod((char *)s, (char **)&end);
 | 
						|
	PyFPE_END_PROTECT(x)
 | 
						|
	/* Believe it or not, Solaris 2.6 can move end *beyond* the null
 | 
						|
	   byte at the end of the string, when the input is inf(inity) */
 | 
						|
	if (end > last)
 | 
						|
		end = last;
 | 
						|
	while (*end && isspace(Py_CHARMASK(*end)))
 | 
						|
		end++;
 | 
						|
	if (*end != '\0') {
 | 
						|
		sprintf(buffer, "invalid literal for float(): %.200s", s);
 | 
						|
		PyErr_SetString(PyExc_ValueError, buffer);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	else if (end != last) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
				"null byte in argument for float()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	else if (errno != 0) {
 | 
						|
		sprintf(buffer, "float() literal too large: %.200s", s);
 | 
						|
		PyErr_SetString(PyExc_ValueError, buffer);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (pend)
 | 
						|
		*pend = (char *)end;
 | 
						|
	return PyFloat_FromDouble(x);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
float_dealloc(op)
 | 
						|
	PyFloatObject *op;
 | 
						|
{
 | 
						|
	op->ob_type = (struct _typeobject *)free_list;
 | 
						|
	free_list = op;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_AsDouble(op)
 | 
						|
	PyObject *op;
 | 
						|
{
 | 
						|
	PyNumberMethods *nb;
 | 
						|
	PyFloatObject *fo;
 | 
						|
	double val;
 | 
						|
	
 | 
						|
	if (op && PyFloat_Check(op))
 | 
						|
		return PyFloat_AS_DOUBLE((PyFloatObject*) op);
 | 
						|
	
 | 
						|
	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
 | 
						|
	    nb->nb_float == NULL) {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	fo = (PyFloatObject*) (*nb->nb_float) (op);
 | 
						|
	if (fo == NULL)
 | 
						|
		return -1;
 | 
						|
	if (!PyFloat_Check(fo)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"nb_float should return float object");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	val = PyFloat_AS_DOUBLE(fo);
 | 
						|
	Py_DECREF(fo);
 | 
						|
	
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
void
 | 
						|
PyFloat_AsStringEx(buf, v, precision)
 | 
						|
	char *buf;
 | 
						|
	PyFloatObject *v;
 | 
						|
	int precision;
 | 
						|
{
 | 
						|
	register char *cp;
 | 
						|
	/* Subroutine for float_repr and float_print.
 | 
						|
	   We want float numbers to be recognizable as such,
 | 
						|
	   i.e., they should contain a decimal point or an exponent.
 | 
						|
	   However, %g may print the number as an integer;
 | 
						|
	   in such cases, we append ".0" to the string. */
 | 
						|
	sprintf(buf, "%.*g", precision, v->ob_fval);
 | 
						|
	cp = buf;
 | 
						|
	if (*cp == '-')
 | 
						|
		cp++;
 | 
						|
	for (; *cp != '\0'; cp++) {
 | 
						|
		/* Any non-digit means it's not an integer;
 | 
						|
		   this takes care of NAN and INF as well. */
 | 
						|
		if (!isdigit(Py_CHARMASK(*cp)))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (*cp == '\0') {
 | 
						|
		*cp++ = '.';
 | 
						|
		*cp++ = '0';
 | 
						|
		*cp++ = '\0';
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Precisions used by repr() and str(), respectively.
 | 
						|
 | 
						|
   The repr() precision (17 significant decimal digits) is the minimal number
 | 
						|
   that is guaranteed to have enough precision so that if the number is read
 | 
						|
   back in the exact same binary value is recreated.  This is true for IEEE
 | 
						|
   floating point by design, and also happens to work for all other modern
 | 
						|
   hardware.
 | 
						|
 | 
						|
   The str() precision is chosen so that in most cases, the rounding noise
 | 
						|
   created by various operations is suppressed, while giving plenty of
 | 
						|
   precision for practical use.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#define PREC_REPR	17
 | 
						|
#define PREC_STR	12
 | 
						|
 | 
						|
void
 | 
						|
PyFloat_AsString(buf, v)
 | 
						|
	char *buf;
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	PyFloat_AsStringEx(buf, v, PREC_STR);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static int
 | 
						|
float_print(v, fp, flags)
 | 
						|
	PyFloatObject *v;
 | 
						|
	FILE *fp;
 | 
						|
	int flags; /* Not used but required by interface */
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	PyFloat_AsStringEx(buf, v, flags&Py_PRINT_RAW ? PREC_STR : PREC_REPR);
 | 
						|
	fputs(buf, fp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_repr(v)
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	PyFloat_AsStringEx(buf, v, PREC_REPR);
 | 
						|
	return PyString_FromString(buf);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_str(v)
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	PyFloat_AsStringEx(buf, v, PREC_STR);
 | 
						|
	return PyString_FromString(buf);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_compare(v, w)
 | 
						|
	PyFloatObject *v, *w;
 | 
						|
{
 | 
						|
	double i = v->ob_fval;
 | 
						|
	double j = w->ob_fval;
 | 
						|
	return (i < j) ? -1 : (i > j) ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static long
 | 
						|
float_hash(v)
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	double intpart, fractpart;
 | 
						|
	int expo;
 | 
						|
	long x;
 | 
						|
	/* This is designed so that Python numbers with the same
 | 
						|
	   value hash to the same value, otherwise comparisons
 | 
						|
	   of mapping keys will turn out weird */
 | 
						|
 | 
						|
#ifdef MPW /* MPW C modf expects pointer to extended as second argument */
 | 
						|
{
 | 
						|
	extended e;
 | 
						|
	fractpart = modf(v->ob_fval, &e);
 | 
						|
	intpart = e;
 | 
						|
}
 | 
						|
#else
 | 
						|
	fractpart = modf(v->ob_fval, &intpart);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (fractpart == 0.0) {
 | 
						|
		if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) {
 | 
						|
			/* Convert to long int and use its hash... */
 | 
						|
			PyObject *w = PyLong_FromDouble(v->ob_fval);
 | 
						|
			if (w == NULL)
 | 
						|
				return -1;
 | 
						|
			x = PyObject_Hash(w);
 | 
						|
			Py_DECREF(w);
 | 
						|
			return x;
 | 
						|
		}
 | 
						|
		x = (long)intpart;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Note -- if you change this code, also change the copy
 | 
						|
		   in complexobject.c */
 | 
						|
		long hipart;
 | 
						|
		fractpart = frexp(fractpart, &expo);
 | 
						|
		fractpart = fractpart * 2147483648.0; /* 2**31 */
 | 
						|
		hipart = (long)fractpart; /* Take the top 32 bits */
 | 
						|
		fractpart = (fractpart - (double)hipart) * 2147483648.0;
 | 
						|
						/* Get the next 32 bits */
 | 
						|
		x = hipart + (long)fractpart + (long)intpart + (expo << 15);
 | 
						|
						/* Combine everything */
 | 
						|
	}
 | 
						|
	if (x == -1)
 | 
						|
		x = -2;
 | 
						|
	return x;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_add(v, w)
 | 
						|
	PyFloatObject *v;
 | 
						|
	PyFloatObject *w;
 | 
						|
{
 | 
						|
	double result;
 | 
						|
	PyFPE_START_PROTECT("add", return 0)
 | 
						|
	result = v->ob_fval + w->ob_fval;
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_sub(v, w)
 | 
						|
	PyFloatObject *v;
 | 
						|
	PyFloatObject *w;
 | 
						|
{
 | 
						|
	double result;
 | 
						|
	PyFPE_START_PROTECT("subtract", return 0)
 | 
						|
	result = v->ob_fval - w->ob_fval;
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_mul(v, w)
 | 
						|
	PyFloatObject *v;
 | 
						|
	PyFloatObject *w;
 | 
						|
{
 | 
						|
	double result;
 | 
						|
 | 
						|
	PyFPE_START_PROTECT("multiply", return 0)
 | 
						|
	result = v->ob_fval * w->ob_fval;
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_div(v, w)
 | 
						|
	PyFloatObject *v;
 | 
						|
	PyFloatObject *w;
 | 
						|
{
 | 
						|
	double result;
 | 
						|
	if (w->ob_fval == 0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("divide", return 0)
 | 
						|
	result = v->ob_fval / w->ob_fval;
 | 
						|
	PyFPE_END_PROTECT(result)
 | 
						|
	return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_rem(v, w)
 | 
						|
	PyFloatObject *v;
 | 
						|
	PyFloatObject *w;
 | 
						|
{
 | 
						|
	double vx, wx;
 | 
						|
	double mod;
 | 
						|
	wx = w->ob_fval;
 | 
						|
	if (wx == 0.0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("modulo", return 0)
 | 
						|
	vx = v->ob_fval;
 | 
						|
	mod = fmod(vx, wx);
 | 
						|
	/* note: checking mod*wx < 0 is incorrect -- underflows to
 | 
						|
	   0 if wx < sqrt(smallest nonzero double) */
 | 
						|
	if (mod && ((wx < 0) != (mod < 0))) {
 | 
						|
		mod += wx;
 | 
						|
	}
 | 
						|
	PyFPE_END_PROTECT(mod)
 | 
						|
	return PyFloat_FromDouble(mod);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_divmod(v, w)
 | 
						|
	PyFloatObject *v;
 | 
						|
	PyFloatObject *w;
 | 
						|
{
 | 
						|
	double vx, wx;
 | 
						|
	double div, mod, floordiv;
 | 
						|
	wx = w->ob_fval;
 | 
						|
	if (wx == 0.0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("divmod", return 0)
 | 
						|
	vx = v->ob_fval;
 | 
						|
	mod = fmod(vx, wx);
 | 
						|
	/* fmod is typically exact, so vx-mod is *mathemtically* an
 | 
						|
	   exact multiple of wx.  But this is fp arithmetic, and fp
 | 
						|
	   vx - mod is an approximation; the result is that div may
 | 
						|
	   not be an exact integral value after the division, although
 | 
						|
	   it will always be very close to one.
 | 
						|
	*/
 | 
						|
	div = (vx - mod) / wx;
 | 
						|
	/* note: checking mod*wx < 0 is incorrect -- underflows to
 | 
						|
	   0 if wx < sqrt(smallest nonzero double) */
 | 
						|
	if (mod && ((wx < 0) != (mod < 0))) {
 | 
						|
		mod += wx;
 | 
						|
		div -= 1.0;
 | 
						|
	}
 | 
						|
	/* snap quotient to nearest integral value */
 | 
						|
	floordiv = floor(div);
 | 
						|
	if (div - floordiv > 0.5)
 | 
						|
		floordiv += 1.0;
 | 
						|
	PyFPE_END_PROTECT(div)
 | 
						|
	return Py_BuildValue("(dd)", floordiv, mod);
 | 
						|
}
 | 
						|
 | 
						|
static double powu(x, n)
 | 
						|
	double x;
 | 
						|
	long n;
 | 
						|
{
 | 
						|
	double r = 1.;
 | 
						|
	double p = x;
 | 
						|
	long mask = 1;
 | 
						|
	while (mask > 0 && n >= mask) {
 | 
						|
		if (n & mask)
 | 
						|
			r *= p;
 | 
						|
		mask <<= 1;
 | 
						|
		p *= p;
 | 
						|
	}
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_pow(v, w, z)
 | 
						|
	PyFloatObject *v;
 | 
						|
	PyObject *w;
 | 
						|
	PyFloatObject *z;
 | 
						|
{
 | 
						|
	double iv, iw, ix;
 | 
						|
	long intw;
 | 
						|
 /* XXX Doesn't handle overflows if z!=None yet; it may never do so :(
 | 
						|
  * The z parameter is really only going to be useful for integers and
 | 
						|
  * long integers.  Maybe something clever with logarithms could be done.
 | 
						|
  * [AMK]
 | 
						|
  */
 | 
						|
	iv = v->ob_fval;
 | 
						|
	iw = ((PyFloatObject *)w)->ob_fval;
 | 
						|
	intw = (long)iw;
 | 
						|
	if (iw == intw && -10000 < intw && intw < 10000) {
 | 
						|
		/* Sort out special cases here instead of relying on pow() */
 | 
						|
		if (intw == 0) { 		/* x**0 is 1, even 0**0 */
 | 
						|
			PyFPE_START_PROTECT("pow", return 0)
 | 
						|
		 	if ((PyObject *)z!=Py_None) {
 | 
						|
			 	ix=fmod(1.0, z->ob_fval);
 | 
						|
			 	if (ix!=0 && z->ob_fval<0) ix+=z->ob_fval;
 | 
						|
			}
 | 
						|
		 	else ix=1.0;
 | 
						|
			PyFPE_END_PROTECT(ix)
 | 
						|
	    		return PyFloat_FromDouble(ix); 
 | 
						|
		}
 | 
						|
		errno = 0;
 | 
						|
		PyFPE_START_PROTECT("pow", return 0)
 | 
						|
		if (intw > 0)
 | 
						|
			ix = powu(iv, intw);
 | 
						|
		else
 | 
						|
			ix = 1./powu(iv, -intw);
 | 
						|
		PyFPE_END_PROTECT(ix)
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Sort out special cases here instead of relying on pow() */
 | 
						|
		if (iv == 0.0) {
 | 
						|
			if (iw < 0.0) {
 | 
						|
				PyErr_SetString(PyExc_ValueError,
 | 
						|
					   "0.0 to a negative power");
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
			return PyFloat_FromDouble(0.0);
 | 
						|
		}
 | 
						|
		if (iv < 0.0) {
 | 
						|
			PyErr_SetString(PyExc_ValueError,
 | 
						|
				   "negative number to a float power");
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		errno = 0;
 | 
						|
		PyFPE_START_PROTECT("pow", return 0)
 | 
						|
		ix = pow(iv, iw);
 | 
						|
		PyFPE_END_PROTECT(ix)
 | 
						|
	}
 | 
						|
	CHECK(ix);
 | 
						|
	if (errno != 0) {
 | 
						|
		/* XXX could it be another type of error? */
 | 
						|
		PyErr_SetFromErrno(PyExc_OverflowError);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 	if ((PyObject *)z!=Py_None) {
 | 
						|
		PyFPE_START_PROTECT("pow", return 0)
 | 
						|
	 	ix=fmod(ix, z->ob_fval);	/* XXX To Be Rewritten */
 | 
						|
	 	if ( ix!=0 &&
 | 
						|
		      ((iv<0 && z->ob_fval>0) || (iv>0 && z->ob_fval<0) )) {
 | 
						|
		     ix+=z->ob_fval;
 | 
						|
		    }
 | 
						|
		PyFPE_END_PROTECT(ix)
 | 
						|
	}
 | 
						|
	return PyFloat_FromDouble(ix);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_neg(v)
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	return PyFloat_FromDouble(-v->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_pos(v)
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	Py_INCREF(v);
 | 
						|
	return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_abs(v)
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	if (v->ob_fval < 0)
 | 
						|
		return float_neg(v);
 | 
						|
	else
 | 
						|
		return float_pos(v);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_nonzero(v)
 | 
						|
	PyFloatObject *v;
 | 
						|
{
 | 
						|
	return v->ob_fval != 0.0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_coerce(pv, pw)
 | 
						|
	PyObject **pv;
 | 
						|
	PyObject **pw;
 | 
						|
{
 | 
						|
	if (PyInt_Check(*pw)) {
 | 
						|
		long x = PyInt_AsLong(*pw);
 | 
						|
		*pw = PyFloat_FromDouble((double)x);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(*pw)) {
 | 
						|
		*pw = PyFloat_FromDouble(PyLong_AsDouble(*pw));
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return 1; /* Can't do it */
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_int(v)
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	double x = PyFloat_AsDouble(v);
 | 
						|
	if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN
 | 
						|
	          : (x = floor(x)) > (double)LONG_MAX) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"float too large to convert");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyInt_FromLong((long)x);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_long(v)
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	double x = PyFloat_AsDouble(v);
 | 
						|
	return PyLong_FromDouble(x);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_float(v)
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	Py_INCREF(v);
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyNumberMethods float_as_number = {
 | 
						|
	(binaryfunc)float_add, /*nb_add*/
 | 
						|
	(binaryfunc)float_sub, /*nb_subtract*/
 | 
						|
	(binaryfunc)float_mul, /*nb_multiply*/
 | 
						|
	(binaryfunc)float_div, /*nb_divide*/
 | 
						|
	(binaryfunc)float_rem, /*nb_remainder*/
 | 
						|
	(binaryfunc)float_divmod, /*nb_divmod*/
 | 
						|
	(ternaryfunc)float_pow, /*nb_power*/
 | 
						|
	(unaryfunc)float_neg, /*nb_negative*/
 | 
						|
	(unaryfunc)float_pos, /*nb_positive*/
 | 
						|
	(unaryfunc)float_abs, /*nb_absolute*/
 | 
						|
	(inquiry)float_nonzero, /*nb_nonzero*/
 | 
						|
	0,		/*nb_invert*/
 | 
						|
	0,		/*nb_lshift*/
 | 
						|
	0,		/*nb_rshift*/
 | 
						|
	0,		/*nb_and*/
 | 
						|
	0,		/*nb_xor*/
 | 
						|
	0,		/*nb_or*/
 | 
						|
	(coercion)float_coerce, /*nb_coerce*/
 | 
						|
	(unaryfunc)float_int, /*nb_int*/
 | 
						|
	(unaryfunc)float_long, /*nb_long*/
 | 
						|
	(unaryfunc)float_float, /*nb_float*/
 | 
						|
	0,		/*nb_oct*/
 | 
						|
	0,		/*nb_hex*/
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyFloat_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"float",
 | 
						|
	sizeof(PyFloatObject),
 | 
						|
	0,
 | 
						|
	(destructor)float_dealloc, /*tp_dealloc*/
 | 
						|
	(printfunc)float_print, /*tp_print*/
 | 
						|
	0,			/*tp_getattr*/
 | 
						|
	0,			/*tp_setattr*/
 | 
						|
	(cmpfunc)float_compare, /*tp_compare*/
 | 
						|
	(reprfunc)float_repr,	/*tp_repr*/
 | 
						|
	&float_as_number,	/*tp_as_number*/
 | 
						|
	0,			/*tp_as_sequence*/
 | 
						|
	0,			/*tp_as_mapping*/
 | 
						|
	(hashfunc)float_hash,	/*tp_hash*/
 | 
						|
        0,			/*tp_call*/
 | 
						|
        (reprfunc)float_str,	/*tp_str*/
 | 
						|
};
 | 
						|
 | 
						|
void
 | 
						|
PyFloat_Fini()
 | 
						|
{
 | 
						|
	PyFloatObject *p;
 | 
						|
	PyFloatBlock *list, *next;
 | 
						|
	int i;
 | 
						|
	int bc, bf;	/* block count, number of freed blocks */
 | 
						|
	int frem, fsum;	/* remaining unfreed floats per block, total */
 | 
						|
 | 
						|
	bc = 0;
 | 
						|
	bf = 0;
 | 
						|
	fsum = 0;
 | 
						|
	list = block_list;
 | 
						|
	block_list = NULL;
 | 
						|
	free_list = NULL;
 | 
						|
	while (list != NULL) {
 | 
						|
		bc++;
 | 
						|
		frem = 0;
 | 
						|
		for (i = 0, p = &list->objects[0];
 | 
						|
		     i < N_FLOATOBJECTS;
 | 
						|
		     i++, p++) {
 | 
						|
			if (PyFloat_Check(p) && p->ob_refcnt != 0)
 | 
						|
				frem++;
 | 
						|
		}
 | 
						|
		next = list->next;
 | 
						|
		if (frem) {
 | 
						|
			list->next = block_list;
 | 
						|
			block_list = list;
 | 
						|
			for (i = 0, p = &list->objects[0];
 | 
						|
			     i < N_FLOATOBJECTS;
 | 
						|
			     i++, p++) {
 | 
						|
				if (!PyFloat_Check(p) || p->ob_refcnt == 0) {
 | 
						|
					p->ob_type = (struct _typeobject *)
 | 
						|
						free_list;
 | 
						|
					free_list = p;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			PyMem_FREE(list); /* XXX PyObject_FREE ??? */
 | 
						|
			bf++;
 | 
						|
		}
 | 
						|
		fsum += frem;
 | 
						|
		list = next;
 | 
						|
	}
 | 
						|
	if (!Py_VerboseFlag)
 | 
						|
		return;
 | 
						|
	fprintf(stderr, "# cleanup floats");
 | 
						|
	if (!fsum) {
 | 
						|
		fprintf(stderr, "\n");
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		fprintf(stderr,
 | 
						|
			": %d unfreed float%s in %d out of %d block%s\n",
 | 
						|
			fsum, fsum == 1 ? "" : "s",
 | 
						|
			bc - bf, bc, bc == 1 ? "" : "s");
 | 
						|
	}
 | 
						|
	if (Py_VerboseFlag > 1) {
 | 
						|
		list = block_list;
 | 
						|
		while (list != NULL) {
 | 
						|
			for (i = 0, p = &list->objects[0];
 | 
						|
			     i < N_FLOATOBJECTS;
 | 
						|
			     i++, p++) {
 | 
						|
				if (PyFloat_Check(p) && p->ob_refcnt != 0) {
 | 
						|
					char buf[100];
 | 
						|
					PyFloat_AsString(buf, p);
 | 
						|
					fprintf(stderr,
 | 
						|
			     "#   <float at %lx, refcnt=%d, val=%s>\n",
 | 
						|
						(long)p, p->ob_refcnt, buf);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			list = list->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |