mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	for non-complex arguments. * Replace type() comparisons with isinstance() checks. * Replace apply() calls with equivalent syntactic form. * Simplify __hash__ definition to hash the underlying tuple. * Use math.hypot() for more robust computation of __abs__(). * Use sorted() instead of the multi-step keys/sort/iter. * Update comment on the cmath module.
		
			
				
	
	
		
			320 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			320 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
# Complex numbers
 | 
						|
# ---------------
 | 
						|
 | 
						|
# [Now that Python has a complex data type built-in, this is not very
 | 
						|
# useful, but it's still a nice example class]
 | 
						|
 | 
						|
# This module represents complex numbers as instances of the class Complex.
 | 
						|
# A Complex instance z has two data attribues, z.re (the real part) and z.im
 | 
						|
# (the imaginary part).  In fact, z.re and z.im can have any value -- all
 | 
						|
# arithmetic operators work regardless of the type of z.re and z.im (as long
 | 
						|
# as they support numerical operations).
 | 
						|
#
 | 
						|
# The following functions exist (Complex is actually a class):
 | 
						|
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
 | 
						|
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
 | 
						|
# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
 | 
						|
#                 if z is a tuple(re, im) it will also be converted
 | 
						|
# PolarToComplex([r [,phi [,fullcircle]]]) ->
 | 
						|
#       the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
 | 
						|
#       (r and phi default to 0)
 | 
						|
# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
 | 
						|
#
 | 
						|
# Complex numbers have the following methods:
 | 
						|
# z.abs() -> absolute value of z
 | 
						|
# z.radius() == z.abs()
 | 
						|
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
 | 
						|
# z.phi([fullcircle]) == z.angle(fullcircle)
 | 
						|
#
 | 
						|
# These standard functions and unary operators accept complex arguments:
 | 
						|
# abs(z)
 | 
						|
# -z
 | 
						|
# +z
 | 
						|
# not z
 | 
						|
# repr(z) == `z`
 | 
						|
# str(z)
 | 
						|
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
 | 
						|
#            the result equals hash(z.re)
 | 
						|
# Note that hex(z) and oct(z) are not defined.
 | 
						|
#
 | 
						|
# These conversions accept complex arguments only if their imaginary part is zero:
 | 
						|
# int(z)
 | 
						|
# long(z)
 | 
						|
# float(z)
 | 
						|
#
 | 
						|
# The following operators accept two complex numbers, or one complex number
 | 
						|
# and one real number (int, long or float):
 | 
						|
# z1 + z2
 | 
						|
# z1 - z2
 | 
						|
# z1 * z2
 | 
						|
# z1 / z2
 | 
						|
# pow(z1, z2)
 | 
						|
# cmp(z1, z2)
 | 
						|
# Note that z1 % z2 and divmod(z1, z2) are not defined,
 | 
						|
# nor are shift and mask operations.
 | 
						|
#
 | 
						|
# The standard module math does not support complex numbers.
 | 
						|
# The cmath modules should be used instead.
 | 
						|
#
 | 
						|
# Idea:
 | 
						|
# add a class Polar(r, phi) and mixed-mode arithmetic which
 | 
						|
# chooses the most appropriate type for the result:
 | 
						|
# Complex for +,-,cmp
 | 
						|
# Polar   for *,/,pow
 | 
						|
 | 
						|
import math
 | 
						|
import sys
 | 
						|
 | 
						|
twopi = math.pi*2.0
 | 
						|
halfpi = math.pi/2.0
 | 
						|
 | 
						|
def IsComplex(obj):
 | 
						|
    return hasattr(obj, 're') and hasattr(obj, 'im')
 | 
						|
 | 
						|
def ToComplex(obj):
 | 
						|
    if IsComplex(obj):
 | 
						|
        return obj
 | 
						|
    elif isinstance(obj, tuple):
 | 
						|
        return Complex(*obj)
 | 
						|
    else:
 | 
						|
        return Complex(obj)
 | 
						|
 | 
						|
def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
 | 
						|
    phi = phi * (twopi / fullcircle)
 | 
						|
    return Complex(math.cos(phi)*r, math.sin(phi)*r)
 | 
						|
 | 
						|
def Re(obj):
 | 
						|
    if IsComplex(obj):
 | 
						|
        return obj.re
 | 
						|
    return obj
 | 
						|
 | 
						|
def Im(obj):
 | 
						|
    if IsComplex(obj):
 | 
						|
        return obj.im
 | 
						|
    return 0
 | 
						|
 | 
						|
class Complex:
 | 
						|
 | 
						|
    def __init__(self, re=0, im=0):
 | 
						|
        _re = 0
 | 
						|
        _im = 0
 | 
						|
        if IsComplex(re):
 | 
						|
            _re = re.re
 | 
						|
            _im = re.im
 | 
						|
        else:
 | 
						|
            _re = re
 | 
						|
        if IsComplex(im):
 | 
						|
            _re = _re - im.im
 | 
						|
            _im = _im + im.re
 | 
						|
        else:
 | 
						|
            _im = _im + im
 | 
						|
        # this class is immutable, so setting self.re directly is
 | 
						|
        # not possible.
 | 
						|
        self.__dict__['re'] = _re
 | 
						|
        self.__dict__['im'] = _im
 | 
						|
 | 
						|
    def __setattr__(self, name, value):
 | 
						|
        raise TypeError, 'Complex numbers are immutable'
 | 
						|
 | 
						|
    def __hash__(self):
 | 
						|
        if not self.im:
 | 
						|
            return hash(self.re)
 | 
						|
        return hash((self.re, self.im))
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        if not self.im:
 | 
						|
            return 'Complex(%r)' % (self.re,)
 | 
						|
        else:
 | 
						|
            return 'Complex(%r, %r)' % (self.re, self.im)
 | 
						|
 | 
						|
    def __str__(self):
 | 
						|
        if not self.im:
 | 
						|
            return repr(self.re)
 | 
						|
        else:
 | 
						|
            return 'Complex(%r, %r)' % (self.re, self.im)
 | 
						|
 | 
						|
    def __neg__(self):
 | 
						|
        return Complex(-self.re, -self.im)
 | 
						|
 | 
						|
    def __pos__(self):
 | 
						|
        return self
 | 
						|
 | 
						|
    def __abs__(self):
 | 
						|
        return math.hypot(self.re, self.im)
 | 
						|
 | 
						|
    def __int__(self):
 | 
						|
        if self.im:
 | 
						|
            raise ValueError, "can't convert Complex with nonzero im to int"
 | 
						|
        return int(self.re)
 | 
						|
 | 
						|
    def __long__(self):
 | 
						|
        if self.im:
 | 
						|
            raise ValueError, "can't convert Complex with nonzero im to long"
 | 
						|
        return long(self.re)
 | 
						|
 | 
						|
    def __float__(self):
 | 
						|
        if self.im:
 | 
						|
            raise ValueError, "can't convert Complex with nonzero im to float"
 | 
						|
        return float(self.re)
 | 
						|
 | 
						|
    def __cmp__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        return cmp((self.re, self.im), (other.re, other.im))
 | 
						|
 | 
						|
    def __rcmp__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        return cmp(other, self)
 | 
						|
 | 
						|
    def __nonzero__(self):
 | 
						|
        return not (self.re == self.im == 0)
 | 
						|
 | 
						|
    abs = radius = __abs__
 | 
						|
 | 
						|
    def angle(self, fullcircle = twopi):
 | 
						|
        return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
 | 
						|
 | 
						|
    phi = angle
 | 
						|
 | 
						|
    def __add__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        return Complex(self.re + other.re, self.im + other.im)
 | 
						|
 | 
						|
    __radd__ = __add__
 | 
						|
 | 
						|
    def __sub__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        return Complex(self.re - other.re, self.im - other.im)
 | 
						|
 | 
						|
    def __rsub__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        return other - self
 | 
						|
 | 
						|
    def __mul__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        return Complex(self.re*other.re - self.im*other.im,
 | 
						|
                       self.re*other.im + self.im*other.re)
 | 
						|
 | 
						|
    __rmul__ = __mul__
 | 
						|
 | 
						|
    def __div__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        d = float(other.re*other.re + other.im*other.im)
 | 
						|
        if not d: raise ZeroDivisionError, 'Complex division'
 | 
						|
        return Complex((self.re*other.re + self.im*other.im) / d,
 | 
						|
                       (self.im*other.re - self.re*other.im) / d)
 | 
						|
 | 
						|
    def __rdiv__(self, other):
 | 
						|
        other = ToComplex(other)
 | 
						|
        return other / self
 | 
						|
 | 
						|
    def __pow__(self, n, z=None):
 | 
						|
        if z is not None:
 | 
						|
            raise TypeError, 'Complex does not support ternary pow()'
 | 
						|
        if IsComplex(n):
 | 
						|
            if n.im:
 | 
						|
                if self.im: raise TypeError, 'Complex to the Complex power'
 | 
						|
                else: return exp(math.log(self.re)*n)
 | 
						|
            n = n.re
 | 
						|
        r = pow(self.abs(), n)
 | 
						|
        phi = n*self.angle()
 | 
						|
        return Complex(math.cos(phi)*r, math.sin(phi)*r)
 | 
						|
 | 
						|
    def __rpow__(self, base):
 | 
						|
        base = ToComplex(base)
 | 
						|
        return pow(base, self)
 | 
						|
 | 
						|
def exp(z):
 | 
						|
    r = math.exp(z.re)
 | 
						|
    return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
 | 
						|
 | 
						|
 | 
						|
def checkop(expr, a, b, value, fuzz = 1e-6):
 | 
						|
    print '       ', a, 'and', b,
 | 
						|
    try:
 | 
						|
        result = eval(expr)
 | 
						|
    except:
 | 
						|
        result = sys.exc_type
 | 
						|
    print '->', result
 | 
						|
    if isinstance(result, str) or isinstance(value, str):
 | 
						|
        ok = (result == value)
 | 
						|
    else:
 | 
						|
        ok = abs(result - value) <= fuzz
 | 
						|
    if not ok:
 | 
						|
        print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
 | 
						|
 | 
						|
def test():
 | 
						|
    print 'test constructors'
 | 
						|
    constructor_test = (
 | 
						|
        # "expect" is an array [re,im] "got" the Complex.
 | 
						|
            ( (0,0), Complex() ),
 | 
						|
            ( (0,0), Complex() ),
 | 
						|
            ( (1,0), Complex(1) ),
 | 
						|
            ( (0,1), Complex(0,1) ),
 | 
						|
            ( (1,2), Complex(Complex(1,2)) ),
 | 
						|
            ( (1,3), Complex(Complex(1,2),1) ),
 | 
						|
            ( (0,0), Complex(0,Complex(0,0)) ),
 | 
						|
            ( (3,4), Complex(3,Complex(4)) ),
 | 
						|
            ( (-1,3), Complex(1,Complex(3,2)) ),
 | 
						|
            ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
 | 
						|
    cnt = [0,0]
 | 
						|
    for t in constructor_test:
 | 
						|
        cnt[0] += 1
 | 
						|
        if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
 | 
						|
            print "        expected", t[0], "got", t[1]
 | 
						|
            cnt[1] += 1
 | 
						|
    print "  ", cnt[1], "of", cnt[0], "tests failed"
 | 
						|
    # test operators
 | 
						|
    testsuite = {
 | 
						|
            'a+b': [
 | 
						|
                    (1, 10, 11),
 | 
						|
                    (1, Complex(0,10), Complex(1,10)),
 | 
						|
                    (Complex(0,10), 1, Complex(1,10)),
 | 
						|
                    (Complex(0,10), Complex(1), Complex(1,10)),
 | 
						|
                    (Complex(1), Complex(0,10), Complex(1,10)),
 | 
						|
            ],
 | 
						|
            'a-b': [
 | 
						|
                    (1, 10, -9),
 | 
						|
                    (1, Complex(0,10), Complex(1,-10)),
 | 
						|
                    (Complex(0,10), 1, Complex(-1,10)),
 | 
						|
                    (Complex(0,10), Complex(1), Complex(-1,10)),
 | 
						|
                    (Complex(1), Complex(0,10), Complex(1,-10)),
 | 
						|
            ],
 | 
						|
            'a*b': [
 | 
						|
                    (1, 10, 10),
 | 
						|
                    (1, Complex(0,10), Complex(0, 10)),
 | 
						|
                    (Complex(0,10), 1, Complex(0,10)),
 | 
						|
                    (Complex(0,10), Complex(1), Complex(0,10)),
 | 
						|
                    (Complex(1), Complex(0,10), Complex(0,10)),
 | 
						|
            ],
 | 
						|
            'a/b': [
 | 
						|
                    (1., 10, 0.1),
 | 
						|
                    (1, Complex(0,10), Complex(0, -0.1)),
 | 
						|
                    (Complex(0, 10), 1, Complex(0, 10)),
 | 
						|
                    (Complex(0, 10), Complex(1), Complex(0, 10)),
 | 
						|
                    (Complex(1), Complex(0,10), Complex(0, -0.1)),
 | 
						|
            ],
 | 
						|
            'pow(a,b)': [
 | 
						|
                    (1, 10, 1),
 | 
						|
                    (1, Complex(0,10), 1),
 | 
						|
                    (Complex(0,10), 1, Complex(0,10)),
 | 
						|
                    (Complex(0,10), Complex(1), Complex(0,10)),
 | 
						|
                    (Complex(1), Complex(0,10), 1),
 | 
						|
                    (2, Complex(4,0), 16),
 | 
						|
            ],
 | 
						|
            'cmp(a,b)': [
 | 
						|
                    (1, 10, -1),
 | 
						|
                    (1, Complex(0,10), 1),
 | 
						|
                    (Complex(0,10), 1, -1),
 | 
						|
                    (Complex(0,10), Complex(1), -1),
 | 
						|
                    (Complex(1), Complex(0,10), 1),
 | 
						|
            ],
 | 
						|
    }
 | 
						|
    for expr in sorted(testsuite):
 | 
						|
        print expr + ':'
 | 
						|
        t = (expr,)
 | 
						|
        for item in testsuite[expr]:
 | 
						|
            checkop(*(t+item))
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test()
 |