mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 18:28:49 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			171 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "mpdecimal.h"
 | |
| #include "bits.h"
 | |
| #include "constants.h"
 | |
| #include "convolute.h"
 | |
| #include "fnt.h"
 | |
| #include "fourstep.h"
 | |
| #include "numbertheory.h"
 | |
| #include "sixstep.h"
 | |
| #include "umodarith.h"
 | |
| 
 | |
| 
 | |
| /* Bignum: Fast convolution using the Number Theoretic Transform. Used for
 | |
|    the multiplication of very large coefficients. */
 | |
| 
 | |
| 
 | |
| /* Convolute the data in c1 and c2. Result is in c1. */
 | |
| int
 | |
| fnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum)
 | |
| {
 | |
|     int (*fnt)(mpd_uint_t *, mpd_size_t, int);
 | |
|     int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_uint_t n_inv, umod;
 | |
|     mpd_size_t i;
 | |
| 
 | |
| 
 | |
|     SETMODULUS(modnum);
 | |
|     n_inv = POWMOD(n, (umod-2));
 | |
| 
 | |
|     if (ispower2(n)) {
 | |
|         if (n > SIX_STEP_THRESHOLD) {
 | |
|             fnt = six_step_fnt;
 | |
|             inv_fnt = inv_six_step_fnt;
 | |
|         }
 | |
|         else {
 | |
|             fnt = std_fnt;
 | |
|             inv_fnt = std_inv_fnt;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         fnt = four_step_fnt;
 | |
|         inv_fnt = inv_four_step_fnt;
 | |
|     }
 | |
| 
 | |
|     if (!fnt(c1, n, modnum)) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (!fnt(c2, n, modnum)) {
 | |
|         return 0;
 | |
|     }
 | |
|     for (i = 0; i < n-1; i += 2) {
 | |
|         mpd_uint_t x0 = c1[i];
 | |
|         mpd_uint_t y0 = c2[i];
 | |
|         mpd_uint_t x1 = c1[i+1];
 | |
|         mpd_uint_t y1 = c2[i+1];
 | |
|         MULMOD2(&x0, y0, &x1, y1);
 | |
|         c1[i] = x0;
 | |
|         c1[i+1] = x1;
 | |
|     }
 | |
| 
 | |
|     if (!inv_fnt(c1, n, modnum)) {
 | |
|         return 0;
 | |
|     }
 | |
|     for (i = 0; i < n-3; i += 4) {
 | |
|         mpd_uint_t x0 = c1[i];
 | |
|         mpd_uint_t x1 = c1[i+1];
 | |
|         mpd_uint_t x2 = c1[i+2];
 | |
|         mpd_uint_t x3 = c1[i+3];
 | |
|         MULMOD2C(&x0, &x1, n_inv);
 | |
|         MULMOD2C(&x2, &x3, n_inv);
 | |
|         c1[i] = x0;
 | |
|         c1[i+1] = x1;
 | |
|         c1[i+2] = x2;
 | |
|         c1[i+3] = x3;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Autoconvolute the data in c1. Result is in c1. */
 | |
| int
 | |
| fnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum)
 | |
| {
 | |
|     int (*fnt)(mpd_uint_t *, mpd_size_t, int);
 | |
|     int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_uint_t n_inv, umod;
 | |
|     mpd_size_t i;
 | |
| 
 | |
| 
 | |
|     SETMODULUS(modnum);
 | |
|     n_inv = POWMOD(n, (umod-2));
 | |
| 
 | |
|     if (ispower2(n)) {
 | |
|         if (n > SIX_STEP_THRESHOLD) {
 | |
|             fnt = six_step_fnt;
 | |
|             inv_fnt = inv_six_step_fnt;
 | |
|         }
 | |
|         else {
 | |
|             fnt = std_fnt;
 | |
|             inv_fnt = std_inv_fnt;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         fnt = four_step_fnt;
 | |
|         inv_fnt = inv_four_step_fnt;
 | |
|     }
 | |
| 
 | |
|     if (!fnt(c1, n, modnum)) {
 | |
|         return 0;
 | |
|     }
 | |
|     for (i = 0; i < n-1; i += 2) {
 | |
|         mpd_uint_t x0 = c1[i];
 | |
|         mpd_uint_t x1 = c1[i+1];
 | |
|         MULMOD2(&x0, x0, &x1, x1);
 | |
|         c1[i] = x0;
 | |
|         c1[i+1] = x1;
 | |
|     }
 | |
| 
 | |
|     if (!inv_fnt(c1, n, modnum)) {
 | |
|         return 0;
 | |
|     }
 | |
|     for (i = 0; i < n-3; i += 4) {
 | |
|         mpd_uint_t x0 = c1[i];
 | |
|         mpd_uint_t x1 = c1[i+1];
 | |
|         mpd_uint_t x2 = c1[i+2];
 | |
|         mpd_uint_t x3 = c1[i+3];
 | |
|         MULMOD2C(&x0, &x1, n_inv);
 | |
|         MULMOD2C(&x2, &x3, n_inv);
 | |
|         c1[i] = x0;
 | |
|         c1[i+1] = x1;
 | |
|         c1[i+2] = x2;
 | |
|         c1[i+3] = x3;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | 
