mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			4374 lines
		
	
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4374 lines
		
	
	
	
		
			112 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
 | 
						|
/* Long (arbitrary precision) integer object implementation */
 | 
						|
 | 
						|
/* XXX The functional organization of this file is terrible */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "longintrepr.h"
 | 
						|
#include "structseq.h"
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
#include <ctype.h>
 | 
						|
#include <stddef.h>
 | 
						|
 | 
						|
/* For long multiplication, use the O(N**2) school algorithm unless
 | 
						|
 * both operands contain more than KARATSUBA_CUTOFF digits (this
 | 
						|
 * being an internal Python long digit, in base PyLong_BASE).
 | 
						|
 */
 | 
						|
#define KARATSUBA_CUTOFF 70
 | 
						|
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
 | 
						|
 | 
						|
/* For exponentiation, use the binary left-to-right algorithm
 | 
						|
 * unless the exponent contains more than FIVEARY_CUTOFF digits.
 | 
						|
 * In that case, do 5 bits at a time.  The potential drawback is that
 | 
						|
 * a table of 2**5 intermediate results is computed.
 | 
						|
 */
 | 
						|
#define FIVEARY_CUTOFF 8
 | 
						|
 | 
						|
#define ABS(x) ((x) < 0 ? -(x) : (x))
 | 
						|
 | 
						|
#undef MIN
 | 
						|
#undef MAX
 | 
						|
#define MAX(x, y) ((x) < (y) ? (y) : (x))
 | 
						|
#define MIN(x, y) ((x) > (y) ? (y) : (x))
 | 
						|
 | 
						|
#define SIGCHECK(PyTryBlock) \
 | 
						|
	if (--_Py_Ticker < 0) { \
 | 
						|
		_Py_Ticker = _Py_CheckInterval; \
 | 
						|
		if (PyErr_CheckSignals()) PyTryBlock \
 | 
						|
	}
 | 
						|
 | 
						|
/* Normalize (remove leading zeros from) a long int object.
 | 
						|
   Doesn't attempt to free the storage--in most cases, due to the nature
 | 
						|
   of the algorithms used, this could save at most be one word anyway. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
long_normalize(register PyLongObject *v)
 | 
						|
{
 | 
						|
	Py_ssize_t j = ABS(Py_SIZE(v));
 | 
						|
	Py_ssize_t i = j;
 | 
						|
 | 
						|
	while (i > 0 && v->ob_digit[i-1] == 0)
 | 
						|
		--i;
 | 
						|
	if (i != j)
 | 
						|
		Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a new long int object with size digits.
 | 
						|
   Return NULL and set exception if we run out of memory. */
 | 
						|
 | 
						|
#define MAX_LONG_DIGITS \
 | 
						|
	((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
 | 
						|
 | 
						|
PyLongObject *
 | 
						|
_PyLong_New(Py_ssize_t size)
 | 
						|
{
 | 
						|
	if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"too many digits in integer");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	/* coverity[ampersand_in_size] */
 | 
						|
	/* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect
 | 
						|
	   overflow */
 | 
						|
	return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size);
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_Copy(PyLongObject *src)
 | 
						|
{
 | 
						|
	PyLongObject *result;
 | 
						|
	Py_ssize_t i;
 | 
						|
 | 
						|
	assert(src != NULL);
 | 
						|
	i = src->ob_size;
 | 
						|
	if (i < 0)
 | 
						|
		i = -(i);
 | 
						|
	result = _PyLong_New(i);
 | 
						|
	if (result != NULL) {
 | 
						|
		result->ob_size = src->ob_size;
 | 
						|
		while (--i >= 0)
 | 
						|
			result->ob_digit[i] = src->ob_digit[i];
 | 
						|
	}
 | 
						|
	return (PyObject *)result;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new long int object from a C long int */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromLong(long ival)
 | 
						|
{
 | 
						|
	PyLongObject *v;
 | 
						|
        unsigned long abs_ival;
 | 
						|
	unsigned long t;  /* unsigned so >> doesn't propagate sign bit */
 | 
						|
	int ndigits = 0;
 | 
						|
	int negative = 0;
 | 
						|
 | 
						|
	if (ival < 0) {
 | 
						|
		/* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then
 | 
						|
		   ANSI C says that the result of -ival is undefined when ival
 | 
						|
		   == LONG_MIN.  Hence the following workaround. */
 | 
						|
		abs_ival = (unsigned long)(-1-ival) + 1;
 | 
						|
		negative = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		abs_ival = (unsigned long)ival;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Count the number of Python digits.
 | 
						|
	   We used to pick 5 ("big enough for anything"), but that's a
 | 
						|
	   waste of time and space given that 5*15 = 75 bits are rarely
 | 
						|
	   needed. */
 | 
						|
	t = abs_ival;
 | 
						|
	while (t) {
 | 
						|
		++ndigits;
 | 
						|
		t >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	v = _PyLong_New(ndigits);
 | 
						|
	if (v != NULL) {
 | 
						|
		digit *p = v->ob_digit;
 | 
						|
		v->ob_size = negative ? -ndigits : ndigits;
 | 
						|
		t = abs_ival;
 | 
						|
		while (t) {
 | 
						|
			*p++ = (digit)(t & PyLong_MASK);
 | 
						|
			t >>= PyLong_SHIFT;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new long int object from a C unsigned long int */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromUnsignedLong(unsigned long ival)
 | 
						|
{
 | 
						|
	PyLongObject *v;
 | 
						|
	unsigned long t;
 | 
						|
	int ndigits = 0;
 | 
						|
 | 
						|
	/* Count the number of Python digits. */
 | 
						|
	t = (unsigned long)ival;
 | 
						|
	while (t) {
 | 
						|
		++ndigits;
 | 
						|
		t >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	v = _PyLong_New(ndigits);
 | 
						|
	if (v != NULL) {
 | 
						|
		digit *p = v->ob_digit;
 | 
						|
		Py_SIZE(v) = ndigits;
 | 
						|
		while (ival) {
 | 
						|
			*p++ = (digit)(ival & PyLong_MASK);
 | 
						|
			ival >>= PyLong_SHIFT;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new long int object from a C double */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromDouble(double dval)
 | 
						|
{
 | 
						|
	PyLongObject *v;
 | 
						|
	double frac;
 | 
						|
	int i, ndig, expo, neg;
 | 
						|
	neg = 0;
 | 
						|
	if (Py_IS_INFINITY(dval)) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
			"cannot convert float infinity to integer");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (Py_IS_NAN(dval)) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
			"cannot convert float NaN to integer");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (dval < 0.0) {
 | 
						|
		neg = 1;
 | 
						|
		dval = -dval;
 | 
						|
	}
 | 
						|
	frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
 | 
						|
	if (expo <= 0)
 | 
						|
		return PyLong_FromLong(0L);
 | 
						|
	ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
 | 
						|
	v = _PyLong_New(ndig);
 | 
						|
	if (v == NULL)
 | 
						|
		return NULL;
 | 
						|
	frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
 | 
						|
	for (i = ndig; --i >= 0; ) {
 | 
						|
		digit bits = (digit)frac;
 | 
						|
		v->ob_digit[i] = bits;
 | 
						|
		frac = frac - (double)bits;
 | 
						|
		frac = ldexp(frac, PyLong_SHIFT);
 | 
						|
	}
 | 
						|
	if (neg)
 | 
						|
		Py_SIZE(v) = -(Py_SIZE(v));
 | 
						|
	return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
 | 
						|
 * anything about what happens when a signed integer operation overflows,
 | 
						|
 * and some compilers think they're doing you a favor by being "clever"
 | 
						|
 * then.  The bit pattern for the largest postive signed long is
 | 
						|
 * (unsigned long)LONG_MAX, and for the smallest negative signed long
 | 
						|
 * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
 | 
						|
 * However, some other compilers warn about applying unary minus to an
 | 
						|
 * unsigned operand.  Hence the weird "0-".
 | 
						|
 */
 | 
						|
#define PY_ABS_LONG_MIN		(0-(unsigned long)LONG_MIN)
 | 
						|
#define PY_ABS_SSIZE_T_MIN	(0-(size_t)PY_SSIZE_T_MIN)
 | 
						|
 | 
						|
/* Get a C long int from a Python long or Python int object.
 | 
						|
   On overflow, returns -1 and sets *overflow to 1 or -1 depending
 | 
						|
   on the sign of the result.  Otherwise *overflow is 0.
 | 
						|
 | 
						|
   For other errors (e.g., type error), returns -1 and sets an error
 | 
						|
   condition.
 | 
						|
*/
 | 
						|
 | 
						|
long
 | 
						|
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
 | 
						|
{
 | 
						|
	/* This version by Tim Peters */
 | 
						|
	register PyLongObject *v;
 | 
						|
	unsigned long x, prev;
 | 
						|
	long res;
 | 
						|
	Py_ssize_t i;
 | 
						|
	int sign;
 | 
						|
	int do_decref = 0; /* if nb_int was called */
 | 
						|
 | 
						|
	*overflow = 0;
 | 
						|
	if (vv == NULL) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	if(PyInt_Check(vv))
 | 
						|
		return PyInt_AsLong(vv);
 | 
						|
 | 
						|
	if (!PyLong_Check(vv)) {
 | 
						|
		PyNumberMethods *nb;
 | 
						|
		nb = vv->ob_type->tp_as_number;
 | 
						|
		if (nb == NULL || nb->nb_int == NULL) {
 | 
						|
			PyErr_SetString(PyExc_TypeError,
 | 
						|
					"an integer is required");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		vv = (*nb->nb_int) (vv);
 | 
						|
		if (vv == NULL)
 | 
						|
			return -1;
 | 
						|
		do_decref = 1;
 | 
						|
		if(PyInt_Check(vv)) {
 | 
						|
			res = PyInt_AsLong(vv);
 | 
						|
			goto exit;
 | 
						|
		}
 | 
						|
		if (!PyLong_Check(vv)) {
 | 
						|
			Py_DECREF(vv);
 | 
						|
			PyErr_SetString(PyExc_TypeError,
 | 
						|
					"nb_int should return int object");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	res = -1;
 | 
						|
	v = (PyLongObject *)vv;
 | 
						|
	i = Py_SIZE(v);
 | 
						|
 | 
						|
	switch (i) {
 | 
						|
	case -1:
 | 
						|
		res = -(sdigit)v->ob_digit[0];
 | 
						|
		break;
 | 
						|
	case 0:
 | 
						|
		res = 0;
 | 
						|
		break;
 | 
						|
	case 1:
 | 
						|
		res = v->ob_digit[0];
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		sign = 1;
 | 
						|
		x = 0;
 | 
						|
		if (i < 0) {
 | 
						|
			sign = -1;
 | 
						|
			i = -(i);
 | 
						|
		}
 | 
						|
		while (--i >= 0) {
 | 
						|
			prev = x;
 | 
						|
			x = (x << PyLong_SHIFT) + v->ob_digit[i];
 | 
						|
			if ((x >> PyLong_SHIFT) != prev) {
 | 
						|
				*overflow = sign;
 | 
						|
				goto exit;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* Haven't lost any bits, but casting to long requires extra
 | 
						|
		 * care (see comment above).
 | 
						|
		 */
 | 
						|
		if (x <= (unsigned long)LONG_MAX) {
 | 
						|
			res = (long)x * sign;
 | 
						|
		}
 | 
						|
		else if (sign < 0 && x == PY_ABS_LONG_MIN) {
 | 
						|
			res = LONG_MIN;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			*overflow = sign;
 | 
						|
			/* res is already set to -1 */
 | 
						|
		}
 | 
						|
	}
 | 
						|
 exit:
 | 
						|
	if (do_decref) {
 | 
						|
		Py_DECREF(vv);
 | 
						|
	}
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C long int from a long int object.
 | 
						|
   Returns -1 and sets an error condition if overflow occurs. */
 | 
						|
 | 
						|
long
 | 
						|
PyLong_AsLong(PyObject *obj)
 | 
						|
{
 | 
						|
	int overflow;
 | 
						|
	long result = PyLong_AsLongAndOverflow(obj, &overflow);
 | 
						|
	if (overflow) {
 | 
						|
		/* XXX: could be cute and give a different
 | 
						|
		   message for overflow == -1 */
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"Python int too large to convert to C long");
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a Py_ssize_t from a long int object.
 | 
						|
   Returns -1 and sets an error condition if overflow occurs. */
 | 
						|
 | 
						|
Py_ssize_t
 | 
						|
PyLong_AsSsize_t(PyObject *vv) {
 | 
						|
	register PyLongObject *v;
 | 
						|
	size_t x, prev;
 | 
						|
	Py_ssize_t i;
 | 
						|
	int sign;
 | 
						|
 | 
						|
	if (vv == NULL || !PyLong_Check(vv)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	v = (PyLongObject *)vv;
 | 
						|
	i = v->ob_size;
 | 
						|
	sign = 1;
 | 
						|
	x = 0;
 | 
						|
	if (i < 0) {
 | 
						|
		sign = -1;
 | 
						|
		i = -(i);
 | 
						|
	}
 | 
						|
	while (--i >= 0) {
 | 
						|
		prev = x;
 | 
						|
		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
		if ((x >> PyLong_SHIFT) != prev)
 | 
						|
			goto overflow;
 | 
						|
	}
 | 
						|
	/* Haven't lost any bits, but casting to a signed type requires
 | 
						|
	 * extra care (see comment above).
 | 
						|
	 */
 | 
						|
	if (x <= (size_t)PY_SSIZE_T_MAX) {
 | 
						|
		return (Py_ssize_t)x * sign;
 | 
						|
	}
 | 
						|
	else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
 | 
						|
		return PY_SSIZE_T_MIN;
 | 
						|
	}
 | 
						|
	/* else overflow */
 | 
						|
 | 
						|
 overflow:
 | 
						|
	PyErr_SetString(PyExc_OverflowError,
 | 
						|
			"long int too large to convert to int");
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned long int from a long int object.
 | 
						|
   Returns -1 and sets an error condition if overflow occurs. */
 | 
						|
 | 
						|
unsigned long
 | 
						|
PyLong_AsUnsignedLong(PyObject *vv)
 | 
						|
{
 | 
						|
	register PyLongObject *v;
 | 
						|
	unsigned long x, prev;
 | 
						|
	Py_ssize_t i;
 | 
						|
 | 
						|
	if (vv == NULL || !PyLong_Check(vv)) {
 | 
						|
		if (vv != NULL && PyInt_Check(vv)) {
 | 
						|
			long val = PyInt_AsLong(vv);
 | 
						|
			if (val < 0) {
 | 
						|
				PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"can't convert negative value to unsigned long");
 | 
						|
				return (unsigned long) -1;
 | 
						|
			}
 | 
						|
			return val;
 | 
						|
		}
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return (unsigned long) -1;
 | 
						|
	}
 | 
						|
	v = (PyLongObject *)vv;
 | 
						|
	i = Py_SIZE(v);
 | 
						|
	x = 0;
 | 
						|
	if (i < 0) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
			   "can't convert negative value to unsigned long");
 | 
						|
		return (unsigned long) -1;
 | 
						|
	}
 | 
						|
	while (--i >= 0) {
 | 
						|
		prev = x;
 | 
						|
		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
		if ((x >> PyLong_SHIFT) != prev) {
 | 
						|
			PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"long int too large to convert");
 | 
						|
			return (unsigned long) -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return x;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned long int from a long int object, ignoring the high bits.
 | 
						|
   Returns -1 and sets an error condition if an error occurs. */
 | 
						|
 | 
						|
unsigned long
 | 
						|
PyLong_AsUnsignedLongMask(PyObject *vv)
 | 
						|
{
 | 
						|
	register PyLongObject *v;
 | 
						|
	unsigned long x;
 | 
						|
	Py_ssize_t i;
 | 
						|
	int sign;
 | 
						|
 | 
						|
	if (vv == NULL || !PyLong_Check(vv)) {
 | 
						|
		if (vv != NULL && PyInt_Check(vv))
 | 
						|
			return PyInt_AsUnsignedLongMask(vv);
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return (unsigned long) -1;
 | 
						|
	}
 | 
						|
	v = (PyLongObject *)vv;
 | 
						|
	i = v->ob_size;
 | 
						|
	sign = 1;
 | 
						|
	x = 0;
 | 
						|
	if (i < 0) {
 | 
						|
		sign = -1;
 | 
						|
		i = -i;
 | 
						|
	}
 | 
						|
	while (--i >= 0) {
 | 
						|
		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
	}
 | 
						|
	return x * sign;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_Sign(PyObject *vv)
 | 
						|
{
 | 
						|
	PyLongObject *v = (PyLongObject *)vv;
 | 
						|
 | 
						|
	assert(v != NULL);
 | 
						|
	assert(PyLong_Check(v));
 | 
						|
 | 
						|
	return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
 | 
						|
}
 | 
						|
 | 
						|
size_t
 | 
						|
_PyLong_NumBits(PyObject *vv)
 | 
						|
{
 | 
						|
	PyLongObject *v = (PyLongObject *)vv;
 | 
						|
	size_t result = 0;
 | 
						|
	Py_ssize_t ndigits;
 | 
						|
 | 
						|
	assert(v != NULL);
 | 
						|
	assert(PyLong_Check(v));
 | 
						|
	ndigits = ABS(Py_SIZE(v));
 | 
						|
	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | 
						|
	if (ndigits > 0) {
 | 
						|
		digit msd = v->ob_digit[ndigits - 1];
 | 
						|
 | 
						|
		result = (ndigits - 1) * PyLong_SHIFT;
 | 
						|
		if (result / PyLong_SHIFT != (size_t)(ndigits - 1))
 | 
						|
			goto Overflow;
 | 
						|
		do {
 | 
						|
			++result;
 | 
						|
			if (result == 0)
 | 
						|
				goto Overflow;
 | 
						|
			msd >>= 1;
 | 
						|
		} while (msd);
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
 | 
						|
Overflow:
 | 
						|
	PyErr_SetString(PyExc_OverflowError, "long has too many bits "
 | 
						|
			"to express in a platform size_t");
 | 
						|
	return (size_t)-1;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
 | 
						|
		      int little_endian, int is_signed)
 | 
						|
{
 | 
						|
	const unsigned char* pstartbyte;/* LSB of bytes */
 | 
						|
	int incr;			/* direction to move pstartbyte */
 | 
						|
	const unsigned char* pendbyte;	/* MSB of bytes */
 | 
						|
	size_t numsignificantbytes;	/* number of bytes that matter */
 | 
						|
	Py_ssize_t ndigits;		/* number of Python long digits */
 | 
						|
	PyLongObject* v;		/* result */
 | 
						|
	Py_ssize_t idigit = 0;		/* next free index in v->ob_digit */
 | 
						|
 | 
						|
	if (n == 0)
 | 
						|
		return PyLong_FromLong(0L);
 | 
						|
 | 
						|
	if (little_endian) {
 | 
						|
		pstartbyte = bytes;
 | 
						|
		pendbyte = bytes + n - 1;
 | 
						|
		incr = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		pstartbyte = bytes + n - 1;
 | 
						|
		pendbyte = bytes;
 | 
						|
		incr = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (is_signed)
 | 
						|
		is_signed = *pendbyte >= 0x80;
 | 
						|
 | 
						|
	/* Compute numsignificantbytes.  This consists of finding the most
 | 
						|
	   significant byte.  Leading 0 bytes are insignficant if the number
 | 
						|
	   is positive, and leading 0xff bytes if negative. */
 | 
						|
	{
 | 
						|
		size_t i;
 | 
						|
		const unsigned char* p = pendbyte;
 | 
						|
		const int pincr = -incr;  /* search MSB to LSB */
 | 
						|
		const unsigned char insignficant = is_signed ? 0xff : 0x00;
 | 
						|
 | 
						|
		for (i = 0; i < n; ++i, p += pincr) {
 | 
						|
			if (*p != insignficant)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		numsignificantbytes = n - i;
 | 
						|
		/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
 | 
						|
		   actually has 2 significant bytes.  OTOH, 0xff0001 ==
 | 
						|
		   -0x00ffff, so we wouldn't *need* to bump it there; but we
 | 
						|
		   do for 0xffff = -0x0001.  To be safe without bothering to
 | 
						|
		   check every case, bump it regardless. */
 | 
						|
		if (is_signed && numsignificantbytes < n)
 | 
						|
			++numsignificantbytes;
 | 
						|
	}
 | 
						|
 | 
						|
	/* How many Python long digits do we need?  We have
 | 
						|
	   8*numsignificantbytes bits, and each Python long digit has
 | 
						|
	   PyLong_SHIFT bits, so it's the ceiling of the quotient. */
 | 
						|
	/* catch overflow before it happens */
 | 
						|
	if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"byte array too long to convert to int");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
 | 
						|
	v = _PyLong_New(ndigits);
 | 
						|
	if (v == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Copy the bits over.  The tricky parts are computing 2's-comp on
 | 
						|
	   the fly for signed numbers, and dealing with the mismatch between
 | 
						|
	   8-bit bytes and (probably) 15-bit Python digits.*/
 | 
						|
	{
 | 
						|
		size_t i;
 | 
						|
		twodigits carry = 1;		/* for 2's-comp calculation */
 | 
						|
		twodigits accum = 0;		/* sliding register */
 | 
						|
		unsigned int accumbits = 0; 	/* number of bits in accum */
 | 
						|
		const unsigned char* p = pstartbyte;
 | 
						|
 | 
						|
		for (i = 0; i < numsignificantbytes; ++i, p += incr) {
 | 
						|
			twodigits thisbyte = *p;
 | 
						|
			/* Compute correction for 2's comp, if needed. */
 | 
						|
			if (is_signed) {
 | 
						|
				thisbyte = (0xff ^ thisbyte) + carry;
 | 
						|
				carry = thisbyte >> 8;
 | 
						|
				thisbyte &= 0xff;
 | 
						|
			}
 | 
						|
			/* Because we're going LSB to MSB, thisbyte is
 | 
						|
			   more significant than what's already in accum,
 | 
						|
			   so needs to be prepended to accum. */
 | 
						|
			accum |= (twodigits)thisbyte << accumbits;
 | 
						|
			accumbits += 8;
 | 
						|
			if (accumbits >= PyLong_SHIFT) {
 | 
						|
				/* There's enough to fill a Python digit. */
 | 
						|
				assert(idigit < ndigits);
 | 
						|
				v->ob_digit[idigit] = (digit)(accum &
 | 
						|
							      PyLong_MASK);
 | 
						|
				++idigit;
 | 
						|
				accum >>= PyLong_SHIFT;
 | 
						|
				accumbits -= PyLong_SHIFT;
 | 
						|
				assert(accumbits < PyLong_SHIFT);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		assert(accumbits < PyLong_SHIFT);
 | 
						|
		if (accumbits) {
 | 
						|
			assert(idigit < ndigits);
 | 
						|
			v->ob_digit[idigit] = (digit)accum;
 | 
						|
			++idigit;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	Py_SIZE(v) = is_signed ? -idigit : idigit;
 | 
						|
	return (PyObject *)long_normalize(v);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_AsByteArray(PyLongObject* v,
 | 
						|
		    unsigned char* bytes, size_t n,
 | 
						|
		    int little_endian, int is_signed)
 | 
						|
{
 | 
						|
	Py_ssize_t i;		/* index into v->ob_digit */
 | 
						|
	Py_ssize_t ndigits;		/* |v->ob_size| */
 | 
						|
	twodigits accum;	/* sliding register */
 | 
						|
	unsigned int accumbits; /* # bits in accum */
 | 
						|
	int do_twos_comp;	/* store 2's-comp?  is_signed and v < 0 */
 | 
						|
	digit carry;		/* for computing 2's-comp */
 | 
						|
	size_t j;		/* # bytes filled */
 | 
						|
	unsigned char* p;	/* pointer to next byte in bytes */
 | 
						|
	int pincr;		/* direction to move p */
 | 
						|
 | 
						|
	assert(v != NULL && PyLong_Check(v));
 | 
						|
 | 
						|
	if (Py_SIZE(v) < 0) {
 | 
						|
		ndigits = -(Py_SIZE(v));
 | 
						|
		if (!is_signed) {
 | 
						|
			PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"can't convert negative long to unsigned");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		do_twos_comp = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		ndigits = Py_SIZE(v);
 | 
						|
		do_twos_comp = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (little_endian) {
 | 
						|
		p = bytes;
 | 
						|
		pincr = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		p = bytes + n - 1;
 | 
						|
		pincr = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Copy over all the Python digits.
 | 
						|
	   It's crucial that every Python digit except for the MSD contribute
 | 
						|
	   exactly PyLong_SHIFT bits to the total, so first assert that the long is
 | 
						|
	   normalized. */
 | 
						|
	assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | 
						|
	j = 0;
 | 
						|
	accum = 0;
 | 
						|
	accumbits = 0;
 | 
						|
	carry = do_twos_comp ? 1 : 0;
 | 
						|
	for (i = 0; i < ndigits; ++i) {
 | 
						|
		digit thisdigit = v->ob_digit[i];
 | 
						|
		if (do_twos_comp) {
 | 
						|
			thisdigit = (thisdigit ^ PyLong_MASK) + carry;
 | 
						|
			carry = thisdigit >> PyLong_SHIFT;
 | 
						|
			thisdigit &= PyLong_MASK;
 | 
						|
		}
 | 
						|
		/* Because we're going LSB to MSB, thisdigit is more
 | 
						|
		   significant than what's already in accum, so needs to be
 | 
						|
		   prepended to accum. */
 | 
						|
		accum |= (twodigits)thisdigit << accumbits;
 | 
						|
 | 
						|
		/* The most-significant digit may be (probably is) at least
 | 
						|
		   partly empty. */
 | 
						|
		if (i == ndigits - 1) {
 | 
						|
			/* Count # of sign bits -- they needn't be stored,
 | 
						|
			 * although for signed conversion we need later to
 | 
						|
			 * make sure at least one sign bit gets stored. */
 | 
						|
			digit s = do_twos_comp ? thisdigit ^ PyLong_MASK :
 | 
						|
				                thisdigit;
 | 
						|
			while (s != 0) {
 | 
						|
				s >>= 1;
 | 
						|
				accumbits++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else
 | 
						|
			accumbits += PyLong_SHIFT;
 | 
						|
 | 
						|
		/* Store as many bytes as possible. */
 | 
						|
		while (accumbits >= 8) {
 | 
						|
			if (j >= n)
 | 
						|
				goto Overflow;
 | 
						|
			++j;
 | 
						|
			*p = (unsigned char)(accum & 0xff);
 | 
						|
			p += pincr;
 | 
						|
			accumbits -= 8;
 | 
						|
			accum >>= 8;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Store the straggler (if any). */
 | 
						|
	assert(accumbits < 8);
 | 
						|
	assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
 | 
						|
	if (accumbits > 0) {
 | 
						|
		if (j >= n)
 | 
						|
			goto Overflow;
 | 
						|
		++j;
 | 
						|
		if (do_twos_comp) {
 | 
						|
			/* Fill leading bits of the byte with sign bits
 | 
						|
			   (appropriately pretending that the long had an
 | 
						|
			   infinite supply of sign bits). */
 | 
						|
			accum |= (~(twodigits)0) << accumbits;
 | 
						|
		}
 | 
						|
		*p = (unsigned char)(accum & 0xff);
 | 
						|
		p += pincr;
 | 
						|
	}
 | 
						|
	else if (j == n && n > 0 && is_signed) {
 | 
						|
		/* The main loop filled the byte array exactly, so the code
 | 
						|
		   just above didn't get to ensure there's a sign bit, and the
 | 
						|
		   loop below wouldn't add one either.  Make sure a sign bit
 | 
						|
		   exists. */
 | 
						|
		unsigned char msb = *(p - pincr);
 | 
						|
		int sign_bit_set = msb >= 0x80;
 | 
						|
		assert(accumbits == 0);
 | 
						|
		if (sign_bit_set == do_twos_comp)
 | 
						|
			return 0;
 | 
						|
		else
 | 
						|
			goto Overflow;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill remaining bytes with copies of the sign bit. */
 | 
						|
	{
 | 
						|
		unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
 | 
						|
		for ( ; j < n; ++j, p += pincr)
 | 
						|
			*p = signbyte;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
Overflow:
 | 
						|
	PyErr_SetString(PyExc_OverflowError, "long too big to convert");
 | 
						|
	return -1;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new long (or int) object from a C pointer */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromVoidPtr(void *p)
 | 
						|
{
 | 
						|
#if SIZEOF_VOID_P <= SIZEOF_LONG
 | 
						|
	if ((long)p < 0)
 | 
						|
		return PyLong_FromUnsignedLong((unsigned long)p);
 | 
						|
	return PyInt_FromLong((long)p);
 | 
						|
#else
 | 
						|
 | 
						|
#ifndef HAVE_LONG_LONG
 | 
						|
#   error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | 
						|
#endif
 | 
						|
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | 
						|
#   error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | 
						|
#endif
 | 
						|
	/* optimize null pointers */
 | 
						|
	if (p == NULL)
 | 
						|
		return PyInt_FromLong(0);
 | 
						|
	return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p);
 | 
						|
 | 
						|
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C pointer from a long object (or an int object in some cases) */
 | 
						|
 | 
						|
void *
 | 
						|
PyLong_AsVoidPtr(PyObject *vv)
 | 
						|
{
 | 
						|
	/* This function will allow int or long objects. If vv is neither,
 | 
						|
	   then the PyLong_AsLong*() functions will raise the exception:
 | 
						|
	   PyExc_SystemError, "bad argument to internal function"
 | 
						|
	*/
 | 
						|
#if SIZEOF_VOID_P <= SIZEOF_LONG
 | 
						|
	long x;
 | 
						|
 | 
						|
	if (PyInt_Check(vv))
 | 
						|
		x = PyInt_AS_LONG(vv);
 | 
						|
	else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | 
						|
		x = PyLong_AsLong(vv);
 | 
						|
	else
 | 
						|
		x = PyLong_AsUnsignedLong(vv);
 | 
						|
#else
 | 
						|
 | 
						|
#ifndef HAVE_LONG_LONG
 | 
						|
#   error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | 
						|
#endif
 | 
						|
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | 
						|
#   error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | 
						|
#endif
 | 
						|
	PY_LONG_LONG x;
 | 
						|
 | 
						|
	if (PyInt_Check(vv))
 | 
						|
		x = PyInt_AS_LONG(vv);
 | 
						|
	else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | 
						|
		x = PyLong_AsLongLong(vv);
 | 
						|
	else
 | 
						|
		x = PyLong_AsUnsignedLongLong(vv);
 | 
						|
 | 
						|
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | 
						|
 | 
						|
	if (x == -1 && PyErr_Occurred())
 | 
						|
		return NULL;
 | 
						|
	return (void *)x;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_LONG_LONG
 | 
						|
 | 
						|
/* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
 | 
						|
 * rewritten to use the newer PyLong_{As,From}ByteArray API.
 | 
						|
 */
 | 
						|
 | 
						|
#define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
 | 
						|
#define PY_ABS_LLONG_MIN	(0-(unsigned PY_LONG_LONG)PY_LLONG_MIN)
 | 
						|
 | 
						|
/* Create a new long int object from a C PY_LONG_LONG int. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromLongLong(PY_LONG_LONG ival)
 | 
						|
{
 | 
						|
	PyLongObject *v;
 | 
						|
	unsigned PY_LONG_LONG abs_ival;
 | 
						|
	unsigned PY_LONG_LONG t;  /* unsigned so >> doesn't propagate sign bit */
 | 
						|
	int ndigits = 0;
 | 
						|
	int negative = 0;
 | 
						|
 | 
						|
	if (ival < 0) {
 | 
						|
		/* avoid signed overflow on negation;  see comments
 | 
						|
		   in PyLong_FromLong above. */
 | 
						|
		abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1;
 | 
						|
		negative = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		abs_ival = (unsigned PY_LONG_LONG)ival;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Count the number of Python digits.
 | 
						|
	   We used to pick 5 ("big enough for anything"), but that's a
 | 
						|
	   waste of time and space given that 5*15 = 75 bits are rarely
 | 
						|
	   needed. */
 | 
						|
	t = abs_ival;
 | 
						|
	while (t) {
 | 
						|
		++ndigits;
 | 
						|
		t >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	v = _PyLong_New(ndigits);
 | 
						|
	if (v != NULL) {
 | 
						|
		digit *p = v->ob_digit;
 | 
						|
		Py_SIZE(v) = negative ? -ndigits : ndigits;
 | 
						|
		t = abs_ival;
 | 
						|
		while (t) {
 | 
						|
			*p++ = (digit)(t & PyLong_MASK);
 | 
						|
			t >>= PyLong_SHIFT;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new long int object from a C unsigned PY_LONG_LONG int. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
 | 
						|
{
 | 
						|
	PyLongObject *v;
 | 
						|
	unsigned PY_LONG_LONG t;
 | 
						|
	int ndigits = 0;
 | 
						|
 | 
						|
	/* Count the number of Python digits. */
 | 
						|
	t = (unsigned PY_LONG_LONG)ival;
 | 
						|
	while (t) {
 | 
						|
		++ndigits;
 | 
						|
		t >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	v = _PyLong_New(ndigits);
 | 
						|
	if (v != NULL) {
 | 
						|
		digit *p = v->ob_digit;
 | 
						|
		Py_SIZE(v) = ndigits;
 | 
						|
		while (ival) {
 | 
						|
			*p++ = (digit)(ival & PyLong_MASK);
 | 
						|
			ival >>= PyLong_SHIFT;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new long int object from a C Py_ssize_t. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromSsize_t(Py_ssize_t ival)
 | 
						|
{
 | 
						|
	Py_ssize_t bytes = ival;
 | 
						|
	int one = 1;
 | 
						|
	return _PyLong_FromByteArray(
 | 
						|
			(unsigned char *)&bytes,
 | 
						|
			SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new long int object from a C size_t. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromSize_t(size_t ival)
 | 
						|
{
 | 
						|
	size_t bytes = ival;
 | 
						|
	int one = 1;
 | 
						|
	return _PyLong_FromByteArray(
 | 
						|
			(unsigned char *)&bytes,
 | 
						|
			SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C PY_LONG_LONG int from a long int object.
 | 
						|
   Return -1 and set an error if overflow occurs. */
 | 
						|
 | 
						|
PY_LONG_LONG
 | 
						|
PyLong_AsLongLong(PyObject *vv)
 | 
						|
{
 | 
						|
	PY_LONG_LONG bytes;
 | 
						|
	int one = 1;
 | 
						|
	int res;
 | 
						|
 | 
						|
	if (vv == NULL) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (!PyLong_Check(vv)) {
 | 
						|
		PyNumberMethods *nb;
 | 
						|
		PyObject *io;
 | 
						|
		if (PyInt_Check(vv))
 | 
						|
			return (PY_LONG_LONG)PyInt_AsLong(vv);
 | 
						|
		if ((nb = vv->ob_type->tp_as_number) == NULL ||
 | 
						|
		    nb->nb_int == NULL) {
 | 
						|
			PyErr_SetString(PyExc_TypeError, "an integer is required");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		io = (*nb->nb_int) (vv);
 | 
						|
		if (io == NULL)
 | 
						|
			return -1;
 | 
						|
		if (PyInt_Check(io)) {
 | 
						|
			bytes = PyInt_AsLong(io);
 | 
						|
			Py_DECREF(io);
 | 
						|
			return bytes;
 | 
						|
		}
 | 
						|
		if (PyLong_Check(io)) {
 | 
						|
			bytes = PyLong_AsLongLong(io);
 | 
						|
			Py_DECREF(io);
 | 
						|
			return bytes;
 | 
						|
		}
 | 
						|
		Py_DECREF(io);
 | 
						|
		PyErr_SetString(PyExc_TypeError, "integer conversion failed");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	res = _PyLong_AsByteArray(
 | 
						|
			(PyLongObject *)vv, (unsigned char *)&bytes,
 | 
						|
			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
 | 
						|
 | 
						|
	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | 
						|
	if (res < 0)
 | 
						|
		return (PY_LONG_LONG)-1;
 | 
						|
	else
 | 
						|
		return bytes;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned PY_LONG_LONG int from a long int object.
 | 
						|
   Return -1 and set an error if overflow occurs. */
 | 
						|
 | 
						|
unsigned PY_LONG_LONG
 | 
						|
PyLong_AsUnsignedLongLong(PyObject *vv)
 | 
						|
{
 | 
						|
	unsigned PY_LONG_LONG bytes;
 | 
						|
	int one = 1;
 | 
						|
	int res;
 | 
						|
 | 
						|
	if (vv == NULL || !PyLong_Check(vv)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return (unsigned PY_LONG_LONG)-1;
 | 
						|
	}
 | 
						|
 | 
						|
	res = _PyLong_AsByteArray(
 | 
						|
			(PyLongObject *)vv, (unsigned char *)&bytes,
 | 
						|
			SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
 | 
						|
 | 
						|
	/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | 
						|
	if (res < 0)
 | 
						|
		return (unsigned PY_LONG_LONG)res;
 | 
						|
	else
 | 
						|
		return bytes;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned long int from a long int object, ignoring the high bits.
 | 
						|
   Returns -1 and sets an error condition if an error occurs. */
 | 
						|
 | 
						|
unsigned PY_LONG_LONG
 | 
						|
PyLong_AsUnsignedLongLongMask(PyObject *vv)
 | 
						|
{
 | 
						|
	register PyLongObject *v;
 | 
						|
	unsigned PY_LONG_LONG x;
 | 
						|
	Py_ssize_t i;
 | 
						|
	int sign;
 | 
						|
 | 
						|
	if (vv == NULL || !PyLong_Check(vv)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return (unsigned long) -1;
 | 
						|
	}
 | 
						|
	v = (PyLongObject *)vv;
 | 
						|
	i = v->ob_size;
 | 
						|
	sign = 1;
 | 
						|
	x = 0;
 | 
						|
	if (i < 0) {
 | 
						|
		sign = -1;
 | 
						|
		i = -i;
 | 
						|
	}
 | 
						|
	while (--i >= 0) {
 | 
						|
		x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
	}
 | 
						|
	return x * sign;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C long long int from a Python long or Python int object.
 | 
						|
   On overflow, returns -1 and sets *overflow to 1 or -1 depending
 | 
						|
   on the sign of the result.  Otherwise *overflow is 0.
 | 
						|
 | 
						|
   For other errors (e.g., type error), returns -1 and sets an error
 | 
						|
   condition.
 | 
						|
*/
 | 
						|
 | 
						|
PY_LONG_LONG
 | 
						|
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
 | 
						|
{
 | 
						|
	/* This version by Tim Peters */
 | 
						|
	register PyLongObject *v;
 | 
						|
	unsigned PY_LONG_LONG x, prev;
 | 
						|
	PY_LONG_LONG res;
 | 
						|
	Py_ssize_t i;
 | 
						|
	int sign;
 | 
						|
	int do_decref = 0; /* if nb_int was called */
 | 
						|
 | 
						|
	*overflow = 0;
 | 
						|
	if (vv == NULL) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (PyInt_Check(vv))
 | 
						|
		return PyInt_AsLong(vv);
 | 
						|
 | 
						|
	if (!PyLong_Check(vv)) {
 | 
						|
		PyNumberMethods *nb;
 | 
						|
		nb = vv->ob_type->tp_as_number;
 | 
						|
		if (nb == NULL || nb->nb_int == NULL) {
 | 
						|
			PyErr_SetString(PyExc_TypeError,
 | 
						|
					"an integer is required");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		vv = (*nb->nb_int) (vv);
 | 
						|
		if (vv == NULL)
 | 
						|
			return -1;
 | 
						|
		do_decref = 1;
 | 
						|
		if(PyInt_Check(vv)) {
 | 
						|
			res = PyInt_AsLong(vv);
 | 
						|
			goto exit;
 | 
						|
		}
 | 
						|
		if (!PyLong_Check(vv)) {
 | 
						|
			Py_DECREF(vv);
 | 
						|
			PyErr_SetString(PyExc_TypeError,
 | 
						|
					"nb_int should return int object");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	res = -1;
 | 
						|
	v = (PyLongObject *)vv;
 | 
						|
	i = Py_SIZE(v);
 | 
						|
 | 
						|
	switch (i) {
 | 
						|
	case -1:
 | 
						|
		res = -(sdigit)v->ob_digit[0];
 | 
						|
		break;
 | 
						|
	case 0:
 | 
						|
		res = 0;
 | 
						|
		break;
 | 
						|
	case 1:
 | 
						|
		res = v->ob_digit[0];
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		sign = 1;
 | 
						|
		x = 0;
 | 
						|
		if (i < 0) {
 | 
						|
			sign = -1;
 | 
						|
			i = -(i);
 | 
						|
		}
 | 
						|
		while (--i >= 0) {
 | 
						|
			prev = x;
 | 
						|
			x = (x << PyLong_SHIFT) + v->ob_digit[i];
 | 
						|
			if ((x >> PyLong_SHIFT) != prev) {
 | 
						|
				*overflow = sign;
 | 
						|
				goto exit;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* Haven't lost any bits, but casting to long requires extra
 | 
						|
		 * care (see comment above).
 | 
						|
		 */
 | 
						|
		if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) {
 | 
						|
			res = (PY_LONG_LONG)x * sign;
 | 
						|
		}
 | 
						|
		else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
 | 
						|
			res = PY_LLONG_MIN;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			*overflow = sign;
 | 
						|
			/* res is already set to -1 */
 | 
						|
		}
 | 
						|
	}
 | 
						|
 exit:
 | 
						|
	if (do_decref) {
 | 
						|
		Py_DECREF(vv);
 | 
						|
	}
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
#undef IS_LITTLE_ENDIAN
 | 
						|
 | 
						|
#endif /* HAVE_LONG_LONG */
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) {
 | 
						|
	if (PyLong_Check(v)) {
 | 
						|
		*a = (PyLongObject *) v;
 | 
						|
		Py_INCREF(v);
 | 
						|
	}
 | 
						|
	else if (PyInt_Check(v)) {
 | 
						|
		*a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v));
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	if (PyLong_Check(w)) {
 | 
						|
		*b = (PyLongObject *) w;
 | 
						|
		Py_INCREF(w);
 | 
						|
	}
 | 
						|
	else if (PyInt_Check(w)) {
 | 
						|
		*b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w));
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Py_DECREF(*a);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#define CONVERT_BINOP(v, w, a, b) \
 | 
						|
	if (!convert_binop(v, w, a, b)) { \
 | 
						|
		Py_INCREF(Py_NotImplemented); \
 | 
						|
		return Py_NotImplemented; \
 | 
						|
	}
 | 
						|
 | 
						|
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
 | 
						|
   2**k if d is nonzero, else 0. */
 | 
						|
 | 
						|
static const unsigned char BitLengthTable[32] = {
 | 
						|
	0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
 | 
						|
	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
bits_in_digit(digit d)
 | 
						|
{
 | 
						|
	int d_bits = 0;
 | 
						|
	while (d >= 32) {
 | 
						|
		d_bits += 6;
 | 
						|
		d >>= 6;
 | 
						|
	}
 | 
						|
	d_bits += (int)BitLengthTable[d];
 | 
						|
	return d_bits;
 | 
						|
}
 | 
						|
 | 
						|
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | 
						|
 * is modified in place, by adding y to it.  Carries are propagated as far as
 | 
						|
 * x[m-1], and the remaining carry (0 or 1) is returned.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | 
						|
{
 | 
						|
	Py_ssize_t i;
 | 
						|
	digit carry = 0;
 | 
						|
 | 
						|
	assert(m >= n);
 | 
						|
	for (i = 0; i < n; ++i) {
 | 
						|
		carry += x[i] + y[i];
 | 
						|
		x[i] = carry & PyLong_MASK;
 | 
						|
		carry >>= PyLong_SHIFT;
 | 
						|
		assert((carry & 1) == carry);
 | 
						|
	}
 | 
						|
	for (; carry && i < m; ++i) {
 | 
						|
		carry += x[i];
 | 
						|
		x[i] = carry & PyLong_MASK;
 | 
						|
		carry >>= PyLong_SHIFT;
 | 
						|
		assert((carry & 1) == carry);
 | 
						|
	}
 | 
						|
	return carry;
 | 
						|
}
 | 
						|
 | 
						|
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | 
						|
 * is modified in place, by subtracting y from it.  Borrows are propagated as
 | 
						|
 * far as x[m-1], and the remaining borrow (0 or 1) is returned.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | 
						|
{
 | 
						|
	Py_ssize_t i;
 | 
						|
	digit borrow = 0;
 | 
						|
 | 
						|
	assert(m >= n);
 | 
						|
	for (i = 0; i < n; ++i) {
 | 
						|
		borrow = x[i] - y[i] - borrow;
 | 
						|
		x[i] = borrow & PyLong_MASK;
 | 
						|
		borrow >>= PyLong_SHIFT;
 | 
						|
		borrow &= 1;	/* keep only 1 sign bit */
 | 
						|
	}
 | 
						|
	for (; borrow && i < m; ++i) {
 | 
						|
		borrow = x[i] - borrow;
 | 
						|
		x[i] = borrow & PyLong_MASK;
 | 
						|
		borrow >>= PyLong_SHIFT;
 | 
						|
		borrow &= 1;
 | 
						|
	}
 | 
						|
	return borrow;
 | 
						|
}
 | 
						|
 | 
						|
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
 | 
						|
 * result in z[0:m], and return the d bits shifted out of the top.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
 | 
						|
{
 | 
						|
	Py_ssize_t i;
 | 
						|
	digit carry = 0;
 | 
						|
 | 
						|
	assert(0 <= d && d < PyLong_SHIFT);
 | 
						|
	for (i=0; i < m; i++) {
 | 
						|
		twodigits acc = (twodigits)a[i] << d | carry;
 | 
						|
		z[i] = (digit)acc & PyLong_MASK;
 | 
						|
		carry = (digit)(acc >> PyLong_SHIFT);
 | 
						|
	}
 | 
						|
	return carry;
 | 
						|
}
 | 
						|
 | 
						|
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
 | 
						|
 * result in z[0:m], and return the d bits shifted out of the bottom.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
 | 
						|
{
 | 
						|
	Py_ssize_t i;
 | 
						|
	digit carry = 0;
 | 
						|
	digit mask = ((digit)1 << d) - 1U;
 | 
						|
 | 
						|
	assert(0 <= d && d < PyLong_SHIFT);
 | 
						|
	for (i=m; i-- > 0;) {
 | 
						|
		twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
 | 
						|
		carry = (digit)acc & mask;
 | 
						|
		z[i] = (digit)(acc >> d);
 | 
						|
	}
 | 
						|
	return carry;
 | 
						|
}
 | 
						|
 | 
						|
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
 | 
						|
   in pout, and returning the remainder.  pin and pout point at the LSD.
 | 
						|
   It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
 | 
						|
   _PyLong_Format, but that should be done with great care since longs are
 | 
						|
   immutable. */
 | 
						|
 | 
						|
static digit
 | 
						|
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
 | 
						|
{
 | 
						|
	twodigits rem = 0;
 | 
						|
 | 
						|
	assert(n > 0 && n <= PyLong_MASK);
 | 
						|
	pin += size;
 | 
						|
	pout += size;
 | 
						|
	while (--size >= 0) {
 | 
						|
		digit hi;
 | 
						|
		rem = (rem << PyLong_SHIFT) | *--pin;
 | 
						|
		*--pout = hi = (digit)(rem / n);
 | 
						|
		rem -= (twodigits)hi * n;
 | 
						|
	}
 | 
						|
	return (digit)rem;
 | 
						|
}
 | 
						|
 | 
						|
/* Divide a long integer by a digit, returning both the quotient
 | 
						|
   (as function result) and the remainder (through *prem).
 | 
						|
   The sign of a is ignored; n should not be zero. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
divrem1(PyLongObject *a, digit n, digit *prem)
 | 
						|
{
 | 
						|
	const Py_ssize_t size = ABS(Py_SIZE(a));
 | 
						|
	PyLongObject *z;
 | 
						|
 | 
						|
	assert(n > 0 && n <= PyLong_MASK);
 | 
						|
	z = _PyLong_New(size);
 | 
						|
	if (z == NULL)
 | 
						|
		return NULL;
 | 
						|
	*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
 | 
						|
	return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a long integer to a base 10 string.  Returns a new non-shared
 | 
						|
   string.  (Return value is non-shared so that callers can modify the
 | 
						|
   returned value if necessary.) */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_to_decimal_string(PyObject *aa, int addL)
 | 
						|
{
 | 
						|
	PyLongObject *scratch, *a;
 | 
						|
	PyObject *str;
 | 
						|
	Py_ssize_t size, strlen, size_a, i, j;
 | 
						|
	digit *pout, *pin, rem, tenpow;
 | 
						|
	char *p;
 | 
						|
	int negative;
 | 
						|
 | 
						|
	a = (PyLongObject *)aa;
 | 
						|
	if (a == NULL || !PyLong_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	size_a = ABS(Py_SIZE(a));
 | 
						|
	negative = Py_SIZE(a) < 0;
 | 
						|
 | 
						|
	/* quick and dirty upper bound for the number of digits
 | 
						|
	   required to express a in base _PyLong_DECIMAL_BASE:
 | 
						|
 | 
						|
	     #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
 | 
						|
 | 
						|
	   But log2(a) < size_a * PyLong_SHIFT, and
 | 
						|
	   log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
 | 
						|
				      > 3 * _PyLong_DECIMAL_SHIFT
 | 
						|
	*/
 | 
						|
	if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"long is too large to format");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	/* the expression size_a * PyLong_SHIFT is now safe from overflow */
 | 
						|
	size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
 | 
						|
	scratch = _PyLong_New(size);
 | 
						|
	if (scratch == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* convert array of base _PyLong_BASE digits in pin to an array of
 | 
						|
	   base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
 | 
						|
	   Volume 2 (3rd edn), section 4.4, Method 1b). */
 | 
						|
	pin = a->ob_digit;
 | 
						|
	pout = scratch->ob_digit;
 | 
						|
	size = 0;
 | 
						|
	for (i = size_a; --i >= 0; ) {
 | 
						|
		digit hi = pin[i];
 | 
						|
		for (j = 0; j < size; j++) {
 | 
						|
			twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
 | 
						|
			hi = (digit)(z / _PyLong_DECIMAL_BASE);
 | 
						|
			pout[j] = (digit)(z - (twodigits)hi *
 | 
						|
					  _PyLong_DECIMAL_BASE);
 | 
						|
		}
 | 
						|
		while (hi) {
 | 
						|
			pout[size++] = hi % _PyLong_DECIMAL_BASE;
 | 
						|
			hi /= _PyLong_DECIMAL_BASE;
 | 
						|
		}
 | 
						|
		/* check for keyboard interrupt */
 | 
						|
		SIGCHECK({
 | 
						|
			Py_DECREF(scratch);
 | 
						|
			return NULL;
 | 
						|
		})
 | 
						|
	}
 | 
						|
	/* pout should have at least one digit, so that the case when a = 0
 | 
						|
	   works correctly */
 | 
						|
	if (size == 0)
 | 
						|
		pout[size++] = 0;
 | 
						|
 | 
						|
	/* calculate exact length of output string, and allocate */
 | 
						|
	strlen = (addL != 0) + negative +
 | 
						|
		1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
 | 
						|
	tenpow = 10;
 | 
						|
	rem = pout[size-1];
 | 
						|
	while (rem >= tenpow) {
 | 
						|
		tenpow *= 10;
 | 
						|
		strlen++;
 | 
						|
	}
 | 
						|
	str = PyString_FromStringAndSize(NULL, strlen);
 | 
						|
	if (str == NULL) {
 | 
						|
		Py_DECREF(scratch);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* fill the string right-to-left */
 | 
						|
	p = PyString_AS_STRING(str) + strlen;
 | 
						|
	*p = '\0';
 | 
						|
	if (addL)
 | 
						|
		*--p = 'L';
 | 
						|
	/* pout[0] through pout[size-2] contribute exactly
 | 
						|
	   _PyLong_DECIMAL_SHIFT digits each */
 | 
						|
	for (i=0; i < size - 1; i++) {
 | 
						|
		rem = pout[i];
 | 
						|
		for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {
 | 
						|
			*--p = '0' + rem % 10;
 | 
						|
			rem /= 10;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* pout[size-1]: always produce at least one decimal digit */
 | 
						|
	rem = pout[i];
 | 
						|
	do {
 | 
						|
		*--p = '0' + rem % 10;
 | 
						|
		rem /= 10;
 | 
						|
	} while (rem != 0);
 | 
						|
 | 
						|
	/* and sign */
 | 
						|
	if (negative)
 | 
						|
		*--p = '-';
 | 
						|
 | 
						|
	/* check we've counted correctly */
 | 
						|
	assert(p == PyString_AS_STRING(str));
 | 
						|
	Py_DECREF(scratch);
 | 
						|
	return (PyObject *)str;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert the long to a string object with given base,
 | 
						|
   appending a base prefix of 0[box] if base is 2, 8 or 16.
 | 
						|
   Add a trailing "L" if addL is non-zero.
 | 
						|
   If newstyle is zero, then use the pre-2.6 behavior of octal having
 | 
						|
   a leading "0", instead of the prefix "0o" */
 | 
						|
PyAPI_FUNC(PyObject *)
 | 
						|
_PyLong_Format(PyObject *aa, int base, int addL, int newstyle)
 | 
						|
{
 | 
						|
	register PyLongObject *a = (PyLongObject *)aa;
 | 
						|
	PyStringObject *str;
 | 
						|
	Py_ssize_t i, sz;
 | 
						|
	Py_ssize_t size_a;
 | 
						|
	char *p;
 | 
						|
	int bits;
 | 
						|
	char sign = '\0';
 | 
						|
 | 
						|
	if (base == 10)
 | 
						|
		return long_to_decimal_string((PyObject *)a, addL);
 | 
						|
 | 
						|
	if (a == NULL || !PyLong_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	assert(base >= 2 && base <= 36);
 | 
						|
	size_a = ABS(Py_SIZE(a));
 | 
						|
 | 
						|
	/* Compute a rough upper bound for the length of the string */
 | 
						|
	i = base;
 | 
						|
	bits = 0;
 | 
						|
	while (i > 1) {
 | 
						|
		++bits;
 | 
						|
		i >>= 1;
 | 
						|
	}
 | 
						|
	i = 5 + (addL ? 1 : 0);
 | 
						|
	/* ensure we don't get signed overflow in sz calculation */
 | 
						|
	if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"long is too large to format");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits;
 | 
						|
	assert(sz >= 0);
 | 
						|
	str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz);
 | 
						|
	if (str == NULL)
 | 
						|
		return NULL;
 | 
						|
	p = PyString_AS_STRING(str) + sz;
 | 
						|
	*p = '\0';
 | 
						|
	if (addL)
 | 
						|
		*--p = 'L';
 | 
						|
	if (a->ob_size < 0)
 | 
						|
		sign = '-';
 | 
						|
 | 
						|
	if (a->ob_size == 0) {
 | 
						|
		*--p = '0';
 | 
						|
	}
 | 
						|
	else if ((base & (base - 1)) == 0) {
 | 
						|
		/* JRH: special case for power-of-2 bases */
 | 
						|
		twodigits accum = 0;
 | 
						|
		int accumbits = 0;	/* # of bits in accum */
 | 
						|
		int basebits = 1;	/* # of bits in base-1 */
 | 
						|
		i = base;
 | 
						|
		while ((i >>= 1) > 1)
 | 
						|
			++basebits;
 | 
						|
 | 
						|
		for (i = 0; i < size_a; ++i) {
 | 
						|
			accum |= (twodigits)a->ob_digit[i] << accumbits;
 | 
						|
			accumbits += PyLong_SHIFT;
 | 
						|
			assert(accumbits >= basebits);
 | 
						|
			do {
 | 
						|
				char cdigit = (char)(accum & (base - 1));
 | 
						|
				cdigit += (cdigit < 10) ? '0' : 'a'-10;
 | 
						|
				assert(p > PyString_AS_STRING(str));
 | 
						|
				*--p = cdigit;
 | 
						|
				accumbits -= basebits;
 | 
						|
				accum >>= basebits;
 | 
						|
			} while (i < size_a-1 ? accumbits >= basebits :
 | 
						|
						accum > 0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Not 0, and base not a power of 2.  Divide repeatedly by
 | 
						|
		   base, but for speed use the highest power of base that
 | 
						|
		   fits in a digit. */
 | 
						|
		Py_ssize_t size = size_a;
 | 
						|
		digit *pin = a->ob_digit;
 | 
						|
		PyLongObject *scratch;
 | 
						|
		/* powbasw <- largest power of base that fits in a digit. */
 | 
						|
		digit powbase = base;  /* powbase == base ** power */
 | 
						|
		int power = 1;
 | 
						|
		for (;;) {
 | 
						|
			twodigits newpow = powbase * (twodigits)base;
 | 
						|
			if (newpow >> PyLong_SHIFT)
 | 
						|
				/* doesn't fit in a digit */
 | 
						|
				break;
 | 
						|
			powbase = (digit)newpow;
 | 
						|
			++power;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Get a scratch area for repeated division. */
 | 
						|
		scratch = _PyLong_New(size);
 | 
						|
		if (scratch == NULL) {
 | 
						|
			Py_DECREF(str);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Repeatedly divide by powbase. */
 | 
						|
		do {
 | 
						|
			int ntostore = power;
 | 
						|
			digit rem = inplace_divrem1(scratch->ob_digit,
 | 
						|
						     pin, size, powbase);
 | 
						|
			pin = scratch->ob_digit; /* no need to use a again */
 | 
						|
			if (pin[size - 1] == 0)
 | 
						|
				--size;
 | 
						|
			SIGCHECK({
 | 
						|
				Py_DECREF(scratch);
 | 
						|
				Py_DECREF(str);
 | 
						|
				return NULL;
 | 
						|
			})
 | 
						|
 | 
						|
			/* Break rem into digits. */
 | 
						|
			assert(ntostore > 0);
 | 
						|
			do {
 | 
						|
				digit nextrem = (digit)(rem / base);
 | 
						|
				char c = (char)(rem - nextrem * base);
 | 
						|
				assert(p > PyString_AS_STRING(str));
 | 
						|
				c += (c < 10) ? '0' : 'a'-10;
 | 
						|
				*--p = c;
 | 
						|
				rem = nextrem;
 | 
						|
				--ntostore;
 | 
						|
				/* Termination is a bit delicate:  must not
 | 
						|
				   store leading zeroes, so must get out if
 | 
						|
				   remaining quotient and rem are both 0. */
 | 
						|
			} while (ntostore && (size || rem));
 | 
						|
		} while (size != 0);
 | 
						|
		Py_DECREF(scratch);
 | 
						|
	}
 | 
						|
 | 
						|
	if (base == 2) {
 | 
						|
		*--p = 'b';
 | 
						|
		*--p = '0';
 | 
						|
	}
 | 
						|
	else if (base == 8) {
 | 
						|
		if (newstyle) {
 | 
						|
			*--p = 'o';
 | 
						|
			*--p = '0';
 | 
						|
		}
 | 
						|
		else
 | 
						|
			if (size_a != 0)
 | 
						|
				*--p = '0';
 | 
						|
	}
 | 
						|
	else if (base == 16) {
 | 
						|
		*--p = 'x';
 | 
						|
		*--p = '0';
 | 
						|
	}
 | 
						|
	else if (base != 10) {
 | 
						|
		*--p = '#';
 | 
						|
		*--p = '0' + base%10;
 | 
						|
		if (base > 10)
 | 
						|
			*--p = '0' + base/10;
 | 
						|
	}
 | 
						|
	if (sign)
 | 
						|
		*--p = sign;
 | 
						|
	if (p != PyString_AS_STRING(str)) {
 | 
						|
		char *q = PyString_AS_STRING(str);
 | 
						|
		assert(p > q);
 | 
						|
		do {
 | 
						|
		} while ((*q++ = *p++) != '\0');
 | 
						|
		q--;
 | 
						|
		_PyString_Resize((PyObject **)&str,
 | 
						|
				 (Py_ssize_t) (q - PyString_AS_STRING(str)));
 | 
						|
	}
 | 
						|
	return (PyObject *)str;
 | 
						|
}
 | 
						|
 | 
						|
/* Table of digit values for 8-bit string -> integer conversion.
 | 
						|
 * '0' maps to 0, ..., '9' maps to 9.
 | 
						|
 * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
 | 
						|
 * All other indices map to 37.
 | 
						|
 * Note that when converting a base B string, a char c is a legitimate
 | 
						|
 * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B.
 | 
						|
 */
 | 
						|
int _PyLong_DigitValue[256] = {
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
 | 
						|
	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | 
						|
	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | 
						|
	37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | 
						|
	25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
	37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
};
 | 
						|
 | 
						|
/* *str points to the first digit in a string of base `base` digits.  base
 | 
						|
 * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first
 | 
						|
 * non-digit (which may be *str!).  A normalized long is returned.
 | 
						|
 * The point to this routine is that it takes time linear in the number of
 | 
						|
 * string characters.
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
long_from_binary_base(char **str, int base)
 | 
						|
{
 | 
						|
	char *p = *str;
 | 
						|
	char *start = p;
 | 
						|
	int bits_per_char;
 | 
						|
	Py_ssize_t n;
 | 
						|
	PyLongObject *z;
 | 
						|
	twodigits accum;
 | 
						|
	int bits_in_accum;
 | 
						|
	digit *pdigit;
 | 
						|
 | 
						|
	assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
 | 
						|
	n = base;
 | 
						|
	for (bits_per_char = -1; n; ++bits_per_char)
 | 
						|
		n >>= 1;
 | 
						|
	/* n <- total # of bits needed, while setting p to end-of-string */
 | 
						|
	while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
 | 
						|
		++p;
 | 
						|
	*str = p;
 | 
						|
	/* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
 | 
						|
	n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
 | 
						|
	if (n / bits_per_char < p - start) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
				"long string too large to convert");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	n = n / PyLong_SHIFT;
 | 
						|
	z = _PyLong_New(n);
 | 
						|
	if (z == NULL)
 | 
						|
		return NULL;
 | 
						|
	/* Read string from right, and fill in long from left; i.e.,
 | 
						|
	 * from least to most significant in both.
 | 
						|
	 */
 | 
						|
	accum = 0;
 | 
						|
	bits_in_accum = 0;
 | 
						|
	pdigit = z->ob_digit;
 | 
						|
	while (--p >= start) {
 | 
						|
		int k = _PyLong_DigitValue[Py_CHARMASK(*p)];
 | 
						|
		assert(k >= 0 && k < base);
 | 
						|
		accum |= (twodigits)k << bits_in_accum;
 | 
						|
		bits_in_accum += bits_per_char;
 | 
						|
		if (bits_in_accum >= PyLong_SHIFT) {
 | 
						|
			*pdigit++ = (digit)(accum & PyLong_MASK);
 | 
						|
			assert(pdigit - z->ob_digit <= n);
 | 
						|
			accum >>= PyLong_SHIFT;
 | 
						|
			bits_in_accum -= PyLong_SHIFT;
 | 
						|
			assert(bits_in_accum < PyLong_SHIFT);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (bits_in_accum) {
 | 
						|
		assert(bits_in_accum <= PyLong_SHIFT);
 | 
						|
		*pdigit++ = (digit)accum;
 | 
						|
		assert(pdigit - z->ob_digit <= n);
 | 
						|
	}
 | 
						|
	while (pdigit - z->ob_digit < n)
 | 
						|
		*pdigit++ = 0;
 | 
						|
	return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromString(char *str, char **pend, int base)
 | 
						|
{
 | 
						|
	int sign = 1;
 | 
						|
	char *start, *orig_str = str;
 | 
						|
	PyLongObject *z;
 | 
						|
	PyObject *strobj, *strrepr;
 | 
						|
	Py_ssize_t slen;
 | 
						|
 | 
						|
	if ((base != 0 && base < 2) || base > 36) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
				"long() arg 2 must be >= 2 and <= 36");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	while (*str != '\0' && isspace(Py_CHARMASK(*str)))
 | 
						|
		str++;
 | 
						|
	if (*str == '+')
 | 
						|
		++str;
 | 
						|
	else if (*str == '-') {
 | 
						|
		++str;
 | 
						|
		sign = -1;
 | 
						|
	}
 | 
						|
	while (*str != '\0' && isspace(Py_CHARMASK(*str)))
 | 
						|
		str++;
 | 
						|
	if (base == 0) {
 | 
						|
		/* No base given.  Deduce the base from the contents
 | 
						|
		   of the string */
 | 
						|
		if (str[0] != '0')
 | 
						|
			base = 10;
 | 
						|
		else if (str[1] == 'x' || str[1] == 'X')
 | 
						|
			base = 16;
 | 
						|
		else if (str[1] == 'o' || str[1] == 'O')
 | 
						|
			base = 8;
 | 
						|
		else if (str[1] == 'b' || str[1] == 'B')
 | 
						|
			base = 2;
 | 
						|
		else
 | 
						|
			/* "old" (C-style) octal literal, still valid in
 | 
						|
			   2.x, although illegal in 3.x */
 | 
						|
			base = 8;
 | 
						|
	}
 | 
						|
	/* Whether or not we were deducing the base, skip leading chars
 | 
						|
	   as needed */
 | 
						|
	if (str[0] == '0' &&
 | 
						|
	    ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
 | 
						|
	     (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
 | 
						|
	     (base == 2  && (str[1] == 'b' || str[1] == 'B'))))
 | 
						|
		str += 2;
 | 
						|
 | 
						|
	start = str;
 | 
						|
	if ((base & (base - 1)) == 0)
 | 
						|
		z = long_from_binary_base(&str, base);
 | 
						|
	else {
 | 
						|
/***
 | 
						|
Binary bases can be converted in time linear in the number of digits, because
 | 
						|
Python's representation base is binary.  Other bases (including decimal!) use
 | 
						|
the simple quadratic-time algorithm below, complicated by some speed tricks.
 | 
						|
 | 
						|
First some math:  the largest integer that can be expressed in N base-B digits
 | 
						|
is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
 | 
						|
case number of Python digits needed to hold it is the smallest integer n s.t.
 | 
						|
 | 
						|
    PyLong_BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
 | 
						|
    PyLong_BASE**n >= B**N      [taking logs to base PyLong_BASE]
 | 
						|
    n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE)
 | 
						|
 | 
						|
The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so we can compute
 | 
						|
this quickly.  A Python long with that much space is reserved near the start,
 | 
						|
and the result is computed into it.
 | 
						|
 | 
						|
The input string is actually treated as being in base base**i (i.e., i digits
 | 
						|
are processed at a time), where two more static arrays hold:
 | 
						|
 | 
						|
    convwidth_base[base] = the largest integer i such that base**i <= PyLong_BASE
 | 
						|
    convmultmax_base[base] = base ** convwidth_base[base]
 | 
						|
 | 
						|
The first of these is the largest i such that i consecutive input digits
 | 
						|
must fit in a single Python digit.  The second is effectively the input
 | 
						|
base we're really using.
 | 
						|
 | 
						|
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
 | 
						|
convmultmax_base[base], the result is "simply"
 | 
						|
 | 
						|
   (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
 | 
						|
 | 
						|
where B = convmultmax_base[base].
 | 
						|
 | 
						|
Error analysis:  as above, the number of Python digits `n` needed is worst-
 | 
						|
case
 | 
						|
 | 
						|
    n >= N * log(B)/log(PyLong_BASE)
 | 
						|
 | 
						|
where `N` is the number of input digits in base `B`.  This is computed via
 | 
						|
 | 
						|
    size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
 | 
						|
 | 
						|
below.  Two numeric concerns are how much space this can waste, and whether
 | 
						|
the computed result can be too small.  To be concrete, assume PyLong_BASE = 2**15,
 | 
						|
which is the default (and it's unlikely anyone changes that).
 | 
						|
 | 
						|
Waste isn't a problem:  provided the first input digit isn't 0, the difference
 | 
						|
between the worst-case input with N digits and the smallest input with N
 | 
						|
digits is about a factor of B, but B is small compared to PyLong_BASE so at most
 | 
						|
one allocated Python digit can remain unused on that count.  If
 | 
						|
N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating that
 | 
						|
and adding 1 returns a result 1 larger than necessary.  However, that can't
 | 
						|
happen:  whenever B is a power of 2, long_from_binary_base() is called
 | 
						|
instead, and it's impossible for B**i to be an integer power of 2**15 when
 | 
						|
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be
 | 
						|
an exact integer when B is not a power of 2, since B**i has a prime factor
 | 
						|
other than 2 in that case, but (2**15)**j's only prime factor is 2).
 | 
						|
 | 
						|
The computed result can be too small if the true value of N*log(B)/log(PyLong_BASE)
 | 
						|
is a little bit larger than an exact integer, but due to roundoff errors (in
 | 
						|
computing log(B), log(PyLong_BASE), their quotient, and/or multiplying that by N)
 | 
						|
yields a numeric result a little less than that integer.  Unfortunately, "how
 | 
						|
close can a transcendental function get to an integer over some range?"
 | 
						|
questions are generally theoretically intractable.  Computer analysis via
 | 
						|
continued fractions is practical:  expand log(B)/log(PyLong_BASE) via continued
 | 
						|
fractions, giving a sequence i/j of "the best" rational approximations.  Then
 | 
						|
j*log(B)/log(PyLong_BASE) is approximately equal to (the integer) i.  This shows that
 | 
						|
we can get very close to being in trouble, but very rarely.  For example,
 | 
						|
76573 is a denominator in one of the continued-fraction approximations to
 | 
						|
log(10)/log(2**15), and indeed:
 | 
						|
 | 
						|
    >>> log(10)/log(2**15)*76573
 | 
						|
    16958.000000654003
 | 
						|
 | 
						|
is very close to an integer.  If we were working with IEEE single-precision,
 | 
						|
rounding errors could kill us.  Finding worst cases in IEEE double-precision
 | 
						|
requires better-than-double-precision log() functions, and Tim didn't bother.
 | 
						|
Instead the code checks to see whether the allocated space is enough as each
 | 
						|
new Python digit is added, and copies the whole thing to a larger long if not.
 | 
						|
This should happen extremely rarely, and in fact I don't have a test case
 | 
						|
that triggers it(!).  Instead the code was tested by artificially allocating
 | 
						|
just 1 digit at the start, so that the copying code was exercised for every
 | 
						|
digit beyond the first.
 | 
						|
***/
 | 
						|
		register twodigits c;	/* current input character */
 | 
						|
		Py_ssize_t size_z;
 | 
						|
		int i;
 | 
						|
		int convwidth;
 | 
						|
		twodigits convmultmax, convmult;
 | 
						|
		digit *pz, *pzstop;
 | 
						|
		char* scan;
 | 
						|
 | 
						|
		static double log_base_PyLong_BASE[37] = {0.0e0,};
 | 
						|
		static int convwidth_base[37] = {0,};
 | 
						|
		static twodigits convmultmax_base[37] = {0,};
 | 
						|
 | 
						|
		if (log_base_PyLong_BASE[base] == 0.0) {
 | 
						|
			twodigits convmax = base;
 | 
						|
			int i = 1;
 | 
						|
 | 
						|
			log_base_PyLong_BASE[base] = log((double)base) /
 | 
						|
						log((double)PyLong_BASE);
 | 
						|
			for (;;) {
 | 
						|
				twodigits next = convmax * base;
 | 
						|
				if (next > PyLong_BASE)
 | 
						|
					break;
 | 
						|
				convmax = next;
 | 
						|
				++i;
 | 
						|
			}
 | 
						|
			convmultmax_base[base] = convmax;
 | 
						|
			assert(i > 0);
 | 
						|
			convwidth_base[base] = i;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Find length of the string of numeric characters. */
 | 
						|
		scan = str;
 | 
						|
		while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
 | 
						|
			++scan;
 | 
						|
 | 
						|
		/* Create a long object that can contain the largest possible
 | 
						|
		 * integer with this base and length.  Note that there's no
 | 
						|
		 * need to initialize z->ob_digit -- no slot is read up before
 | 
						|
		 * being stored into.
 | 
						|
		 */
 | 
						|
		size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
 | 
						|
		/* Uncomment next line to test exceedingly rare copy code */
 | 
						|
		/* size_z = 1; */
 | 
						|
		assert(size_z > 0);
 | 
						|
		z = _PyLong_New(size_z);
 | 
						|
		if (z == NULL)
 | 
						|
			return NULL;
 | 
						|
		Py_SIZE(z) = 0;
 | 
						|
 | 
						|
		/* `convwidth` consecutive input digits are treated as a single
 | 
						|
		 * digit in base `convmultmax`.
 | 
						|
		 */
 | 
						|
		convwidth = convwidth_base[base];
 | 
						|
		convmultmax = convmultmax_base[base];
 | 
						|
 | 
						|
		/* Work ;-) */
 | 
						|
		while (str < scan) {
 | 
						|
			/* grab up to convwidth digits from the input string */
 | 
						|
			c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
 | 
						|
			for (i = 1; i < convwidth && str != scan; ++i, ++str) {
 | 
						|
				c = (twodigits)(c *  base +
 | 
						|
					_PyLong_DigitValue[Py_CHARMASK(*str)]);
 | 
						|
				assert(c < PyLong_BASE);
 | 
						|
			}
 | 
						|
 | 
						|
			convmult = convmultmax;
 | 
						|
			/* Calculate the shift only if we couldn't get
 | 
						|
			 * convwidth digits.
 | 
						|
			 */
 | 
						|
			if (i != convwidth) {
 | 
						|
				convmult = base;
 | 
						|
				for ( ; i > 1; --i)
 | 
						|
					convmult *= base;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Multiply z by convmult, and add c. */
 | 
						|
			pz = z->ob_digit;
 | 
						|
			pzstop = pz + Py_SIZE(z);
 | 
						|
			for (; pz < pzstop; ++pz) {
 | 
						|
				c += (twodigits)*pz * convmult;
 | 
						|
				*pz = (digit)(c & PyLong_MASK);
 | 
						|
				c >>= PyLong_SHIFT;
 | 
						|
			}
 | 
						|
			/* carry off the current end? */
 | 
						|
			if (c) {
 | 
						|
				assert(c < PyLong_BASE);
 | 
						|
				if (Py_SIZE(z) < size_z) {
 | 
						|
					*pz = (digit)c;
 | 
						|
					++Py_SIZE(z);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					PyLongObject *tmp;
 | 
						|
					/* Extremely rare.  Get more space. */
 | 
						|
					assert(Py_SIZE(z) == size_z);
 | 
						|
					tmp = _PyLong_New(size_z + 1);
 | 
						|
					if (tmp == NULL) {
 | 
						|
						Py_DECREF(z);
 | 
						|
						return NULL;
 | 
						|
					}
 | 
						|
					memcpy(tmp->ob_digit,
 | 
						|
					       z->ob_digit,
 | 
						|
					       sizeof(digit) * size_z);
 | 
						|
					Py_DECREF(z);
 | 
						|
					z = tmp;
 | 
						|
					z->ob_digit[size_z] = (digit)c;
 | 
						|
					++size_z;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (z == NULL)
 | 
						|
		return NULL;
 | 
						|
	if (str == start)
 | 
						|
		goto onError;
 | 
						|
	if (sign < 0)
 | 
						|
		Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
	if (*str == 'L' || *str == 'l')
 | 
						|
		str++;
 | 
						|
	while (*str && isspace(Py_CHARMASK(*str)))
 | 
						|
		str++;
 | 
						|
	if (*str != '\0')
 | 
						|
		goto onError;
 | 
						|
	if (pend)
 | 
						|
		*pend = str;
 | 
						|
	return (PyObject *) z;
 | 
						|
 | 
						|
 onError:
 | 
						|
	Py_XDECREF(z);
 | 
						|
	slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
 | 
						|
	strobj = PyString_FromStringAndSize(orig_str, slen);
 | 
						|
	if (strobj == NULL)
 | 
						|
		return NULL;
 | 
						|
	strrepr = PyObject_Repr(strobj);
 | 
						|
	Py_DECREF(strobj);
 | 
						|
	if (strrepr == NULL)
 | 
						|
		return NULL;
 | 
						|
	PyErr_Format(PyExc_ValueError,
 | 
						|
		     "invalid literal for long() with base %d: %s",
 | 
						|
		     base, PyString_AS_STRING(strrepr));
 | 
						|
	Py_DECREF(strrepr);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
PyObject *
 | 
						|
PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
 | 
						|
{
 | 
						|
	PyObject *result;
 | 
						|
	char *buffer = (char *)PyMem_MALLOC(length+1);
 | 
						|
 | 
						|
	if (buffer == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
 | 
						|
		PyMem_FREE(buffer);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	result = PyLong_FromString(buffer, NULL, base);
 | 
						|
	PyMem_FREE(buffer);
 | 
						|
	return result;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* forward */
 | 
						|
static PyLongObject *x_divrem
 | 
						|
	(PyLongObject *, PyLongObject *, PyLongObject **);
 | 
						|
static PyObject *long_long(PyObject *v);
 | 
						|
 | 
						|
/* Long division with remainder, top-level routine */
 | 
						|
 | 
						|
static int
 | 
						|
long_divrem(PyLongObject *a, PyLongObject *b,
 | 
						|
	    PyLongObject **pdiv, PyLongObject **prem)
 | 
						|
{
 | 
						|
	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | 
						|
	PyLongObject *z;
 | 
						|
 | 
						|
	if (size_b == 0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
				"long division or modulo by zero");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (size_a < size_b ||
 | 
						|
	    (size_a == size_b &&
 | 
						|
	     a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
 | 
						|
		/* |a| < |b|. */
 | 
						|
		*pdiv = _PyLong_New(0);
 | 
						|
		if (*pdiv == NULL)
 | 
						|
			return -1;
 | 
						|
		Py_INCREF(a);
 | 
						|
		*prem = (PyLongObject *) a;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	if (size_b == 1) {
 | 
						|
		digit rem = 0;
 | 
						|
		z = divrem1(a, b->ob_digit[0], &rem);
 | 
						|
		if (z == NULL)
 | 
						|
			return -1;
 | 
						|
		*prem = (PyLongObject *) PyLong_FromLong((long)rem);
 | 
						|
		if (*prem == NULL) {
 | 
						|
			Py_DECREF(z);
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		z = x_divrem(a, b, prem);
 | 
						|
		if (z == NULL)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	/* Set the signs.
 | 
						|
	   The quotient z has the sign of a*b;
 | 
						|
	   the remainder r has the sign of a,
 | 
						|
	   so a = b*z + r. */
 | 
						|
	if ((a->ob_size < 0) != (b->ob_size < 0))
 | 
						|
		z->ob_size = -(z->ob_size);
 | 
						|
	if (a->ob_size < 0 && (*prem)->ob_size != 0)
 | 
						|
		(*prem)->ob_size = -((*prem)->ob_size);
 | 
						|
	*pdiv = z;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Unsigned long division with remainder -- the algorithm.  The arguments v1
 | 
						|
   and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
 | 
						|
{
 | 
						|
	PyLongObject *v, *w, *a;
 | 
						|
	Py_ssize_t i, k, size_v, size_w;
 | 
						|
	int d;
 | 
						|
	digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
 | 
						|
	twodigits vv;
 | 
						|
	sdigit zhi;
 | 
						|
	stwodigits z;
 | 
						|
 | 
						|
	/* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
 | 
						|
	   edn.), section 4.3.1, Algorithm D], except that we don't explicitly
 | 
						|
	   handle the special case when the initial estimate q for a quotient
 | 
						|
	   digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
 | 
						|
	   that won't overflow a digit. */
 | 
						|
 | 
						|
	/* allocate space; w will also be used to hold the final remainder */
 | 
						|
	size_v = ABS(Py_SIZE(v1));
 | 
						|
	size_w = ABS(Py_SIZE(w1));
 | 
						|
	assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
 | 
						|
	v = _PyLong_New(size_v+1);
 | 
						|
	if (v == NULL) {
 | 
						|
		*prem = NULL;
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	w = _PyLong_New(size_w);
 | 
						|
	if (w == NULL) {
 | 
						|
		Py_DECREF(v);
 | 
						|
		*prem = NULL;
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
 | 
						|
	   shift v1 left by the same amount.  Results go into w and v. */
 | 
						|
	d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
 | 
						|
	carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
 | 
						|
	assert(carry == 0);
 | 
						|
	carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
 | 
						|
	if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
 | 
						|
		v->ob_digit[size_v] = carry;
 | 
						|
		size_v++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
 | 
						|
	   at most (and usually exactly) k = size_v - size_w digits. */
 | 
						|
	k = size_v - size_w;
 | 
						|
	assert(k >= 0);
 | 
						|
	a = _PyLong_New(k);
 | 
						|
	if (a == NULL) {
 | 
						|
		Py_DECREF(w);
 | 
						|
		Py_DECREF(v);
 | 
						|
		*prem = NULL;
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	v0 = v->ob_digit;
 | 
						|
	w0 = w->ob_digit;
 | 
						|
	wm1 = w0[size_w-1];
 | 
						|
	wm2 = w0[size_w-2];
 | 
						|
	for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
 | 
						|
		/* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
 | 
						|
		   single-digit quotient q, remainder in vk[0:size_w]. */
 | 
						|
 | 
						|
		SIGCHECK({
 | 
						|
			Py_DECREF(a);
 | 
						|
			Py_DECREF(w);
 | 
						|
			Py_DECREF(v);
 | 
						|
			*prem = NULL;
 | 
						|
			return NULL;
 | 
						|
		})
 | 
						|
 | 
						|
		/* estimate quotient digit q; may overestimate by 1 (rare) */
 | 
						|
		vtop = vk[size_w];
 | 
						|
		assert(vtop <= wm1);
 | 
						|
		vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
 | 
						|
		q = (digit)(vv / wm1);
 | 
						|
		r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
 | 
						|
		while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
 | 
						|
					     | vk[size_w-2])) {
 | 
						|
			--q;
 | 
						|
			r += wm1;
 | 
						|
			if (r >= PyLong_BASE)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		assert(q <= PyLong_BASE);
 | 
						|
 | 
						|
		/* subtract q*w0[0:size_w] from vk[0:size_w+1] */
 | 
						|
		zhi = 0;
 | 
						|
		for (i = 0; i < size_w; ++i) {
 | 
						|
			/* invariants: -PyLong_BASE <= -q <= zhi <= 0;
 | 
						|
			   -PyLong_BASE * q <= z < PyLong_BASE */
 | 
						|
			z = (sdigit)vk[i] + zhi -
 | 
						|
				(stwodigits)q * (stwodigits)w0[i];
 | 
						|
			vk[i] = (digit)z & PyLong_MASK;
 | 
						|
			zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
 | 
						|
							z, PyLong_SHIFT);
 | 
						|
		}
 | 
						|
 | 
						|
		/* add w back if q was too large (this branch taken rarely) */
 | 
						|
		assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
 | 
						|
		if ((sdigit)vtop + zhi < 0) {
 | 
						|
			carry = 0;
 | 
						|
			for (i = 0; i < size_w; ++i) {
 | 
						|
				carry += vk[i] + w0[i];
 | 
						|
				vk[i] = carry & PyLong_MASK;
 | 
						|
				carry >>= PyLong_SHIFT;
 | 
						|
			}
 | 
						|
			--q;
 | 
						|
		}
 | 
						|
 | 
						|
		/* store quotient digit */
 | 
						|
		assert(q < PyLong_BASE);
 | 
						|
		*--ak = q;
 | 
						|
	}
 | 
						|
 | 
						|
	/* unshift remainder; we reuse w to store the result */
 | 
						|
	carry = v_rshift(w0, v0, size_w, d);
 | 
						|
	assert(carry==0);
 | 
						|
	Py_DECREF(v);
 | 
						|
 | 
						|
	*prem = long_normalize(w);
 | 
						|
	return long_normalize(a);
 | 
						|
}
 | 
						|
 | 
						|
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
 | 
						|
   abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
 | 
						|
   rounded to DBL_MANT_DIG significant bits using round-half-to-even.
 | 
						|
   If a == 0, return 0.0 and set *e = 0.  If the resulting exponent
 | 
						|
   e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
 | 
						|
   -1.0. */
 | 
						|
 | 
						|
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
 | 
						|
#if DBL_MANT_DIG == 53
 | 
						|
#define EXP2_DBL_MANT_DIG 9007199254740992.0
 | 
						|
#else
 | 
						|
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
 | 
						|
#endif
 | 
						|
 | 
						|
double
 | 
						|
_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
 | 
						|
{
 | 
						|
	Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
 | 
						|
	/* See below for why x_digits is always large enough. */
 | 
						|
	digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
 | 
						|
	double dx;
 | 
						|
	/* Correction term for round-half-to-even rounding.  For a digit x,
 | 
						|
	   "x + half_even_correction[x & 7]" gives x rounded to the nearest
 | 
						|
	   multiple of 4, rounding ties to a multiple of 8. */
 | 
						|
	static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
 | 
						|
 | 
						|
	a_size = ABS(Py_SIZE(a));
 | 
						|
	if (a_size == 0) {
 | 
						|
		/* Special case for 0: significand 0.0, exponent 0. */
 | 
						|
		*e = 0;
 | 
						|
		return 0.0;
 | 
						|
	}
 | 
						|
	a_bits = bits_in_digit(a->ob_digit[a_size-1]);
 | 
						|
	/* The following is an overflow-free version of the check
 | 
						|
	   "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
 | 
						|
	if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
 | 
						|
	    (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
 | 
						|
	     a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
 | 
						|
		 goto overflow;
 | 
						|
	a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
 | 
						|
 | 
						|
	/* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
 | 
						|
	   (shifting left if a_bits <= DBL_MANT_DIG + 2).
 | 
						|
 | 
						|
	   Number of digits needed for result: write // for floor division.
 | 
						|
	   Then if shifting left, we end up using
 | 
						|
 | 
						|
	     1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
 | 
						|
 | 
						|
	   digits.  If shifting right, we use
 | 
						|
 | 
						|
	     a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
 | 
						|
 | 
						|
	   digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
 | 
						|
	   the inequalities
 | 
						|
 | 
						|
	     m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
 | 
						|
	     m // PyLong_SHIFT - n // PyLong_SHIFT <=
 | 
						|
	                                      1 + (m - n - 1) // PyLong_SHIFT,
 | 
						|
 | 
						|
	   valid for any integers m and n, we find that x_size satisfies
 | 
						|
 | 
						|
	     x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
 | 
						|
 | 
						|
	   in both cases.
 | 
						|
	*/
 | 
						|
	if (a_bits <= DBL_MANT_DIG + 2) {
 | 
						|
		shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
 | 
						|
		shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
 | 
						|
		x_size = 0;
 | 
						|
		while (x_size < shift_digits)
 | 
						|
			x_digits[x_size++] = 0;
 | 
						|
		rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
 | 
						|
			       shift_bits);
 | 
						|
		x_size += a_size;
 | 
						|
		x_digits[x_size++] = rem;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
 | 
						|
		shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
 | 
						|
		rem = v_rshift(x_digits, a->ob_digit + shift_digits,
 | 
						|
			       a_size - shift_digits, shift_bits);
 | 
						|
		x_size = a_size - shift_digits;
 | 
						|
		/* For correct rounding below, we need the least significant
 | 
						|
		   bit of x to be 'sticky' for this shift: if any of the bits
 | 
						|
		   shifted out was nonzero, we set the least significant bit
 | 
						|
		   of x. */
 | 
						|
		if (rem)
 | 
						|
			x_digits[0] |= 1;
 | 
						|
		else
 | 
						|
			while (shift_digits > 0)
 | 
						|
				if (a->ob_digit[--shift_digits]) {
 | 
						|
					x_digits[0] |= 1;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
	}
 | 
						|
	assert(1 <= x_size && x_size <= sizeof(x_digits)/sizeof(digit));
 | 
						|
 | 
						|
	/* Round, and convert to double. */
 | 
						|
	x_digits[0] += half_even_correction[x_digits[0] & 7];
 | 
						|
	dx = x_digits[--x_size];
 | 
						|
	while (x_size > 0)
 | 
						|
		dx = dx * PyLong_BASE + x_digits[--x_size];
 | 
						|
 | 
						|
	/* Rescale;  make correction if result is 1.0. */
 | 
						|
	dx /= 4.0 * EXP2_DBL_MANT_DIG;
 | 
						|
	if (dx == 1.0) {
 | 
						|
		if (a_bits == PY_SSIZE_T_MAX)
 | 
						|
			goto overflow;
 | 
						|
		dx = 0.5;
 | 
						|
		a_bits += 1;
 | 
						|
	}
 | 
						|
 | 
						|
	*e = a_bits;
 | 
						|
	return Py_SIZE(a) < 0 ? -dx : dx;
 | 
						|
 | 
						|
  overflow:
 | 
						|
	/* exponent > PY_SSIZE_T_MAX */
 | 
						|
	PyErr_SetString(PyExc_OverflowError,
 | 
						|
			"huge integer: number of bits overflows a Py_ssize_t");
 | 
						|
	*e = 0;
 | 
						|
	return -1.0;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C double from a long int object.  Rounds to the nearest double,
 | 
						|
   using the round-half-to-even rule in the case of a tie. */
 | 
						|
 | 
						|
double
 | 
						|
PyLong_AsDouble(PyObject *v)
 | 
						|
{
 | 
						|
	Py_ssize_t exponent;
 | 
						|
	double x;
 | 
						|
 | 
						|
	if (v == NULL || !PyLong_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1.0;
 | 
						|
	}
 | 
						|
	x = _PyLong_Frexp((PyLongObject *)v, &exponent);
 | 
						|
	if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
 | 
						|
		PyErr_SetString(PyExc_OverflowError,
 | 
						|
				"long int too large to convert to float");
 | 
						|
		return -1.0;
 | 
						|
	}
 | 
						|
	return ldexp(x, exponent);
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static void
 | 
						|
long_dealloc(PyObject *v)
 | 
						|
{
 | 
						|
	Py_TYPE(v)->tp_free(v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_repr(PyObject *v)
 | 
						|
{
 | 
						|
	return _PyLong_Format(v, 10, 1, 0);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_str(PyObject *v)
 | 
						|
{
 | 
						|
	return _PyLong_Format(v, 10, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
long_compare(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
	Py_ssize_t sign;
 | 
						|
 | 
						|
	if (Py_SIZE(a) != Py_SIZE(b)) {
 | 
						|
		if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0)
 | 
						|
			sign = 0;
 | 
						|
		else
 | 
						|
			sign = Py_SIZE(a) - Py_SIZE(b);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Py_ssize_t i = ABS(Py_SIZE(a));
 | 
						|
		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | 
						|
			;
 | 
						|
		if (i < 0)
 | 
						|
			sign = 0;
 | 
						|
		else {
 | 
						|
			sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
 | 
						|
			if (Py_SIZE(a) < 0)
 | 
						|
				sign = -sign;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return sign < 0 ? -1 : sign > 0 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static long
 | 
						|
long_hash(PyLongObject *v)
 | 
						|
{
 | 
						|
	unsigned long x;
 | 
						|
	Py_ssize_t i;
 | 
						|
	int sign;
 | 
						|
 | 
						|
	/* This is designed so that Python ints and longs with the
 | 
						|
	   same value hash to the same value, otherwise comparisons
 | 
						|
	   of mapping keys will turn out weird */
 | 
						|
	i = v->ob_size;
 | 
						|
	sign = 1;
 | 
						|
	x = 0;
 | 
						|
	if (i < 0) {
 | 
						|
		sign = -1;
 | 
						|
		i = -(i);
 | 
						|
	}
 | 
						|
	/* The following loop produces a C unsigned long x such that x is
 | 
						|
	   congruent to the absolute value of v modulo ULONG_MAX.  The
 | 
						|
	   resulting x is nonzero if and only if v is. */
 | 
						|
	while (--i >= 0) {
 | 
						|
		/* Force a native long #-bits (32 or 64) circular shift */
 | 
						|
		x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT);
 | 
						|
		x += v->ob_digit[i];
 | 
						|
		/* If the addition above overflowed we compensate by
 | 
						|
		   incrementing.  This preserves the value modulo
 | 
						|
		   ULONG_MAX. */
 | 
						|
		if (x < v->ob_digit[i])
 | 
						|
			x++;
 | 
						|
	}
 | 
						|
	x = x * sign;
 | 
						|
	if (x == (unsigned long)-1)
 | 
						|
		x = (unsigned long)-2;
 | 
						|
	return (long)x;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Add the absolute values of two long integers. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
x_add(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | 
						|
	PyLongObject *z;
 | 
						|
	Py_ssize_t i;
 | 
						|
	digit carry = 0;
 | 
						|
 | 
						|
	/* Ensure a is the larger of the two: */
 | 
						|
	if (size_a < size_b) {
 | 
						|
		{ PyLongObject *temp = a; a = b; b = temp; }
 | 
						|
		{ Py_ssize_t size_temp = size_a;
 | 
						|
		  size_a = size_b;
 | 
						|
		  size_b = size_temp; }
 | 
						|
	}
 | 
						|
	z = _PyLong_New(size_a+1);
 | 
						|
	if (z == NULL)
 | 
						|
		return NULL;
 | 
						|
	for (i = 0; i < size_b; ++i) {
 | 
						|
		carry += a->ob_digit[i] + b->ob_digit[i];
 | 
						|
		z->ob_digit[i] = carry & PyLong_MASK;
 | 
						|
		carry >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	for (; i < size_a; ++i) {
 | 
						|
		carry += a->ob_digit[i];
 | 
						|
		z->ob_digit[i] = carry & PyLong_MASK;
 | 
						|
		carry >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	z->ob_digit[i] = carry;
 | 
						|
	return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
/* Subtract the absolute values of two integers. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
x_sub(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
	Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
 | 
						|
	PyLongObject *z;
 | 
						|
	Py_ssize_t i;
 | 
						|
	int sign = 1;
 | 
						|
	digit borrow = 0;
 | 
						|
 | 
						|
	/* Ensure a is the larger of the two: */
 | 
						|
	if (size_a < size_b) {
 | 
						|
		sign = -1;
 | 
						|
		{ PyLongObject *temp = a; a = b; b = temp; }
 | 
						|
		{ Py_ssize_t size_temp = size_a;
 | 
						|
		  size_a = size_b;
 | 
						|
		  size_b = size_temp; }
 | 
						|
	}
 | 
						|
	else if (size_a == size_b) {
 | 
						|
		/* Find highest digit where a and b differ: */
 | 
						|
		i = size_a;
 | 
						|
		while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | 
						|
			;
 | 
						|
		if (i < 0)
 | 
						|
			return _PyLong_New(0);
 | 
						|
		if (a->ob_digit[i] < b->ob_digit[i]) {
 | 
						|
			sign = -1;
 | 
						|
			{ PyLongObject *temp = a; a = b; b = temp; }
 | 
						|
		}
 | 
						|
		size_a = size_b = i+1;
 | 
						|
	}
 | 
						|
	z = _PyLong_New(size_a);
 | 
						|
	if (z == NULL)
 | 
						|
		return NULL;
 | 
						|
	for (i = 0; i < size_b; ++i) {
 | 
						|
		/* The following assumes unsigned arithmetic
 | 
						|
		   works module 2**N for some N>PyLong_SHIFT. */
 | 
						|
		borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
 | 
						|
		z->ob_digit[i] = borrow & PyLong_MASK;
 | 
						|
		borrow >>= PyLong_SHIFT;
 | 
						|
		borrow &= 1; /* Keep only one sign bit */
 | 
						|
	}
 | 
						|
	for (; i < size_a; ++i) {
 | 
						|
		borrow = a->ob_digit[i] - borrow;
 | 
						|
		z->ob_digit[i] = borrow & PyLong_MASK;
 | 
						|
		borrow >>= PyLong_SHIFT;
 | 
						|
		borrow &= 1; /* Keep only one sign bit */
 | 
						|
	}
 | 
						|
	assert(borrow == 0);
 | 
						|
	if (sign < 0)
 | 
						|
		z->ob_size = -(z->ob_size);
 | 
						|
	return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_add(PyLongObject *v, PyLongObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *z;
 | 
						|
 | 
						|
	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
 | 
						|
 | 
						|
	if (a->ob_size < 0) {
 | 
						|
		if (b->ob_size < 0) {
 | 
						|
			z = x_add(a, b);
 | 
						|
			if (z != NULL && z->ob_size != 0)
 | 
						|
				z->ob_size = -(z->ob_size);
 | 
						|
		}
 | 
						|
		else
 | 
						|
			z = x_sub(b, a);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (b->ob_size < 0)
 | 
						|
			z = x_sub(a, b);
 | 
						|
		else
 | 
						|
			z = x_add(a, b);
 | 
						|
	}
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_sub(PyLongObject *v, PyLongObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *z;
 | 
						|
 | 
						|
	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
 | 
						|
 | 
						|
	if (a->ob_size < 0) {
 | 
						|
		if (b->ob_size < 0)
 | 
						|
			z = x_sub(a, b);
 | 
						|
		else
 | 
						|
			z = x_add(a, b);
 | 
						|
		if (z != NULL && z->ob_size != 0)
 | 
						|
			z->ob_size = -(z->ob_size);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (b->ob_size < 0)
 | 
						|
			z = x_add(a, b);
 | 
						|
		else
 | 
						|
			z = x_sub(a, b);
 | 
						|
	}
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
/* Grade school multiplication, ignoring the signs.
 | 
						|
 * Returns the absolute value of the product, or NULL if error.
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
x_mul(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
	PyLongObject *z;
 | 
						|
	Py_ssize_t size_a = ABS(Py_SIZE(a));
 | 
						|
	Py_ssize_t size_b = ABS(Py_SIZE(b));
 | 
						|
	Py_ssize_t i;
 | 
						|
 | 
						|
     	z = _PyLong_New(size_a + size_b);
 | 
						|
	if (z == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
 | 
						|
	if (a == b) {
 | 
						|
		/* Efficient squaring per HAC, Algorithm 14.16:
 | 
						|
		 * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
 | 
						|
		 * Gives slightly less than a 2x speedup when a == b,
 | 
						|
		 * via exploiting that each entry in the multiplication
 | 
						|
		 * pyramid appears twice (except for the size_a squares).
 | 
						|
		 */
 | 
						|
		for (i = 0; i < size_a; ++i) {
 | 
						|
			twodigits carry;
 | 
						|
			twodigits f = a->ob_digit[i];
 | 
						|
			digit *pz = z->ob_digit + (i << 1);
 | 
						|
			digit *pa = a->ob_digit + i + 1;
 | 
						|
			digit *paend = a->ob_digit + size_a;
 | 
						|
 | 
						|
			SIGCHECK({
 | 
						|
				Py_DECREF(z);
 | 
						|
				return NULL;
 | 
						|
			})
 | 
						|
 | 
						|
			carry = *pz + f * f;
 | 
						|
			*pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
			carry >>= PyLong_SHIFT;
 | 
						|
			assert(carry <= PyLong_MASK);
 | 
						|
 | 
						|
			/* Now f is added in twice in each column of the
 | 
						|
			 * pyramid it appears.  Same as adding f<<1 once.
 | 
						|
			 */
 | 
						|
			f <<= 1;
 | 
						|
			while (pa < paend) {
 | 
						|
				carry += *pz + *pa++ * f;
 | 
						|
				*pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
				carry >>= PyLong_SHIFT;
 | 
						|
				assert(carry <= (PyLong_MASK << 1));
 | 
						|
			}
 | 
						|
			if (carry) {
 | 
						|
				carry += *pz;
 | 
						|
				*pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
				carry >>= PyLong_SHIFT;
 | 
						|
			}
 | 
						|
			if (carry)
 | 
						|
				*pz += (digit)(carry & PyLong_MASK);
 | 
						|
			assert((carry >> PyLong_SHIFT) == 0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {	/* a is not the same as b -- gradeschool long mult */
 | 
						|
		for (i = 0; i < size_a; ++i) {
 | 
						|
			twodigits carry = 0;
 | 
						|
			twodigits f = a->ob_digit[i];
 | 
						|
			digit *pz = z->ob_digit + i;
 | 
						|
			digit *pb = b->ob_digit;
 | 
						|
			digit *pbend = b->ob_digit + size_b;
 | 
						|
 | 
						|
			SIGCHECK({
 | 
						|
				Py_DECREF(z);
 | 
						|
				return NULL;
 | 
						|
			})
 | 
						|
 | 
						|
			while (pb < pbend) {
 | 
						|
				carry += *pz + *pb++ * f;
 | 
						|
				*pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
				carry >>= PyLong_SHIFT;
 | 
						|
				assert(carry <= PyLong_MASK);
 | 
						|
			}
 | 
						|
			if (carry)
 | 
						|
				*pz += (digit)(carry & PyLong_MASK);
 | 
						|
			assert((carry >> PyLong_SHIFT) == 0);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
/* A helper for Karatsuba multiplication (k_mul).
 | 
						|
   Takes a long "n" and an integer "size" representing the place to
 | 
						|
   split, and sets low and high such that abs(n) == (high << size) + low,
 | 
						|
   viewing the shift as being by digits.  The sign bit is ignored, and
 | 
						|
   the return values are >= 0.
 | 
						|
   Returns 0 on success, -1 on failure.
 | 
						|
*/
 | 
						|
static int
 | 
						|
kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low)
 | 
						|
{
 | 
						|
	PyLongObject *hi, *lo;
 | 
						|
	Py_ssize_t size_lo, size_hi;
 | 
						|
	const Py_ssize_t size_n = ABS(Py_SIZE(n));
 | 
						|
 | 
						|
	size_lo = MIN(size_n, size);
 | 
						|
	size_hi = size_n - size_lo;
 | 
						|
 | 
						|
	if ((hi = _PyLong_New(size_hi)) == NULL)
 | 
						|
		return -1;
 | 
						|
	if ((lo = _PyLong_New(size_lo)) == NULL) {
 | 
						|
		Py_DECREF(hi);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
 | 
						|
	memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
 | 
						|
 | 
						|
	*high = long_normalize(hi);
 | 
						|
	*low = long_normalize(lo);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
 | 
						|
 | 
						|
/* Karatsuba multiplication.  Ignores the input signs, and returns the
 | 
						|
 * absolute value of the product (or NULL if error).
 | 
						|
 * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
k_mul(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
	Py_ssize_t asize = ABS(Py_SIZE(a));
 | 
						|
	Py_ssize_t bsize = ABS(Py_SIZE(b));
 | 
						|
	PyLongObject *ah = NULL;
 | 
						|
	PyLongObject *al = NULL;
 | 
						|
	PyLongObject *bh = NULL;
 | 
						|
	PyLongObject *bl = NULL;
 | 
						|
	PyLongObject *ret = NULL;
 | 
						|
	PyLongObject *t1, *t2, *t3;
 | 
						|
	Py_ssize_t shift;	/* the number of digits we split off */
 | 
						|
	Py_ssize_t i;
 | 
						|
 | 
						|
	/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
 | 
						|
	 * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
 | 
						|
	 * Then the original product is
 | 
						|
	 *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
 | 
						|
	 * By picking X to be a power of 2, "*X" is just shifting, and it's
 | 
						|
	 * been reduced to 3 multiplies on numbers half the size.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* We want to split based on the larger number; fiddle so that b
 | 
						|
	 * is largest.
 | 
						|
	 */
 | 
						|
	if (asize > bsize) {
 | 
						|
		t1 = a;
 | 
						|
		a = b;
 | 
						|
		b = t1;
 | 
						|
 | 
						|
		i = asize;
 | 
						|
		asize = bsize;
 | 
						|
		bsize = i;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Use gradeschool math when either number is too small. */
 | 
						|
	i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
 | 
						|
	if (asize <= i) {
 | 
						|
		if (asize == 0)
 | 
						|
			return _PyLong_New(0);
 | 
						|
		else
 | 
						|
			return x_mul(a, b);
 | 
						|
	}
 | 
						|
 | 
						|
	/* If a is small compared to b, splitting on b gives a degenerate
 | 
						|
	 * case with ah==0, and Karatsuba may be (even much) less efficient
 | 
						|
	 * than "grade school" then.  However, we can still win, by viewing
 | 
						|
	 * b as a string of "big digits", each of width a->ob_size.  That
 | 
						|
	 * leads to a sequence of balanced calls to k_mul.
 | 
						|
	 */
 | 
						|
	if (2 * asize <= bsize)
 | 
						|
		return k_lopsided_mul(a, b);
 | 
						|
 | 
						|
	/* Split a & b into hi & lo pieces. */
 | 
						|
	shift = bsize >> 1;
 | 
						|
	if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
 | 
						|
	assert(Py_SIZE(ah) > 0);	/* the split isn't degenerate */
 | 
						|
 | 
						|
	if (a == b) {
 | 
						|
		bh = ah;
 | 
						|
		bl = al;
 | 
						|
		Py_INCREF(bh);
 | 
						|
		Py_INCREF(bl);
 | 
						|
	}
 | 
						|
	else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
 | 
						|
 | 
						|
	/* The plan:
 | 
						|
	 * 1. Allocate result space (asize + bsize digits:  that's always
 | 
						|
	 *    enough).
 | 
						|
	 * 2. Compute ah*bh, and copy into result at 2*shift.
 | 
						|
	 * 3. Compute al*bl, and copy into result at 0.  Note that this
 | 
						|
	 *    can't overlap with #2.
 | 
						|
	 * 4. Subtract al*bl from the result, starting at shift.  This may
 | 
						|
	 *    underflow (borrow out of the high digit), but we don't care:
 | 
						|
	 *    we're effectively doing unsigned arithmetic mod
 | 
						|
	 *    PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits,
 | 
						|
	 *    borrows and carries out of the high digit can be ignored.
 | 
						|
	 * 5. Subtract ah*bh from the result, starting at shift.
 | 
						|
	 * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
 | 
						|
	 *    at shift.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* 1. Allocate result space. */
 | 
						|
	ret = _PyLong_New(asize + bsize);
 | 
						|
	if (ret == NULL) goto fail;
 | 
						|
#ifdef Py_DEBUG
 | 
						|
	/* Fill with trash, to catch reference to uninitialized digits. */
 | 
						|
	memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
 | 
						|
#endif
 | 
						|
 | 
						|
	/* 2. t1 <- ah*bh, and copy into high digits of result. */
 | 
						|
	if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
 | 
						|
	assert(Py_SIZE(t1) >= 0);
 | 
						|
	assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
 | 
						|
	memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
 | 
						|
	       Py_SIZE(t1) * sizeof(digit));
 | 
						|
 | 
						|
	/* Zero-out the digits higher than the ah*bh copy. */
 | 
						|
	i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
 | 
						|
	if (i)
 | 
						|
		memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
 | 
						|
		       i * sizeof(digit));
 | 
						|
 | 
						|
	/* 3. t2 <- al*bl, and copy into the low digits. */
 | 
						|
	if ((t2 = k_mul(al, bl)) == NULL) {
 | 
						|
		Py_DECREF(t1);
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
	assert(Py_SIZE(t2) >= 0);
 | 
						|
	assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
 | 
						|
	memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
 | 
						|
 | 
						|
	/* Zero out remaining digits. */
 | 
						|
	i = 2*shift - Py_SIZE(t2);	/* number of uninitialized digits */
 | 
						|
	if (i)
 | 
						|
		memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
 | 
						|
 | 
						|
	/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
 | 
						|
	 * because it's fresher in cache.
 | 
						|
	 */
 | 
						|
	i = Py_SIZE(ret) - shift;  /* # digits after shift */
 | 
						|
	(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
 | 
						|
	Py_DECREF(t2);
 | 
						|
 | 
						|
	(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
 | 
						|
	Py_DECREF(t1);
 | 
						|
 | 
						|
	/* 6. t3 <- (ah+al)(bh+bl), and add into result. */
 | 
						|
	if ((t1 = x_add(ah, al)) == NULL) goto fail;
 | 
						|
	Py_DECREF(ah);
 | 
						|
	Py_DECREF(al);
 | 
						|
	ah = al = NULL;
 | 
						|
 | 
						|
	if (a == b) {
 | 
						|
		t2 = t1;
 | 
						|
		Py_INCREF(t2);
 | 
						|
	}
 | 
						|
	else if ((t2 = x_add(bh, bl)) == NULL) {
 | 
						|
		Py_DECREF(t1);
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
	Py_DECREF(bh);
 | 
						|
	Py_DECREF(bl);
 | 
						|
	bh = bl = NULL;
 | 
						|
 | 
						|
	t3 = k_mul(t1, t2);
 | 
						|
	Py_DECREF(t1);
 | 
						|
	Py_DECREF(t2);
 | 
						|
	if (t3 == NULL) goto fail;
 | 
						|
	assert(Py_SIZE(t3) >= 0);
 | 
						|
 | 
						|
	/* Add t3.  It's not obvious why we can't run out of room here.
 | 
						|
	 * See the (*) comment after this function.
 | 
						|
	 */
 | 
						|
	(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
 | 
						|
	Py_DECREF(t3);
 | 
						|
 | 
						|
	return long_normalize(ret);
 | 
						|
 | 
						|
 fail:
 | 
						|
 	Py_XDECREF(ret);
 | 
						|
	Py_XDECREF(ah);
 | 
						|
	Py_XDECREF(al);
 | 
						|
	Py_XDECREF(bh);
 | 
						|
	Py_XDECREF(bl);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* (*) Why adding t3 can't "run out of room" above.
 | 
						|
 | 
						|
Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
 | 
						|
to start with:
 | 
						|
 | 
						|
1. For any integer i, i = c(i/2) + f(i/2).  In particular,
 | 
						|
   bsize = c(bsize/2) + f(bsize/2).
 | 
						|
2. shift = f(bsize/2)
 | 
						|
3. asize <= bsize
 | 
						|
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
 | 
						|
   routine, so asize > bsize/2 >= f(bsize/2) in this routine.
 | 
						|
 | 
						|
We allocated asize + bsize result digits, and add t3 into them at an offset
 | 
						|
of shift.  This leaves asize+bsize-shift allocated digit positions for t3
 | 
						|
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
 | 
						|
asize + c(bsize/2) available digit positions.
 | 
						|
 | 
						|
bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
 | 
						|
at most c(bsize/2) digits + 1 bit.
 | 
						|
 | 
						|
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
 | 
						|
digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
 | 
						|
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
 | 
						|
 | 
						|
The product (ah+al)*(bh+bl) therefore has at most
 | 
						|
 | 
						|
    c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
 | 
						|
 | 
						|
and we have asize + c(bsize/2) available digit positions.  We need to show
 | 
						|
this is always enough.  An instance of c(bsize/2) cancels out in both, so
 | 
						|
the question reduces to whether asize digits is enough to hold
 | 
						|
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
 | 
						|
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
 | 
						|
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
 | 
						|
digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
 | 
						|
asize == bsize, then we're asking whether bsize digits is enough to hold
 | 
						|
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
 | 
						|
is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
 | 
						|
bsize >= KARATSUBA_CUTOFF >= 2.
 | 
						|
 | 
						|
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
 | 
						|
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
 | 
						|
ah*bh and al*bl too.
 | 
						|
*/
 | 
						|
 | 
						|
/* b has at least twice the digits of a, and a is big enough that Karatsuba
 | 
						|
 * would pay off *if* the inputs had balanced sizes.  View b as a sequence
 | 
						|
 * of slices, each with a->ob_size digits, and multiply the slices by a,
 | 
						|
 * one at a time.  This gives k_mul balanced inputs to work with, and is
 | 
						|
 * also cache-friendly (we compute one double-width slice of the result
 | 
						|
 * at a time, then move on, never bactracking except for the helpful
 | 
						|
 * single-width slice overlap between successive partial sums).
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
	const Py_ssize_t asize = ABS(Py_SIZE(a));
 | 
						|
	Py_ssize_t bsize = ABS(Py_SIZE(b));
 | 
						|
	Py_ssize_t nbdone;	/* # of b digits already multiplied */
 | 
						|
	PyLongObject *ret;
 | 
						|
	PyLongObject *bslice = NULL;
 | 
						|
 | 
						|
	assert(asize > KARATSUBA_CUTOFF);
 | 
						|
	assert(2 * asize <= bsize);
 | 
						|
 | 
						|
	/* Allocate result space, and zero it out. */
 | 
						|
	ret = _PyLong_New(asize + bsize);
 | 
						|
	if (ret == NULL)
 | 
						|
		return NULL;
 | 
						|
	memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
 | 
						|
 | 
						|
	/* Successive slices of b are copied into bslice. */
 | 
						|
	bslice = _PyLong_New(asize);
 | 
						|
	if (bslice == NULL)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	nbdone = 0;
 | 
						|
	while (bsize > 0) {
 | 
						|
		PyLongObject *product;
 | 
						|
		const Py_ssize_t nbtouse = MIN(bsize, asize);
 | 
						|
 | 
						|
		/* Multiply the next slice of b by a. */
 | 
						|
		memcpy(bslice->ob_digit, b->ob_digit + nbdone,
 | 
						|
		       nbtouse * sizeof(digit));
 | 
						|
		Py_SIZE(bslice) = nbtouse;
 | 
						|
		product = k_mul(a, bslice);
 | 
						|
		if (product == NULL)
 | 
						|
			goto fail;
 | 
						|
 | 
						|
		/* Add into result. */
 | 
						|
		(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
 | 
						|
			     product->ob_digit, Py_SIZE(product));
 | 
						|
		Py_DECREF(product);
 | 
						|
 | 
						|
		bsize -= nbtouse;
 | 
						|
		nbdone += nbtouse;
 | 
						|
	}
 | 
						|
 | 
						|
	Py_DECREF(bslice);
 | 
						|
	return long_normalize(ret);
 | 
						|
 | 
						|
 fail:
 | 
						|
	Py_DECREF(ret);
 | 
						|
	Py_XDECREF(bslice);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_mul(PyLongObject *v, PyLongObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *z;
 | 
						|
 | 
						|
	if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) {
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
 | 
						|
	z = k_mul(a, b);
 | 
						|
	/* Negate if exactly one of the inputs is negative. */
 | 
						|
	if (((a->ob_size ^ b->ob_size) < 0) && z)
 | 
						|
		z->ob_size = -(z->ob_size);
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
/* The / and % operators are now defined in terms of divmod().
 | 
						|
   The expression a mod b has the value a - b*floor(a/b).
 | 
						|
   The long_divrem function gives the remainder after division of
 | 
						|
   |a| by |b|, with the sign of a.  This is also expressed
 | 
						|
   as a - b*trunc(a/b), if trunc truncates towards zero.
 | 
						|
   Some examples:
 | 
						|
   	 a	 b	a rem b		a mod b
 | 
						|
   	 13	 10	 3		 3
 | 
						|
   	-13	 10	-3		 7
 | 
						|
   	 13	-10	 3		-7
 | 
						|
   	-13	-10	-3		-3
 | 
						|
   So, to get from rem to mod, we have to add b if a and b
 | 
						|
   have different signs.  We then subtract one from the 'div'
 | 
						|
   part of the outcome to keep the invariant intact. */
 | 
						|
 | 
						|
/* Compute
 | 
						|
 *     *pdiv, *pmod = divmod(v, w)
 | 
						|
 * NULL can be passed for pdiv or pmod, in which case that part of
 | 
						|
 * the result is simply thrown away.  The caller owns a reference to
 | 
						|
 * each of these it requests (does not pass NULL for).
 | 
						|
 */
 | 
						|
static int
 | 
						|
l_divmod(PyLongObject *v, PyLongObject *w,
 | 
						|
	 PyLongObject **pdiv, PyLongObject **pmod)
 | 
						|
{
 | 
						|
	PyLongObject *div, *mod;
 | 
						|
 | 
						|
	if (long_divrem(v, w, &div, &mod) < 0)
 | 
						|
		return -1;
 | 
						|
	if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
 | 
						|
	    (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
 | 
						|
		PyLongObject *temp;
 | 
						|
		PyLongObject *one;
 | 
						|
		temp = (PyLongObject *) long_add(mod, w);
 | 
						|
		Py_DECREF(mod);
 | 
						|
		mod = temp;
 | 
						|
		if (mod == NULL) {
 | 
						|
			Py_DECREF(div);
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		one = (PyLongObject *) PyLong_FromLong(1L);
 | 
						|
		if (one == NULL ||
 | 
						|
		    (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
 | 
						|
			Py_DECREF(mod);
 | 
						|
			Py_DECREF(div);
 | 
						|
			Py_XDECREF(one);
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		Py_DECREF(one);
 | 
						|
		Py_DECREF(div);
 | 
						|
		div = temp;
 | 
						|
	}
 | 
						|
	if (pdiv != NULL)
 | 
						|
		*pdiv = div;
 | 
						|
	else
 | 
						|
		Py_DECREF(div);
 | 
						|
 | 
						|
	if (pmod != NULL)
 | 
						|
		*pmod = mod;
 | 
						|
	else
 | 
						|
		Py_DECREF(mod);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *div;
 | 
						|
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
	if (l_divmod(a, b, &div, NULL) < 0)
 | 
						|
		div = NULL;
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *)div;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_classic_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *div;
 | 
						|
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
	if (Py_DivisionWarningFlag &&
 | 
						|
	    PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0)
 | 
						|
		div = NULL;
 | 
						|
	else if (l_divmod(a, b, &div, NULL) < 0)
 | 
						|
		div = NULL;
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *)div;
 | 
						|
}
 | 
						|
 | 
						|
/* PyLong/PyLong -> float, with correctly rounded result. */
 | 
						|
 | 
						|
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
 | 
						|
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_true_divide(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *x;
 | 
						|
	Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
 | 
						|
	digit mask, low;
 | 
						|
	int inexact, negate, a_is_small, b_is_small;
 | 
						|
	double dx, result;
 | 
						|
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
 | 
						|
	/*
 | 
						|
	   Method in a nutshell:
 | 
						|
 | 
						|
	     0. reduce to case a, b > 0; filter out obvious underflow/overflow
 | 
						|
	     1. choose a suitable integer 'shift'
 | 
						|
	     2. use integer arithmetic to compute x = floor(2**-shift*a/b)
 | 
						|
	     3. adjust x for correct rounding
 | 
						|
	     4. convert x to a double dx with the same value
 | 
						|
	     5. return ldexp(dx, shift).
 | 
						|
 | 
						|
	   In more detail:
 | 
						|
 | 
						|
	   0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
 | 
						|
	   returns either 0.0 or -0.0, depending on the sign of b.  For a and
 | 
						|
	   b both nonzero, ignore signs of a and b, and add the sign back in
 | 
						|
	   at the end.  Now write a_bits and b_bits for the bit lengths of a
 | 
						|
	   and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
 | 
						|
	   for b).  Then
 | 
						|
 | 
						|
	      2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
 | 
						|
 | 
						|
	   So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
 | 
						|
	   so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
 | 
						|
	   DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
 | 
						|
	   the way, we can assume that
 | 
						|
 | 
						|
	      DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
 | 
						|
 | 
						|
	   1. The integer 'shift' is chosen so that x has the right number of
 | 
						|
	   bits for a double, plus two or three extra bits that will be used
 | 
						|
	   in the rounding decisions.  Writing a_bits and b_bits for the
 | 
						|
	   number of significant bits in a and b respectively, a
 | 
						|
	   straightforward formula for shift is:
 | 
						|
 | 
						|
	      shift = a_bits - b_bits - DBL_MANT_DIG - 2
 | 
						|
 | 
						|
	   This is fine in the usual case, but if a/b is smaller than the
 | 
						|
	   smallest normal float then it can lead to double rounding on an
 | 
						|
	   IEEE 754 platform, giving incorrectly rounded results.  So we
 | 
						|
	   adjust the formula slightly.  The actual formula used is:
 | 
						|
 | 
						|
	       shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
 | 
						|
 | 
						|
	   2. The quantity x is computed by first shifting a (left -shift bits
 | 
						|
	   if shift <= 0, right shift bits if shift > 0) and then dividing by
 | 
						|
	   b.  For both the shift and the division, we keep track of whether
 | 
						|
	   the result is inexact, in a flag 'inexact'; this information is
 | 
						|
	   needed at the rounding stage.
 | 
						|
 | 
						|
	   With the choice of shift above, together with our assumption that
 | 
						|
	   a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
 | 
						|
	   that x >= 1.
 | 
						|
 | 
						|
	   3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
 | 
						|
	   this with an exactly representable float of the form
 | 
						|
 | 
						|
	      round(x/2**extra_bits) * 2**(extra_bits+shift).
 | 
						|
 | 
						|
	   For float representability, we need x/2**extra_bits <
 | 
						|
	   2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
 | 
						|
	   DBL_MANT_DIG.  This translates to the condition:
 | 
						|
 | 
						|
	      extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
 | 
						|
 | 
						|
	   To round, we just modify the bottom digit of x in-place; this can
 | 
						|
	   end up giving a digit with value > PyLONG_MASK, but that's not a
 | 
						|
	   problem since digits can hold values up to 2*PyLONG_MASK+1.
 | 
						|
 | 
						|
	   With the original choices for shift above, extra_bits will always
 | 
						|
	   be 2 or 3.  Then rounding under the round-half-to-even rule, we
 | 
						|
	   round up iff the most significant of the extra bits is 1, and
 | 
						|
	   either: (a) the computation of x in step 2 had an inexact result,
 | 
						|
	   or (b) at least one other of the extra bits is 1, or (c) the least
 | 
						|
	   significant bit of x (above those to be rounded) is 1.
 | 
						|
 | 
						|
	   4. Conversion to a double is straightforward; all floating-point
 | 
						|
	   operations involved in the conversion are exact, so there's no
 | 
						|
	   danger of rounding errors.
 | 
						|
 | 
						|
	   5. Use ldexp(x, shift) to compute x*2**shift, the final result.
 | 
						|
	   The result will always be exactly representable as a double, except
 | 
						|
	   in the case that it overflows.  To avoid dependence on the exact
 | 
						|
	   behaviour of ldexp on overflow, we check for overflow before
 | 
						|
	   applying ldexp.  The result of ldexp is adjusted for sign before
 | 
						|
	   returning.
 | 
						|
	*/
 | 
						|
 | 
						|
	/* Reduce to case where a and b are both positive. */
 | 
						|
	a_size = ABS(Py_SIZE(a));
 | 
						|
	b_size = ABS(Py_SIZE(b));
 | 
						|
	negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
 | 
						|
	if (b_size == 0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
				"division by zero");
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	if (a_size == 0)
 | 
						|
		goto underflow_or_zero;
 | 
						|
 | 
						|
	/* Fast path for a and b small (exactly representable in a double).
 | 
						|
	   Relies on floating-point division being correctly rounded; results
 | 
						|
	   may be subject to double rounding on x86 machines that operate with
 | 
						|
	   the x87 FPU set to 64-bit precision. */
 | 
						|
	a_is_small = a_size <= MANT_DIG_DIGITS ||
 | 
						|
		(a_size == MANT_DIG_DIGITS+1 &&
 | 
						|
		 a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
 | 
						|
	b_is_small = b_size <= MANT_DIG_DIGITS ||
 | 
						|
		(b_size == MANT_DIG_DIGITS+1 &&
 | 
						|
		 b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
 | 
						|
	if (a_is_small && b_is_small) {
 | 
						|
		double da, db;
 | 
						|
		da = a->ob_digit[--a_size];
 | 
						|
		while (a_size > 0)
 | 
						|
			da = da * PyLong_BASE + a->ob_digit[--a_size];
 | 
						|
		db = b->ob_digit[--b_size];
 | 
						|
		while (b_size > 0)
 | 
						|
			db = db * PyLong_BASE + b->ob_digit[--b_size];
 | 
						|
		result = da / db;
 | 
						|
		goto success;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Catch obvious cases of underflow and overflow */
 | 
						|
	diff = a_size - b_size;
 | 
						|
	if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
 | 
						|
		/* Extreme overflow */
 | 
						|
		goto overflow;
 | 
						|
	else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
 | 
						|
		/* Extreme underflow */
 | 
						|
		goto underflow_or_zero;
 | 
						|
	/* Next line is now safe from overflowing a Py_ssize_t */
 | 
						|
	diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
 | 
						|
		bits_in_digit(b->ob_digit[b_size - 1]);
 | 
						|
	/* Now diff = a_bits - b_bits. */
 | 
						|
	if (diff > DBL_MAX_EXP)
 | 
						|
		goto overflow;
 | 
						|
	else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
 | 
						|
		goto underflow_or_zero;
 | 
						|
 | 
						|
	/* Choose value for shift; see comments for step 1 above. */
 | 
						|
	shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
 | 
						|
 | 
						|
	inexact = 0;
 | 
						|
 | 
						|
	/* x = abs(a * 2**-shift) */
 | 
						|
	if (shift <= 0) {
 | 
						|
		Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
 | 
						|
		digit rem;
 | 
						|
		/* x = a << -shift */
 | 
						|
		if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
 | 
						|
			/* In practice, it's probably impossible to end up
 | 
						|
			   here.  Both a and b would have to be enormous,
 | 
						|
			   using close to SIZE_T_MAX bytes of memory each. */
 | 
						|
			PyErr_SetString(PyExc_OverflowError,
 | 
						|
				    "intermediate overflow during division");
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		x = _PyLong_New(a_size + shift_digits + 1);
 | 
						|
		if (x == NULL)
 | 
						|
			goto error;
 | 
						|
		for (i = 0; i < shift_digits; i++)
 | 
						|
			x->ob_digit[i] = 0;
 | 
						|
		rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
 | 
						|
			       a_size, -shift % PyLong_SHIFT);
 | 
						|
		x->ob_digit[a_size + shift_digits] = rem;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Py_ssize_t shift_digits = shift / PyLong_SHIFT;
 | 
						|
		digit rem;
 | 
						|
		/* x = a >> shift */
 | 
						|
		assert(a_size >= shift_digits);
 | 
						|
		x = _PyLong_New(a_size - shift_digits);
 | 
						|
		if (x == NULL)
 | 
						|
			goto error;
 | 
						|
		rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
 | 
						|
			       a_size - shift_digits, shift % PyLong_SHIFT);
 | 
						|
		/* set inexact if any of the bits shifted out is nonzero */
 | 
						|
		if (rem)
 | 
						|
			inexact = 1;
 | 
						|
		while (!inexact && shift_digits > 0)
 | 
						|
			if (a->ob_digit[--shift_digits])
 | 
						|
				inexact = 1;
 | 
						|
	}
 | 
						|
	long_normalize(x);
 | 
						|
	x_size = Py_SIZE(x);
 | 
						|
 | 
						|
	/* x //= b. If the remainder is nonzero, set inexact.  We own the only
 | 
						|
	   reference to x, so it's safe to modify it in-place. */
 | 
						|
	if (b_size == 1) {
 | 
						|
		digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
 | 
						|
				      b->ob_digit[0]);
 | 
						|
		long_normalize(x);
 | 
						|
		if (rem)
 | 
						|
			inexact = 1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		PyLongObject *div, *rem;
 | 
						|
		div = x_divrem(x, b, &rem);
 | 
						|
		Py_DECREF(x);
 | 
						|
		x = div;
 | 
						|
		if (x == NULL)
 | 
						|
			goto error;
 | 
						|
		if (Py_SIZE(rem))
 | 
						|
			inexact = 1;
 | 
						|
		Py_DECREF(rem);
 | 
						|
	}
 | 
						|
	x_size = ABS(Py_SIZE(x));
 | 
						|
	assert(x_size > 0); /* result of division is never zero */
 | 
						|
	x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
 | 
						|
 | 
						|
	/* The number of extra bits that have to be rounded away. */
 | 
						|
	extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
 | 
						|
	assert(extra_bits == 2 || extra_bits == 3);
 | 
						|
 | 
						|
	/* Round by directly modifying the low digit of x. */
 | 
						|
	mask = (digit)1 << (extra_bits - 1);
 | 
						|
	low = x->ob_digit[0] | inexact;
 | 
						|
	if (low & mask && low & (3*mask-1))
 | 
						|
		low += mask;
 | 
						|
	x->ob_digit[0] = low & ~(mask-1U);
 | 
						|
 | 
						|
	/* Convert x to a double dx; the conversion is exact. */
 | 
						|
	dx = x->ob_digit[--x_size];
 | 
						|
	while (x_size > 0)
 | 
						|
		dx = dx * PyLong_BASE + x->ob_digit[--x_size];
 | 
						|
	Py_DECREF(x);
 | 
						|
 | 
						|
	/* Check whether ldexp result will overflow a double. */
 | 
						|
	if (shift + x_bits >= DBL_MAX_EXP &&
 | 
						|
	    (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, x_bits)))
 | 
						|
		goto overflow;
 | 
						|
	result = ldexp(dx, shift);
 | 
						|
 | 
						|
  success:
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return PyFloat_FromDouble(negate ? -result : result);
 | 
						|
 | 
						|
  underflow_or_zero:
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return PyFloat_FromDouble(negate ? -0.0 : 0.0);
 | 
						|
 | 
						|
  overflow:
 | 
						|
	PyErr_SetString(PyExc_OverflowError,
 | 
						|
			"integer division result too large for a float");
 | 
						|
  error:
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_mod(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *mod;
 | 
						|
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
 | 
						|
	if (l_divmod(a, b, NULL, &mod) < 0)
 | 
						|
		mod = NULL;
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *)mod;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_divmod(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *div, *mod;
 | 
						|
	PyObject *z;
 | 
						|
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
 | 
						|
	if (l_divmod(a, b, &div, &mod) < 0) {
 | 
						|
		Py_DECREF(a);
 | 
						|
		Py_DECREF(b);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	z = PyTuple_New(2);
 | 
						|
	if (z != NULL) {
 | 
						|
		PyTuple_SetItem(z, 0, (PyObject *) div);
 | 
						|
		PyTuple_SetItem(z, 1, (PyObject *) mod);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Py_DECREF(div);
 | 
						|
		Py_DECREF(mod);
 | 
						|
	}
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return z;
 | 
						|
}
 | 
						|
 | 
						|
/* pow(v, w, x) */
 | 
						|
static PyObject *
 | 
						|
long_pow(PyObject *v, PyObject *w, PyObject *x)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
 | 
						|
	int negativeOutput = 0;  /* if x<0 return negative output */
 | 
						|
 | 
						|
	PyLongObject *z = NULL;  /* accumulated result */
 | 
						|
	Py_ssize_t i, j, k;             /* counters */
 | 
						|
	PyLongObject *temp = NULL;
 | 
						|
 | 
						|
	/* 5-ary values.  If the exponent is large enough, table is
 | 
						|
	 * precomputed so that table[i] == a**i % c for i in range(32).
 | 
						|
	 */
 | 
						|
	PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 | 
						|
				   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 | 
						|
 | 
						|
	/* a, b, c = v, w, x */
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
	if (PyLong_Check(x)) {
 | 
						|
		c = (PyLongObject *)x;
 | 
						|
		Py_INCREF(x);
 | 
						|
	}
 | 
						|
	else if (PyInt_Check(x)) {
 | 
						|
		c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x));
 | 
						|
		if (c == NULL)
 | 
						|
			goto Error;
 | 
						|
	}
 | 
						|
	else if (x == Py_None)
 | 
						|
		c = NULL;
 | 
						|
	else {
 | 
						|
		Py_DECREF(a);
 | 
						|
		Py_DECREF(b);
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		return Py_NotImplemented;
 | 
						|
	}
 | 
						|
 | 
						|
	if (Py_SIZE(b) < 0) {  /* if exponent is negative */
 | 
						|
		if (c) {
 | 
						|
			PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
 | 
						|
			    "cannot be negative when 3rd argument specified");
 | 
						|
			goto Error;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* else return a float.  This works because we know
 | 
						|
			   that this calls float_pow() which converts its
 | 
						|
			   arguments to double. */
 | 
						|
			Py_DECREF(a);
 | 
						|
			Py_DECREF(b);
 | 
						|
			return PyFloat_Type.tp_as_number->nb_power(v, w, x);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (c) {
 | 
						|
		/* if modulus == 0:
 | 
						|
		       raise ValueError() */
 | 
						|
		if (Py_SIZE(c) == 0) {
 | 
						|
			PyErr_SetString(PyExc_ValueError,
 | 
						|
					"pow() 3rd argument cannot be 0");
 | 
						|
			goto Error;
 | 
						|
		}
 | 
						|
 | 
						|
		/* if modulus < 0:
 | 
						|
		       negativeOutput = True
 | 
						|
		       modulus = -modulus */
 | 
						|
		if (Py_SIZE(c) < 0) {
 | 
						|
			negativeOutput = 1;
 | 
						|
			temp = (PyLongObject *)_PyLong_Copy(c);
 | 
						|
			if (temp == NULL)
 | 
						|
				goto Error;
 | 
						|
			Py_DECREF(c);
 | 
						|
			c = temp;
 | 
						|
			temp = NULL;
 | 
						|
			c->ob_size = - c->ob_size;
 | 
						|
		}
 | 
						|
 | 
						|
		/* if modulus == 1:
 | 
						|
		       return 0 */
 | 
						|
		if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
 | 
						|
			z = (PyLongObject *)PyLong_FromLong(0L);
 | 
						|
			goto Done;
 | 
						|
		}
 | 
						|
 | 
						|
		/* if base < 0:
 | 
						|
		       base = base % modulus
 | 
						|
		   Having the base positive just makes things easier. */
 | 
						|
		if (Py_SIZE(a) < 0) {
 | 
						|
			if (l_divmod(a, c, NULL, &temp) < 0)
 | 
						|
				goto Error;
 | 
						|
			Py_DECREF(a);
 | 
						|
			a = temp;
 | 
						|
			temp = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* At this point a, b, and c are guaranteed non-negative UNLESS
 | 
						|
	   c is NULL, in which case a may be negative. */
 | 
						|
 | 
						|
	z = (PyLongObject *)PyLong_FromLong(1L);
 | 
						|
	if (z == NULL)
 | 
						|
		goto Error;
 | 
						|
 | 
						|
	/* Perform a modular reduction, X = X % c, but leave X alone if c
 | 
						|
	 * is NULL.
 | 
						|
	 */
 | 
						|
#define REDUCE(X)					\
 | 
						|
	if (c != NULL) {				\
 | 
						|
		if (l_divmod(X, c, NULL, &temp) < 0)	\
 | 
						|
			goto Error;			\
 | 
						|
		Py_XDECREF(X);				\
 | 
						|
		X = temp;				\
 | 
						|
		temp = NULL;				\
 | 
						|
	}
 | 
						|
 | 
						|
	/* Multiply two values, then reduce the result:
 | 
						|
	   result = X*Y % c.  If c is NULL, skip the mod. */
 | 
						|
#define MULT(X, Y, result)				\
 | 
						|
{							\
 | 
						|
	temp = (PyLongObject *)long_mul(X, Y);		\
 | 
						|
	if (temp == NULL)				\
 | 
						|
		goto Error;				\
 | 
						|
	Py_XDECREF(result);				\
 | 
						|
	result = temp;					\
 | 
						|
	temp = NULL;					\
 | 
						|
	REDUCE(result)					\
 | 
						|
}
 | 
						|
 | 
						|
	if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
 | 
						|
		/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
 | 
						|
		/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */
 | 
						|
		for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | 
						|
			digit bi = b->ob_digit[i];
 | 
						|
 | 
						|
			for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
 | 
						|
				MULT(z, z, z)
 | 
						|
				if (bi & j)
 | 
						|
					MULT(z, a, z)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
 | 
						|
		Py_INCREF(z);	/* still holds 1L */
 | 
						|
		table[0] = z;
 | 
						|
		for (i = 1; i < 32; ++i)
 | 
						|
			MULT(table[i-1], a, table[i])
 | 
						|
 | 
						|
		for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | 
						|
			const digit bi = b->ob_digit[i];
 | 
						|
 | 
						|
			for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
 | 
						|
				const int index = (bi >> j) & 0x1f;
 | 
						|
				for (k = 0; k < 5; ++k)
 | 
						|
					MULT(z, z, z)
 | 
						|
				if (index)
 | 
						|
					MULT(z, table[index], z)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (negativeOutput && (Py_SIZE(z) != 0)) {
 | 
						|
		temp = (PyLongObject *)long_sub(z, c);
 | 
						|
		if (temp == NULL)
 | 
						|
			goto Error;
 | 
						|
		Py_DECREF(z);
 | 
						|
		z = temp;
 | 
						|
		temp = NULL;
 | 
						|
	}
 | 
						|
	goto Done;
 | 
						|
 | 
						|
 Error:
 | 
						|
 	if (z != NULL) {
 | 
						|
 		Py_DECREF(z);
 | 
						|
 		z = NULL;
 | 
						|
 	}
 | 
						|
	/* fall through */
 | 
						|
 Done:
 | 
						|
	if (Py_SIZE(b) > FIVEARY_CUTOFF) {
 | 
						|
		for (i = 0; i < 32; ++i)
 | 
						|
			Py_XDECREF(table[i]);
 | 
						|
	}
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	Py_XDECREF(c);
 | 
						|
	Py_XDECREF(temp);
 | 
						|
	return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_invert(PyLongObject *v)
 | 
						|
{
 | 
						|
	/* Implement ~x as -(x+1) */
 | 
						|
	PyLongObject *x;
 | 
						|
	PyLongObject *w;
 | 
						|
	w = (PyLongObject *)PyLong_FromLong(1L);
 | 
						|
	if (w == NULL)
 | 
						|
		return NULL;
 | 
						|
	x = (PyLongObject *) long_add(v, w);
 | 
						|
	Py_DECREF(w);
 | 
						|
	if (x == NULL)
 | 
						|
		return NULL;
 | 
						|
	Py_SIZE(x) = -(Py_SIZE(x));
 | 
						|
	return (PyObject *)x;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_neg(PyLongObject *v)
 | 
						|
{
 | 
						|
	PyLongObject *z;
 | 
						|
	if (v->ob_size == 0 && PyLong_CheckExact(v)) {
 | 
						|
		/* -0 == 0 */
 | 
						|
		Py_INCREF(v);
 | 
						|
		return (PyObject *) v;
 | 
						|
	}
 | 
						|
	z = (PyLongObject *)_PyLong_Copy(v);
 | 
						|
	if (z != NULL)
 | 
						|
		z->ob_size = -(v->ob_size);
 | 
						|
	return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_abs(PyLongObject *v)
 | 
						|
{
 | 
						|
	if (v->ob_size < 0)
 | 
						|
		return long_neg(v);
 | 
						|
	else
 | 
						|
		return long_long((PyObject *)v);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
long_nonzero(PyLongObject *v)
 | 
						|
{
 | 
						|
	return ABS(Py_SIZE(v)) != 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_rshift(PyLongObject *v, PyLongObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b;
 | 
						|
	PyLongObject *z = NULL;
 | 
						|
	long shiftby;
 | 
						|
	Py_ssize_t newsize, wordshift, loshift, hishift, i, j;
 | 
						|
	digit lomask, himask;
 | 
						|
 | 
						|
	CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
 | 
						|
 | 
						|
	if (Py_SIZE(a) < 0) {
 | 
						|
		/* Right shifting negative numbers is harder */
 | 
						|
		PyLongObject *a1, *a2;
 | 
						|
		a1 = (PyLongObject *) long_invert(a);
 | 
						|
		if (a1 == NULL)
 | 
						|
			goto rshift_error;
 | 
						|
		a2 = (PyLongObject *) long_rshift(a1, b);
 | 
						|
		Py_DECREF(a1);
 | 
						|
		if (a2 == NULL)
 | 
						|
			goto rshift_error;
 | 
						|
		z = (PyLongObject *) long_invert(a2);
 | 
						|
		Py_DECREF(a2);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
 | 
						|
		shiftby = PyLong_AsLong((PyObject *)b);
 | 
						|
		if (shiftby == -1L && PyErr_Occurred())
 | 
						|
			goto rshift_error;
 | 
						|
		if (shiftby < 0) {
 | 
						|
			PyErr_SetString(PyExc_ValueError,
 | 
						|
					"negative shift count");
 | 
						|
			goto rshift_error;
 | 
						|
		}
 | 
						|
		wordshift = shiftby / PyLong_SHIFT;
 | 
						|
		newsize = ABS(Py_SIZE(a)) - wordshift;
 | 
						|
		if (newsize <= 0) {
 | 
						|
			z = _PyLong_New(0);
 | 
						|
			Py_DECREF(a);
 | 
						|
			Py_DECREF(b);
 | 
						|
			return (PyObject *)z;
 | 
						|
		}
 | 
						|
		loshift = shiftby % PyLong_SHIFT;
 | 
						|
		hishift = PyLong_SHIFT - loshift;
 | 
						|
		lomask = ((digit)1 << hishift) - 1;
 | 
						|
		himask = PyLong_MASK ^ lomask;
 | 
						|
		z = _PyLong_New(newsize);
 | 
						|
		if (z == NULL)
 | 
						|
			goto rshift_error;
 | 
						|
		if (Py_SIZE(a) < 0)
 | 
						|
			Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
		for (i = 0, j = wordshift; i < newsize; i++, j++) {
 | 
						|
			z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
 | 
						|
			if (i+1 < newsize)
 | 
						|
				z->ob_digit[i] |=
 | 
						|
				  (a->ob_digit[j+1] << hishift) & himask;
 | 
						|
		}
 | 
						|
		z = long_normalize(z);
 | 
						|
	}
 | 
						|
rshift_error:
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *) z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_lshift(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	/* This version due to Tim Peters */
 | 
						|
	PyLongObject *a, *b;
 | 
						|
	PyLongObject *z = NULL;
 | 
						|
	long shiftby;
 | 
						|
	Py_ssize_t oldsize, newsize, wordshift, remshift, i, j;
 | 
						|
	twodigits accum;
 | 
						|
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
 | 
						|
	shiftby = PyLong_AsLong((PyObject *)b);
 | 
						|
	if (shiftby == -1L && PyErr_Occurred())
 | 
						|
		goto lshift_error;
 | 
						|
	if (shiftby < 0) {
 | 
						|
		PyErr_SetString(PyExc_ValueError, "negative shift count");
 | 
						|
		goto lshift_error;
 | 
						|
	}
 | 
						|
	if ((long)(int)shiftby != shiftby) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
				"outrageous left shift count");
 | 
						|
		goto lshift_error;
 | 
						|
	}
 | 
						|
	/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
 | 
						|
	wordshift = (int)shiftby / PyLong_SHIFT;
 | 
						|
	remshift  = (int)shiftby - wordshift * PyLong_SHIFT;
 | 
						|
 | 
						|
	oldsize = ABS(a->ob_size);
 | 
						|
	newsize = oldsize + wordshift;
 | 
						|
	if (remshift)
 | 
						|
		++newsize;
 | 
						|
	z = _PyLong_New(newsize);
 | 
						|
	if (z == NULL)
 | 
						|
		goto lshift_error;
 | 
						|
	if (a->ob_size < 0)
 | 
						|
		z->ob_size = -(z->ob_size);
 | 
						|
	for (i = 0; i < wordshift; i++)
 | 
						|
		z->ob_digit[i] = 0;
 | 
						|
	accum = 0;
 | 
						|
	for (i = wordshift, j = 0; j < oldsize; i++, j++) {
 | 
						|
		accum |= (twodigits)a->ob_digit[j] << remshift;
 | 
						|
		z->ob_digit[i] = (digit)(accum & PyLong_MASK);
 | 
						|
		accum >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	if (remshift)
 | 
						|
		z->ob_digit[newsize-1] = (digit)accum;
 | 
						|
	else
 | 
						|
		assert(!accum);
 | 
						|
	z = long_normalize(z);
 | 
						|
lshift_error:
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *) z;
 | 
						|
}
 | 
						|
 | 
						|
/* Compute two's complement of digit vector a[0:m], writing result to
 | 
						|
   z[0:m].  The digit vector a need not be normalized, but should not
 | 
						|
   be entirely zero.  a and z may point to the same digit vector. */
 | 
						|
 | 
						|
static void
 | 
						|
v_complement(digit *z, digit *a, Py_ssize_t m)
 | 
						|
{
 | 
						|
	Py_ssize_t i;
 | 
						|
	digit carry = 1;
 | 
						|
	for (i = 0; i < m; ++i) {
 | 
						|
		carry += a[i] ^ PyLong_MASK;
 | 
						|
		z[i] = carry & PyLong_MASK;
 | 
						|
		carry >>= PyLong_SHIFT;
 | 
						|
	}
 | 
						|
	assert(carry == 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Bitwise and/xor/or operations */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_bitwise(PyLongObject *a,
 | 
						|
	     int op,  /* '&', '|', '^' */
 | 
						|
	     PyLongObject *b)
 | 
						|
{
 | 
						|
	int nega, negb, negz;
 | 
						|
	Py_ssize_t size_a, size_b, size_z, i;
 | 
						|
	PyLongObject *z;
 | 
						|
 | 
						|
	/* Bitwise operations for negative numbers operate as though
 | 
						|
	   on a two's complement representation.  So convert arguments
 | 
						|
	   from sign-magnitude to two's complement, and convert the
 | 
						|
	   result back to sign-magnitude at the end. */
 | 
						|
 | 
						|
	/* If a is negative, replace it by its two's complement. */
 | 
						|
	size_a = ABS(Py_SIZE(a));
 | 
						|
	nega = Py_SIZE(a) < 0;
 | 
						|
	if (nega) {
 | 
						|
		z = _PyLong_New(size_a);
 | 
						|
		if (z == NULL)
 | 
						|
			return NULL;
 | 
						|
		v_complement(z->ob_digit, a->ob_digit, size_a);
 | 
						|
		a = z;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		/* Keep reference count consistent. */
 | 
						|
		Py_INCREF(a);
 | 
						|
 | 
						|
	/* Same for b. */
 | 
						|
	size_b = ABS(Py_SIZE(b));
 | 
						|
	negb = Py_SIZE(b) < 0;
 | 
						|
	if (negb) {
 | 
						|
		z = _PyLong_New(size_b);
 | 
						|
		if (z == NULL) {
 | 
						|
			Py_DECREF(a);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		v_complement(z->ob_digit, b->ob_digit, size_b);
 | 
						|
		b = z;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		Py_INCREF(b);
 | 
						|
 | 
						|
	/* Swap a and b if necessary to ensure size_a >= size_b. */
 | 
						|
	if (size_a < size_b) {
 | 
						|
		z = a; a = b; b = z;
 | 
						|
		size_z = size_a; size_a = size_b; size_b = size_z;
 | 
						|
		negz = nega; nega = negb; negb = negz;
 | 
						|
	}
 | 
						|
 | 
						|
	/* JRH: The original logic here was to allocate the result value (z)
 | 
						|
	   as the longer of the two operands.  However, there are some cases
 | 
						|
	   where the result is guaranteed to be shorter than that: AND of two
 | 
						|
	   positives, OR of two negatives: use the shorter number.  AND with
 | 
						|
	   mixed signs: use the positive number.  OR with mixed signs: use the
 | 
						|
	   negative number.
 | 
						|
	*/
 | 
						|
	switch (op) {
 | 
						|
	case '^':
 | 
						|
		negz = nega ^ negb;
 | 
						|
		size_z = size_a;
 | 
						|
		break;
 | 
						|
	case '&':
 | 
						|
		negz = nega & negb;
 | 
						|
		size_z = negb ? size_a : size_b;
 | 
						|
		break;
 | 
						|
	case '|':
 | 
						|
		negz = nega | negb;
 | 
						|
		size_z = negb ? size_b : size_a;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We allow an extra digit if z is negative, to make sure that
 | 
						|
	   the final two's complement of z doesn't overflow. */
 | 
						|
	z = _PyLong_New(size_z + negz);
 | 
						|
	if (z == NULL) {
 | 
						|
		Py_DECREF(a);
 | 
						|
		Py_DECREF(b);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Compute digits for overlap of a and b. */
 | 
						|
	switch(op) {
 | 
						|
	case '&':
 | 
						|
		for (i = 0; i < size_b; ++i)
 | 
						|
			z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
 | 
						|
		break;
 | 
						|
	case '|':
 | 
						|
		for (i = 0; i < size_b; ++i)
 | 
						|
			z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
 | 
						|
		break;
 | 
						|
	case '^':
 | 
						|
		for (i = 0; i < size_b; ++i)
 | 
						|
			z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Copy any remaining digits of a, inverting if necessary. */
 | 
						|
	if (op == '^' && negb)
 | 
						|
		for (; i < size_z; ++i)
 | 
						|
			z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
 | 
						|
	else if (i < size_z)
 | 
						|
		memcpy(&z->ob_digit[i], &a->ob_digit[i],
 | 
						|
		       (size_z-i)*sizeof(digit));
 | 
						|
 | 
						|
	/* Complement result if negative. */
 | 
						|
	if (negz) {
 | 
						|
		Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
		z->ob_digit[size_z] = PyLong_MASK;
 | 
						|
		v_complement(z->ob_digit, z->ob_digit, size_z+1);
 | 
						|
	}
 | 
						|
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return (PyObject *)long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_and(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b;
 | 
						|
	PyObject *c;
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
	c = long_bitwise(a, '&', b);
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return c;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_xor(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b;
 | 
						|
	PyObject *c;
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
	c = long_bitwise(a, '^', b);
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return c;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_or(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyLongObject *a, *b;
 | 
						|
	PyObject *c;
 | 
						|
	CONVERT_BINOP(v, w, &a, &b);
 | 
						|
	c = long_bitwise(a, '|', b);
 | 
						|
	Py_DECREF(a);
 | 
						|
	Py_DECREF(b);
 | 
						|
	return c;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
long_coerce(PyObject **pv, PyObject **pw)
 | 
						|
{
 | 
						|
	if (PyInt_Check(*pw)) {
 | 
						|
		*pw = PyLong_FromLong(PyInt_AS_LONG(*pw));
 | 
						|
		if (*pw == NULL)
 | 
						|
			return -1;
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(*pw)) {
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		Py_INCREF(*pw);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return 1; /* Can't do it */
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_long(PyObject *v)
 | 
						|
{
 | 
						|
	if (PyLong_CheckExact(v))
 | 
						|
		Py_INCREF(v);
 | 
						|
	else
 | 
						|
		v = _PyLong_Copy((PyLongObject *)v);
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_int(PyObject *v)
 | 
						|
{
 | 
						|
	long x;
 | 
						|
	x = PyLong_AsLong(v);
 | 
						|
	if (PyErr_Occurred()) {
 | 
						|
		if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | 
						|
				PyErr_Clear();
 | 
						|
				if (PyLong_CheckExact(v)) {
 | 
						|
					Py_INCREF(v);
 | 
						|
					return v;
 | 
						|
				}
 | 
						|
				else
 | 
						|
					return _PyLong_Copy((PyLongObject *)v);
 | 
						|
		}
 | 
						|
		else
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	return PyInt_FromLong(x);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_float(PyObject *v)
 | 
						|
{
 | 
						|
	double result;
 | 
						|
	result = PyLong_AsDouble(v);
 | 
						|
	if (result == -1.0 && PyErr_Occurred())
 | 
						|
		return NULL;
 | 
						|
	return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_oct(PyObject *v)
 | 
						|
{
 | 
						|
	return _PyLong_Format(v, 8, 1, 0);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_hex(PyObject *v)
 | 
						|
{
 | 
						|
	return _PyLong_Format(v, 16, 1, 0);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
	PyObject *x = NULL;
 | 
						|
	int base = -909;		     /* unlikely! */
 | 
						|
	static char *kwlist[] = {"x", "base", 0};
 | 
						|
 | 
						|
	if (type != &PyLong_Type)
 | 
						|
		return long_subtype_new(type, args, kwds); /* Wimp out */
 | 
						|
	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist,
 | 
						|
					 &x, &base))
 | 
						|
		return NULL;
 | 
						|
	if (x == NULL)
 | 
						|
		return PyLong_FromLong(0L);
 | 
						|
	if (base == -909)
 | 
						|
		return PyNumber_Long(x);
 | 
						|
	else if (PyString_Check(x)) {
 | 
						|
		/* Since PyLong_FromString doesn't have a length parameter,
 | 
						|
		 * check here for possible NULs in the string. */
 | 
						|
		char *string = PyString_AS_STRING(x);
 | 
						|
		if (strlen(string) != (size_t)PyString_Size(x)) {
 | 
						|
			/* create a repr() of the input string,
 | 
						|
			 * just like PyLong_FromString does. */
 | 
						|
			PyObject *srepr;
 | 
						|
			srepr = PyObject_Repr(x);
 | 
						|
			if (srepr == NULL)
 | 
						|
				return NULL;
 | 
						|
			PyErr_Format(PyExc_ValueError,
 | 
						|
			     "invalid literal for long() with base %d: %s",
 | 
						|
			     base, PyString_AS_STRING(srepr));
 | 
						|
			Py_DECREF(srepr);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		return PyLong_FromString(PyString_AS_STRING(x), NULL, base);
 | 
						|
	}
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
	else if (PyUnicode_Check(x))
 | 
						|
		return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
 | 
						|
					  PyUnicode_GET_SIZE(x),
 | 
						|
					  base);
 | 
						|
#endif
 | 
						|
	else {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
			"long() can't convert non-string with explicit base");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Wimpy, slow approach to tp_new calls for subtypes of long:
 | 
						|
   first create a regular long from whatever arguments we got,
 | 
						|
   then allocate a subtype instance and initialize it from
 | 
						|
   the regular long.  The regular long is then thrown away.
 | 
						|
*/
 | 
						|
static PyObject *
 | 
						|
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
	PyLongObject *tmp, *newobj;
 | 
						|
	Py_ssize_t i, n;
 | 
						|
 | 
						|
	assert(PyType_IsSubtype(type, &PyLong_Type));
 | 
						|
	tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
 | 
						|
	if (tmp == NULL)
 | 
						|
		return NULL;
 | 
						|
	assert(PyLong_CheckExact(tmp));
 | 
						|
	n = Py_SIZE(tmp);
 | 
						|
	if (n < 0)
 | 
						|
		n = -n;
 | 
						|
	newobj = (PyLongObject *)type->tp_alloc(type, n);
 | 
						|
	if (newobj == NULL) {
 | 
						|
		Py_DECREF(tmp);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	assert(PyLong_Check(newobj));
 | 
						|
	Py_SIZE(newobj) = Py_SIZE(tmp);
 | 
						|
	for (i = 0; i < n; i++)
 | 
						|
		newobj->ob_digit[i] = tmp->ob_digit[i];
 | 
						|
	Py_DECREF(tmp);
 | 
						|
	return (PyObject *)newobj;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_getnewargs(PyLongObject *v)
 | 
						|
{
 | 
						|
	return Py_BuildValue("(N)", _PyLong_Copy(v));
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_get0(PyLongObject *v, void *context) {
 | 
						|
	return PyLong_FromLong(0L);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_get1(PyLongObject *v, void *context) {
 | 
						|
	return PyLong_FromLong(1L);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long__format__(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
	PyObject *format_spec;
 | 
						|
 | 
						|
	if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
 | 
						|
		return NULL;
 | 
						|
	if (PyBytes_Check(format_spec))
 | 
						|
		return _PyLong_FormatAdvanced(self,
 | 
						|
					      PyBytes_AS_STRING(format_spec),
 | 
						|
					      PyBytes_GET_SIZE(format_spec));
 | 
						|
	if (PyUnicode_Check(format_spec)) {
 | 
						|
		/* Convert format_spec to a str */
 | 
						|
		PyObject *result;
 | 
						|
		PyObject *str_spec = PyObject_Str(format_spec);
 | 
						|
 | 
						|
		if (str_spec == NULL)
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		result = _PyLong_FormatAdvanced(self,
 | 
						|
						PyBytes_AS_STRING(str_spec),
 | 
						|
						PyBytes_GET_SIZE(str_spec));
 | 
						|
 | 
						|
		Py_DECREF(str_spec);
 | 
						|
		return result;
 | 
						|
	}
 | 
						|
	PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_sizeof(PyLongObject *v)
 | 
						|
{
 | 
						|
	Py_ssize_t res;
 | 
						|
 | 
						|
	res = v->ob_type->tp_basicsize + ABS(Py_SIZE(v))*sizeof(digit);
 | 
						|
	return PyInt_FromSsize_t(res);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_bit_length(PyLongObject *v)
 | 
						|
{
 | 
						|
	PyLongObject *result, *x, *y;
 | 
						|
	Py_ssize_t ndigits, msd_bits = 0;
 | 
						|
	digit msd;
 | 
						|
 | 
						|
	assert(v != NULL);
 | 
						|
	assert(PyLong_Check(v));
 | 
						|
 | 
						|
	ndigits = ABS(Py_SIZE(v));
 | 
						|
	if (ndigits == 0)
 | 
						|
		return PyInt_FromLong(0);
 | 
						|
 | 
						|
	msd = v->ob_digit[ndigits-1];
 | 
						|
	while (msd >= 32) {
 | 
						|
		msd_bits += 6;
 | 
						|
		msd >>= 6;
 | 
						|
	}
 | 
						|
	msd_bits += (long)(BitLengthTable[msd]);
 | 
						|
 | 
						|
	if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
 | 
						|
		return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
 | 
						|
 | 
						|
	/* expression above may overflow; use Python integers instead */
 | 
						|
	result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
 | 
						|
	if (result == NULL)
 | 
						|
		return NULL;
 | 
						|
	x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
 | 
						|
	if (x == NULL)
 | 
						|
		goto error;
 | 
						|
	y = (PyLongObject *)long_mul(result, x);
 | 
						|
	Py_DECREF(x);
 | 
						|
	if (y == NULL)
 | 
						|
		goto error;
 | 
						|
	Py_DECREF(result);
 | 
						|
	result = y;
 | 
						|
 | 
						|
	x = (PyLongObject *)PyLong_FromLong(msd_bits);
 | 
						|
	if (x == NULL)
 | 
						|
		goto error;
 | 
						|
	y = (PyLongObject *)long_add(result, x);
 | 
						|
	Py_DECREF(x);
 | 
						|
	if (y == NULL)
 | 
						|
		goto error;
 | 
						|
	Py_DECREF(result);
 | 
						|
	result = y;
 | 
						|
 | 
						|
	return (PyObject *)result;
 | 
						|
 | 
						|
error:
 | 
						|
	Py_DECREF(result);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(long_bit_length_doc,
 | 
						|
"long.bit_length() -> int or long\n\
 | 
						|
\n\
 | 
						|
Number of bits necessary to represent self in binary.\n\
 | 
						|
>>> bin(37L)\n\
 | 
						|
'0b100101'\n\
 | 
						|
>>> (37L).bit_length()\n\
 | 
						|
6");
 | 
						|
 | 
						|
#if 0
 | 
						|
static PyObject *
 | 
						|
long_is_finite(PyObject *v)
 | 
						|
{
 | 
						|
	Py_RETURN_TRUE;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static PyMethodDef long_methods[] = {
 | 
						|
	{"conjugate",	(PyCFunction)long_long,	METH_NOARGS,
 | 
						|
	 "Returns self, the complex conjugate of any long."},
 | 
						|
	{"bit_length",	(PyCFunction)long_bit_length, METH_NOARGS,
 | 
						|
	 long_bit_length_doc},
 | 
						|
#if 0
 | 
						|
	{"is_finite",	(PyCFunction)long_is_finite,	METH_NOARGS,
 | 
						|
	 "Returns always True."},
 | 
						|
#endif
 | 
						|
	{"__trunc__",	(PyCFunction)long_long,	METH_NOARGS,
 | 
						|
         "Truncating an Integral returns itself."},
 | 
						|
	{"__getnewargs__",	(PyCFunction)long_getnewargs,	METH_NOARGS},
 | 
						|
        {"__format__", (PyCFunction)long__format__, METH_VARARGS},
 | 
						|
	{"__sizeof__",	(PyCFunction)long_sizeof, METH_NOARGS,
 | 
						|
	 "Returns size in memory, in bytes"},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyGetSetDef long_getset[] = {
 | 
						|
    {"real",
 | 
						|
     (getter)long_long, (setter)NULL,
 | 
						|
     "the real part of a complex number",
 | 
						|
     NULL},
 | 
						|
    {"imag",
 | 
						|
     (getter)long_get0, (setter)NULL,
 | 
						|
     "the imaginary part of a complex number",
 | 
						|
     NULL},
 | 
						|
    {"numerator",
 | 
						|
     (getter)long_long, (setter)NULL,
 | 
						|
     "the numerator of a rational number in lowest terms",
 | 
						|
     NULL},
 | 
						|
    {"denominator",
 | 
						|
     (getter)long_get1, (setter)NULL,
 | 
						|
     "the denominator of a rational number in lowest terms",
 | 
						|
     NULL},
 | 
						|
    {NULL}  /* Sentinel */
 | 
						|
};
 | 
						|
 | 
						|
PyDoc_STRVAR(long_doc,
 | 
						|
"long(x[, base]) -> integer\n\
 | 
						|
\n\
 | 
						|
Convert a string or number to a long integer, if possible.  A floating\n\
 | 
						|
point argument will be truncated towards zero (this does not include a\n\
 | 
						|
string representation of a floating point number!)  When converting a\n\
 | 
						|
string, use the optional base.  It is an error to supply a base when\n\
 | 
						|
converting a non-string.");
 | 
						|
 | 
						|
static PyNumberMethods long_as_number = {
 | 
						|
	(binaryfunc)	long_add,	/*nb_add*/
 | 
						|
	(binaryfunc)	long_sub,	/*nb_subtract*/
 | 
						|
	(binaryfunc)	long_mul,	/*nb_multiply*/
 | 
						|
			long_classic_div, /*nb_divide*/
 | 
						|
			long_mod,	/*nb_remainder*/
 | 
						|
			long_divmod,	/*nb_divmod*/
 | 
						|
			long_pow,	/*nb_power*/
 | 
						|
	(unaryfunc) 	long_neg,	/*nb_negative*/
 | 
						|
	(unaryfunc) 	long_long,	/*tp_positive*/
 | 
						|
	(unaryfunc) 	long_abs,	/*tp_absolute*/
 | 
						|
	(inquiry)	long_nonzero,	/*tp_nonzero*/
 | 
						|
	(unaryfunc)	long_invert,	/*nb_invert*/
 | 
						|
			long_lshift,	/*nb_lshift*/
 | 
						|
	(binaryfunc)	long_rshift,	/*nb_rshift*/
 | 
						|
			long_and,	/*nb_and*/
 | 
						|
			long_xor,	/*nb_xor*/
 | 
						|
			long_or,	/*nb_or*/
 | 
						|
			long_coerce,	/*nb_coerce*/
 | 
						|
			long_int,	/*nb_int*/
 | 
						|
			long_long,	/*nb_long*/
 | 
						|
			long_float,	/*nb_float*/
 | 
						|
			long_oct,	/*nb_oct*/
 | 
						|
			long_hex,	/*nb_hex*/
 | 
						|
	0,				/* nb_inplace_add */
 | 
						|
	0,				/* nb_inplace_subtract */
 | 
						|
	0,				/* nb_inplace_multiply */
 | 
						|
	0,				/* nb_inplace_divide */
 | 
						|
	0,				/* nb_inplace_remainder */
 | 
						|
	0,				/* nb_inplace_power */
 | 
						|
	0,				/* nb_inplace_lshift */
 | 
						|
	0,				/* nb_inplace_rshift */
 | 
						|
	0,				/* nb_inplace_and */
 | 
						|
	0,				/* nb_inplace_xor */
 | 
						|
	0,				/* nb_inplace_or */
 | 
						|
	long_div,			/* nb_floor_divide */
 | 
						|
	long_true_divide,		/* nb_true_divide */
 | 
						|
	0,				/* nb_inplace_floor_divide */
 | 
						|
	0,				/* nb_inplace_true_divide */
 | 
						|
	long_long,			/* nb_index */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyLong_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,					/* ob_size */
 | 
						|
	"long",					/* tp_name */
 | 
						|
	offsetof(PyLongObject, ob_digit),	/* tp_basicsize */
 | 
						|
	sizeof(digit),				/* tp_itemsize */
 | 
						|
	long_dealloc,				/* tp_dealloc */
 | 
						|
	0,					/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	(cmpfunc)long_compare,			/* tp_compare */
 | 
						|
	long_repr,				/* tp_repr */
 | 
						|
	&long_as_number,			/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	(hashfunc)long_hash,			/* tp_hash */
 | 
						|
        0,              			/* tp_call */
 | 
						|
        long_str,				/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | 
						|
		Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS,	/* tp_flags */
 | 
						|
	long_doc,				/* tp_doc */
 | 
						|
	0,					/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	0,					/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	0,					/* tp_iter */
 | 
						|
	0,					/* tp_iternext */
 | 
						|
	long_methods,				/* tp_methods */
 | 
						|
	0,					/* tp_members */
 | 
						|
	long_getset,				/* tp_getset */
 | 
						|
	0,					/* tp_base */
 | 
						|
	0,					/* tp_dict */
 | 
						|
	0,					/* tp_descr_get */
 | 
						|
	0,					/* tp_descr_set */
 | 
						|
	0,					/* tp_dictoffset */
 | 
						|
	0,					/* tp_init */
 | 
						|
	0,					/* tp_alloc */
 | 
						|
	long_new,				/* tp_new */
 | 
						|
	PyObject_Del,                           /* tp_free */
 | 
						|
};
 | 
						|
 | 
						|
static PyTypeObject Long_InfoType;
 | 
						|
 | 
						|
PyDoc_STRVAR(long_info__doc__,
 | 
						|
"sys.long_info\n\
 | 
						|
\n\
 | 
						|
A struct sequence that holds information about Python's\n\
 | 
						|
internal representation of integers.  The attributes are read only.");
 | 
						|
 | 
						|
static PyStructSequence_Field long_info_fields[] = {
 | 
						|
	{"bits_per_digit", "size of a digit in bits"},
 | 
						|
	{"sizeof_digit", "size in bytes of the C type used to "
 | 
						|
	                 "represent a digit"},
 | 
						|
	{NULL, NULL}
 | 
						|
};
 | 
						|
 | 
						|
static PyStructSequence_Desc long_info_desc = {
 | 
						|
	"sys.long_info",   /* name */
 | 
						|
	long_info__doc__,  /* doc */
 | 
						|
	long_info_fields,  /* fields */
 | 
						|
	2                 /* number of fields */
 | 
						|
};
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_GetInfo(void)
 | 
						|
{
 | 
						|
	PyObject* long_info;
 | 
						|
	int field = 0;
 | 
						|
	long_info = PyStructSequence_New(&Long_InfoType);
 | 
						|
	if (long_info == NULL)
 | 
						|
		return NULL;
 | 
						|
	PyStructSequence_SET_ITEM(long_info, field++,
 | 
						|
				  PyInt_FromLong(PyLong_SHIFT));
 | 
						|
	PyStructSequence_SET_ITEM(long_info, field++,
 | 
						|
				  PyInt_FromLong(sizeof(digit)));
 | 
						|
	if (PyErr_Occurred()) {
 | 
						|
		Py_CLEAR(long_info);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return long_info;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_Init(void)
 | 
						|
{
 | 
						|
	/* initialize long_info */
 | 
						|
	if (Long_InfoType.tp_name == 0)
 | 
						|
		PyStructSequence_InitType(&Long_InfoType, &long_info_desc);
 | 
						|
	return 1;
 | 
						|
}
 |