mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1263 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1263 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
Basic statistics module.
 | 
						||
 | 
						||
This module provides functions for calculating statistics of data, including
 | 
						||
averages, variance, and standard deviation.
 | 
						||
 | 
						||
Calculating averages
 | 
						||
--------------------
 | 
						||
 | 
						||
==================  ==================================================
 | 
						||
Function            Description
 | 
						||
==================  ==================================================
 | 
						||
mean                Arithmetic mean (average) of data.
 | 
						||
fmean               Fast, floating point arithmetic mean.
 | 
						||
geometric_mean      Geometric mean of data.
 | 
						||
harmonic_mean       Harmonic mean of data.
 | 
						||
median              Median (middle value) of data.
 | 
						||
median_low          Low median of data.
 | 
						||
median_high         High median of data.
 | 
						||
median_grouped      Median, or 50th percentile, of grouped data.
 | 
						||
mode                Mode (most common value) of data.
 | 
						||
multimode           List of modes (most common values of data).
 | 
						||
quantiles           Divide data into intervals with equal probability.
 | 
						||
==================  ==================================================
 | 
						||
 | 
						||
Calculate the arithmetic mean ("the average") of data:
 | 
						||
 | 
						||
>>> mean([-1.0, 2.5, 3.25, 5.75])
 | 
						||
2.625
 | 
						||
 | 
						||
 | 
						||
Calculate the standard median of discrete data:
 | 
						||
 | 
						||
>>> median([2, 3, 4, 5])
 | 
						||
3.5
 | 
						||
 | 
						||
 | 
						||
Calculate the median, or 50th percentile, of data grouped into class intervals
 | 
						||
centred on the data values provided. E.g. if your data points are rounded to
 | 
						||
the nearest whole number:
 | 
						||
 | 
						||
>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
 | 
						||
2.8333333333...
 | 
						||
 | 
						||
This should be interpreted in this way: you have two data points in the class
 | 
						||
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
 | 
						||
the class interval 3.5-4.5. The median of these data points is 2.8333...
 | 
						||
 | 
						||
 | 
						||
Calculating variability or spread
 | 
						||
---------------------------------
 | 
						||
 | 
						||
==================  =============================================
 | 
						||
Function            Description
 | 
						||
==================  =============================================
 | 
						||
pvariance           Population variance of data.
 | 
						||
variance            Sample variance of data.
 | 
						||
pstdev              Population standard deviation of data.
 | 
						||
stdev               Sample standard deviation of data.
 | 
						||
==================  =============================================
 | 
						||
 | 
						||
Calculate the standard deviation of sample data:
 | 
						||
 | 
						||
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
 | 
						||
4.38961843444...
 | 
						||
 | 
						||
If you have previously calculated the mean, you can pass it as the optional
 | 
						||
second argument to the four "spread" functions to avoid recalculating it:
 | 
						||
 | 
						||
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
 | 
						||
>>> mu = mean(data)
 | 
						||
>>> pvariance(data, mu)
 | 
						||
2.5
 | 
						||
 | 
						||
 | 
						||
Statistics for relations between two inputs
 | 
						||
-------------------------------------------
 | 
						||
 | 
						||
==================  ====================================================
 | 
						||
Function            Description
 | 
						||
==================  ====================================================
 | 
						||
covariance          Sample covariance for two variables.
 | 
						||
correlation         Pearson's correlation coefficient for two variables.
 | 
						||
linear_regression   Intercept and slope for simple linear regression.
 | 
						||
==================  ====================================================
 | 
						||
 | 
						||
Calculate covariance, Pearson's correlation, and simple linear regression
 | 
						||
for two inputs:
 | 
						||
 | 
						||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | 
						||
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
 | 
						||
>>> covariance(x, y)
 | 
						||
0.75
 | 
						||
>>> correlation(x, y)  #doctest: +ELLIPSIS
 | 
						||
0.31622776601...
 | 
						||
>>> linear_regression(x, y)  #doctest:
 | 
						||
LinearRegression(intercept=1.5, slope=0.1)
 | 
						||
 | 
						||
 | 
						||
Exceptions
 | 
						||
----------
 | 
						||
 | 
						||
A single exception is defined: StatisticsError is a subclass of ValueError.
 | 
						||
 | 
						||
"""
 | 
						||
 | 
						||
__all__ = [
 | 
						||
    'NormalDist',
 | 
						||
    'StatisticsError',
 | 
						||
    'fmean',
 | 
						||
    'geometric_mean',
 | 
						||
    'harmonic_mean',
 | 
						||
    'mean',
 | 
						||
    'median',
 | 
						||
    'median_grouped',
 | 
						||
    'median_high',
 | 
						||
    'median_low',
 | 
						||
    'mode',
 | 
						||
    'multimode',
 | 
						||
    'pstdev',
 | 
						||
    'pvariance',
 | 
						||
    'quantiles',
 | 
						||
    'stdev',
 | 
						||
    'variance',
 | 
						||
    'correlation',
 | 
						||
    'covariance',
 | 
						||
    'linear_regression',
 | 
						||
]
 | 
						||
 | 
						||
import math
 | 
						||
import numbers
 | 
						||
import random
 | 
						||
 | 
						||
from fractions import Fraction
 | 
						||
from decimal import Decimal
 | 
						||
from itertools import groupby, repeat
 | 
						||
from bisect import bisect_left, bisect_right
 | 
						||
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
 | 
						||
from operator import itemgetter
 | 
						||
from collections import Counter, namedtuple
 | 
						||
 | 
						||
# === Exceptions ===
 | 
						||
 | 
						||
class StatisticsError(ValueError):
 | 
						||
    pass
 | 
						||
 | 
						||
 | 
						||
# === Private utilities ===
 | 
						||
 | 
						||
def _sum(data, start=0):
 | 
						||
    """_sum(data [, start]) -> (type, sum, count)
 | 
						||
 | 
						||
    Return a high-precision sum of the given numeric data as a fraction,
 | 
						||
    together with the type to be converted to and the count of items.
 | 
						||
 | 
						||
    If optional argument ``start`` is given, it is added to the total.
 | 
						||
    If ``data`` is empty, ``start`` (defaulting to 0) is returned.
 | 
						||
 | 
						||
 | 
						||
    Examples
 | 
						||
    --------
 | 
						||
 | 
						||
    >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
 | 
						||
    (<class 'float'>, Fraction(11, 1), 5)
 | 
						||
 | 
						||
    Some sources of round-off error will be avoided:
 | 
						||
 | 
						||
    # Built-in sum returns zero.
 | 
						||
    >>> _sum([1e50, 1, -1e50] * 1000)
 | 
						||
    (<class 'float'>, Fraction(1000, 1), 3000)
 | 
						||
 | 
						||
    Fractions and Decimals are also supported:
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
 | 
						||
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
 | 
						||
    >>> _sum(data)
 | 
						||
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
 | 
						||
 | 
						||
    Mixed types are currently treated as an error, except that int is
 | 
						||
    allowed.
 | 
						||
    """
 | 
						||
    count = 0
 | 
						||
    n, d = _exact_ratio(start)
 | 
						||
    partials = {d: n}
 | 
						||
    partials_get = partials.get
 | 
						||
    T = _coerce(int, type(start))
 | 
						||
    for typ, values in groupby(data, type):
 | 
						||
        T = _coerce(T, typ)  # or raise TypeError
 | 
						||
        for n, d in map(_exact_ratio, values):
 | 
						||
            count += 1
 | 
						||
            partials[d] = partials_get(d, 0) + n
 | 
						||
    if None in partials:
 | 
						||
        # The sum will be a NAN or INF. We can ignore all the finite
 | 
						||
        # partials, and just look at this special one.
 | 
						||
        total = partials[None]
 | 
						||
        assert not _isfinite(total)
 | 
						||
    else:
 | 
						||
        # Sum all the partial sums using builtin sum.
 | 
						||
        # FIXME is this faster if we sum them in order of the denominator?
 | 
						||
        total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
 | 
						||
    return (T, total, count)
 | 
						||
 | 
						||
 | 
						||
def _isfinite(x):
 | 
						||
    try:
 | 
						||
        return x.is_finite()  # Likely a Decimal.
 | 
						||
    except AttributeError:
 | 
						||
        return math.isfinite(x)  # Coerces to float first.
 | 
						||
 | 
						||
 | 
						||
def _coerce(T, S):
 | 
						||
    """Coerce types T and S to a common type, or raise TypeError.
 | 
						||
 | 
						||
    Coercion rules are currently an implementation detail. See the CoerceTest
 | 
						||
    test class in test_statistics for details.
 | 
						||
    """
 | 
						||
    # See http://bugs.python.org/issue24068.
 | 
						||
    assert T is not bool, "initial type T is bool"
 | 
						||
    # If the types are the same, no need to coerce anything. Put this
 | 
						||
    # first, so that the usual case (no coercion needed) happens as soon
 | 
						||
    # as possible.
 | 
						||
    if T is S:  return T
 | 
						||
    # Mixed int & other coerce to the other type.
 | 
						||
    if S is int or S is bool:  return T
 | 
						||
    if T is int:  return S
 | 
						||
    # If one is a (strict) subclass of the other, coerce to the subclass.
 | 
						||
    if issubclass(S, T):  return S
 | 
						||
    if issubclass(T, S):  return T
 | 
						||
    # Ints coerce to the other type.
 | 
						||
    if issubclass(T, int):  return S
 | 
						||
    if issubclass(S, int):  return T
 | 
						||
    # Mixed fraction & float coerces to float (or float subclass).
 | 
						||
    if issubclass(T, Fraction) and issubclass(S, float):
 | 
						||
        return S
 | 
						||
    if issubclass(T, float) and issubclass(S, Fraction):
 | 
						||
        return T
 | 
						||
    # Any other combination is disallowed.
 | 
						||
    msg = "don't know how to coerce %s and %s"
 | 
						||
    raise TypeError(msg % (T.__name__, S.__name__))
 | 
						||
 | 
						||
 | 
						||
def _exact_ratio(x):
 | 
						||
    """Return Real number x to exact (numerator, denominator) pair.
 | 
						||
 | 
						||
    >>> _exact_ratio(0.25)
 | 
						||
    (1, 4)
 | 
						||
 | 
						||
    x is expected to be an int, Fraction, Decimal or float.
 | 
						||
    """
 | 
						||
    try:
 | 
						||
        # Optimise the common case of floats. We expect that the most often
 | 
						||
        # used numeric type will be builtin floats, so try to make this as
 | 
						||
        # fast as possible.
 | 
						||
        if type(x) is float or type(x) is Decimal:
 | 
						||
            return x.as_integer_ratio()
 | 
						||
        try:
 | 
						||
            # x may be an int, Fraction, or Integral ABC.
 | 
						||
            return (x.numerator, x.denominator)
 | 
						||
        except AttributeError:
 | 
						||
            try:
 | 
						||
                # x may be a float or Decimal subclass.
 | 
						||
                return x.as_integer_ratio()
 | 
						||
            except AttributeError:
 | 
						||
                # Just give up?
 | 
						||
                pass
 | 
						||
    except (OverflowError, ValueError):
 | 
						||
        # float NAN or INF.
 | 
						||
        assert not _isfinite(x)
 | 
						||
        return (x, None)
 | 
						||
    msg = "can't convert type '{}' to numerator/denominator"
 | 
						||
    raise TypeError(msg.format(type(x).__name__))
 | 
						||
 | 
						||
 | 
						||
def _convert(value, T):
 | 
						||
    """Convert value to given numeric type T."""
 | 
						||
    if type(value) is T:
 | 
						||
        # This covers the cases where T is Fraction, or where value is
 | 
						||
        # a NAN or INF (Decimal or float).
 | 
						||
        return value
 | 
						||
    if issubclass(T, int) and value.denominator != 1:
 | 
						||
        T = float
 | 
						||
    try:
 | 
						||
        # FIXME: what do we do if this overflows?
 | 
						||
        return T(value)
 | 
						||
    except TypeError:
 | 
						||
        if issubclass(T, Decimal):
 | 
						||
            return T(value.numerator) / T(value.denominator)
 | 
						||
        else:
 | 
						||
            raise
 | 
						||
 | 
						||
 | 
						||
def _find_lteq(a, x):
 | 
						||
    'Locate the leftmost value exactly equal to x'
 | 
						||
    i = bisect_left(a, x)
 | 
						||
    if i != len(a) and a[i] == x:
 | 
						||
        return i
 | 
						||
    raise ValueError
 | 
						||
 | 
						||
 | 
						||
def _find_rteq(a, l, x):
 | 
						||
    'Locate the rightmost value exactly equal to x'
 | 
						||
    i = bisect_right(a, x, lo=l)
 | 
						||
    if i != (len(a) + 1) and a[i - 1] == x:
 | 
						||
        return i - 1
 | 
						||
    raise ValueError
 | 
						||
 | 
						||
 | 
						||
def _fail_neg(values, errmsg='negative value'):
 | 
						||
    """Iterate over values, failing if any are less than zero."""
 | 
						||
    for x in values:
 | 
						||
        if x < 0:
 | 
						||
            raise StatisticsError(errmsg)
 | 
						||
        yield x
 | 
						||
 | 
						||
 | 
						||
# === Measures of central tendency (averages) ===
 | 
						||
 | 
						||
def mean(data):
 | 
						||
    """Return the sample arithmetic mean of data.
 | 
						||
 | 
						||
    >>> mean([1, 2, 3, 4, 4])
 | 
						||
    2.8
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
 | 
						||
    Fraction(13, 21)
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
 | 
						||
    Decimal('0.5625')
 | 
						||
 | 
						||
    If ``data`` is empty, StatisticsError will be raised.
 | 
						||
    """
 | 
						||
    if iter(data) is data:
 | 
						||
        data = list(data)
 | 
						||
    n = len(data)
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('mean requires at least one data point')
 | 
						||
    T, total, count = _sum(data)
 | 
						||
    assert count == n
 | 
						||
    return _convert(total / n, T)
 | 
						||
 | 
						||
 | 
						||
def fmean(data):
 | 
						||
    """Convert data to floats and compute the arithmetic mean.
 | 
						||
 | 
						||
    This runs faster than the mean() function and it always returns a float.
 | 
						||
    If the input dataset is empty, it raises a StatisticsError.
 | 
						||
 | 
						||
    >>> fmean([3.5, 4.0, 5.25])
 | 
						||
    4.25
 | 
						||
    """
 | 
						||
    try:
 | 
						||
        n = len(data)
 | 
						||
    except TypeError:
 | 
						||
        # Handle iterators that do not define __len__().
 | 
						||
        n = 0
 | 
						||
        def count(iterable):
 | 
						||
            nonlocal n
 | 
						||
            for n, x in enumerate(iterable, start=1):
 | 
						||
                yield x
 | 
						||
        total = fsum(count(data))
 | 
						||
    else:
 | 
						||
        total = fsum(data)
 | 
						||
    try:
 | 
						||
        return total / n
 | 
						||
    except ZeroDivisionError:
 | 
						||
        raise StatisticsError('fmean requires at least one data point') from None
 | 
						||
 | 
						||
 | 
						||
def geometric_mean(data):
 | 
						||
    """Convert data to floats and compute the geometric mean.
 | 
						||
 | 
						||
    Raises a StatisticsError if the input dataset is empty,
 | 
						||
    if it contains a zero, or if it contains a negative value.
 | 
						||
 | 
						||
    No special efforts are made to achieve exact results.
 | 
						||
    (However, this may change in the future.)
 | 
						||
 | 
						||
    >>> round(geometric_mean([54, 24, 36]), 9)
 | 
						||
    36.0
 | 
						||
    """
 | 
						||
    try:
 | 
						||
        return exp(fmean(map(log, data)))
 | 
						||
    except ValueError:
 | 
						||
        raise StatisticsError('geometric mean requires a non-empty dataset '
 | 
						||
                              ' containing positive numbers') from None
 | 
						||
 | 
						||
 | 
						||
def harmonic_mean(data, weights=None):
 | 
						||
    """Return the harmonic mean of data.
 | 
						||
 | 
						||
    The harmonic mean is the reciprocal of the arithmetic mean of the
 | 
						||
    reciprocals of the data.  It can be used for averaging ratios or
 | 
						||
    rates, for example speeds.
 | 
						||
 | 
						||
    Suppose a car travels 40 km/hr for 5 km and then speeds-up to
 | 
						||
    60 km/hr for another 5 km. What is the average speed?
 | 
						||
 | 
						||
        >>> harmonic_mean([40, 60])
 | 
						||
        48.0
 | 
						||
 | 
						||
    Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
 | 
						||
    speeds-up to 60 km/hr for the remaining 30 km of the journey. What
 | 
						||
    is the average speed?
 | 
						||
 | 
						||
        >>> harmonic_mean([40, 60], weights=[5, 30])
 | 
						||
        56.0
 | 
						||
 | 
						||
    If ``data`` is empty, or any element is less than zero,
 | 
						||
    ``harmonic_mean`` will raise ``StatisticsError``.
 | 
						||
    """
 | 
						||
    if iter(data) is data:
 | 
						||
        data = list(data)
 | 
						||
    errmsg = 'harmonic mean does not support negative values'
 | 
						||
    n = len(data)
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('harmonic_mean requires at least one data point')
 | 
						||
    elif n == 1 and weights is None:
 | 
						||
        x = data[0]
 | 
						||
        if isinstance(x, (numbers.Real, Decimal)):
 | 
						||
            if x < 0:
 | 
						||
                raise StatisticsError(errmsg)
 | 
						||
            return x
 | 
						||
        else:
 | 
						||
            raise TypeError('unsupported type')
 | 
						||
    if weights is None:
 | 
						||
        weights = repeat(1, n)
 | 
						||
        sum_weights = n
 | 
						||
    else:
 | 
						||
        if iter(weights) is weights:
 | 
						||
            weights = list(weights)
 | 
						||
        if len(weights) != n:
 | 
						||
            raise StatisticsError('Number of weights does not match data size')
 | 
						||
        _, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg))
 | 
						||
    try:
 | 
						||
        data = _fail_neg(data, errmsg)
 | 
						||
        T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data))
 | 
						||
    except ZeroDivisionError:
 | 
						||
        return 0
 | 
						||
    if total <= 0:
 | 
						||
        raise StatisticsError('Weighted sum must be positive')
 | 
						||
    return _convert(sum_weights / total, T)
 | 
						||
 | 
						||
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
 | 
						||
def median(data):
 | 
						||
    """Return the median (middle value) of numeric data.
 | 
						||
 | 
						||
    When the number of data points is odd, return the middle data point.
 | 
						||
    When the number of data points is even, the median is interpolated by
 | 
						||
    taking the average of the two middle values:
 | 
						||
 | 
						||
    >>> median([1, 3, 5])
 | 
						||
    3
 | 
						||
    >>> median([1, 3, 5, 7])
 | 
						||
    4.0
 | 
						||
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if n == 0:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
    if n % 2 == 1:
 | 
						||
        return data[n // 2]
 | 
						||
    else:
 | 
						||
        i = n // 2
 | 
						||
        return (data[i - 1] + data[i]) / 2
 | 
						||
 | 
						||
 | 
						||
def median_low(data):
 | 
						||
    """Return the low median of numeric data.
 | 
						||
 | 
						||
    When the number of data points is odd, the middle value is returned.
 | 
						||
    When it is even, the smaller of the two middle values is returned.
 | 
						||
 | 
						||
    >>> median_low([1, 3, 5])
 | 
						||
    3
 | 
						||
    >>> median_low([1, 3, 5, 7])
 | 
						||
    3
 | 
						||
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if n == 0:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
    if n % 2 == 1:
 | 
						||
        return data[n // 2]
 | 
						||
    else:
 | 
						||
        return data[n // 2 - 1]
 | 
						||
 | 
						||
 | 
						||
def median_high(data):
 | 
						||
    """Return the high median of data.
 | 
						||
 | 
						||
    When the number of data points is odd, the middle value is returned.
 | 
						||
    When it is even, the larger of the two middle values is returned.
 | 
						||
 | 
						||
    >>> median_high([1, 3, 5])
 | 
						||
    3
 | 
						||
    >>> median_high([1, 3, 5, 7])
 | 
						||
    5
 | 
						||
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if n == 0:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
    return data[n // 2]
 | 
						||
 | 
						||
 | 
						||
def median_grouped(data, interval=1):
 | 
						||
    """Return the 50th percentile (median) of grouped continuous data.
 | 
						||
 | 
						||
    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
 | 
						||
    3.7
 | 
						||
    >>> median_grouped([52, 52, 53, 54])
 | 
						||
    52.5
 | 
						||
 | 
						||
    This calculates the median as the 50th percentile, and should be
 | 
						||
    used when your data is continuous and grouped. In the above example,
 | 
						||
    the values 1, 2, 3, etc. actually represent the midpoint of classes
 | 
						||
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
 | 
						||
    class 3.5-4.5, and interpolation is used to estimate it.
 | 
						||
 | 
						||
    Optional argument ``interval`` represents the class interval, and
 | 
						||
    defaults to 1. Changing the class interval naturally will change the
 | 
						||
    interpolated 50th percentile value:
 | 
						||
 | 
						||
    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
 | 
						||
    3.25
 | 
						||
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
 | 
						||
    3.5
 | 
						||
 | 
						||
    This function does not check whether the data points are at least
 | 
						||
    ``interval`` apart.
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if n == 0:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
    elif n == 1:
 | 
						||
        return data[0]
 | 
						||
    # Find the value at the midpoint. Remember this corresponds to the
 | 
						||
    # centre of the class interval.
 | 
						||
    x = data[n // 2]
 | 
						||
    for obj in (x, interval):
 | 
						||
        if isinstance(obj, (str, bytes)):
 | 
						||
            raise TypeError('expected number but got %r' % obj)
 | 
						||
    try:
 | 
						||
        L = x - interval / 2  # The lower limit of the median interval.
 | 
						||
    except TypeError:
 | 
						||
        # Mixed type. For now we just coerce to float.
 | 
						||
        L = float(x) - float(interval) / 2
 | 
						||
 | 
						||
    # Uses bisection search to search for x in data with log(n) time complexity
 | 
						||
    # Find the position of leftmost occurrence of x in data
 | 
						||
    l1 = _find_lteq(data, x)
 | 
						||
    # Find the position of rightmost occurrence of x in data[l1...len(data)]
 | 
						||
    # Assuming always l1 <= l2
 | 
						||
    l2 = _find_rteq(data, l1, x)
 | 
						||
    cf = l1
 | 
						||
    f = l2 - l1 + 1
 | 
						||
    return L + interval * (n / 2 - cf) / f
 | 
						||
 | 
						||
 | 
						||
def mode(data):
 | 
						||
    """Return the most common data point from discrete or nominal data.
 | 
						||
 | 
						||
    ``mode`` assumes discrete data, and returns a single value. This is the
 | 
						||
    standard treatment of the mode as commonly taught in schools:
 | 
						||
 | 
						||
        >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
 | 
						||
        3
 | 
						||
 | 
						||
    This also works with nominal (non-numeric) data:
 | 
						||
 | 
						||
        >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
 | 
						||
        'red'
 | 
						||
 | 
						||
    If there are multiple modes with same frequency, return the first one
 | 
						||
    encountered:
 | 
						||
 | 
						||
        >>> mode(['red', 'red', 'green', 'blue', 'blue'])
 | 
						||
        'red'
 | 
						||
 | 
						||
    If *data* is empty, ``mode``, raises StatisticsError.
 | 
						||
 | 
						||
    """
 | 
						||
    pairs = Counter(iter(data)).most_common(1)
 | 
						||
    try:
 | 
						||
        return pairs[0][0]
 | 
						||
    except IndexError:
 | 
						||
        raise StatisticsError('no mode for empty data') from None
 | 
						||
 | 
						||
 | 
						||
def multimode(data):
 | 
						||
    """Return a list of the most frequently occurring values.
 | 
						||
 | 
						||
    Will return more than one result if there are multiple modes
 | 
						||
    or an empty list if *data* is empty.
 | 
						||
 | 
						||
    >>> multimode('aabbbbbbbbcc')
 | 
						||
    ['b']
 | 
						||
    >>> multimode('aabbbbccddddeeffffgg')
 | 
						||
    ['b', 'd', 'f']
 | 
						||
    >>> multimode('')
 | 
						||
    []
 | 
						||
    """
 | 
						||
    counts = Counter(iter(data)).most_common()
 | 
						||
    maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
 | 
						||
    return list(map(itemgetter(0), mode_items))
 | 
						||
 | 
						||
 | 
						||
# Notes on methods for computing quantiles
 | 
						||
# ----------------------------------------
 | 
						||
#
 | 
						||
# There is no one perfect way to compute quantiles.  Here we offer
 | 
						||
# two methods that serve common needs.  Most other packages
 | 
						||
# surveyed offered at least one or both of these two, making them
 | 
						||
# "standard" in the sense of "widely-adopted and reproducible".
 | 
						||
# They are also easy to explain, easy to compute manually, and have
 | 
						||
# straight-forward interpretations that aren't surprising.
 | 
						||
 | 
						||
# The default method is known as "R6", "PERCENTILE.EXC", or "expected
 | 
						||
# value of rank order statistics". The alternative method is known as
 | 
						||
# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
 | 
						||
 | 
						||
# For sample data where there is a positive probability for values
 | 
						||
# beyond the range of the data, the R6 exclusive method is a
 | 
						||
# reasonable choice.  Consider a random sample of nine values from a
 | 
						||
# population with a uniform distribution from 0.0 to 1.0.  The
 | 
						||
# distribution of the third ranked sample point is described by
 | 
						||
# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
 | 
						||
# mean=0.300.  Only the latter (which corresponds with R6) gives the
 | 
						||
# desired cut point with 30% of the population falling below that
 | 
						||
# value, making it comparable to a result from an inv_cdf() function.
 | 
						||
# The R6 exclusive method is also idempotent.
 | 
						||
 | 
						||
# For describing population data where the end points are known to
 | 
						||
# be included in the data, the R7 inclusive method is a reasonable
 | 
						||
# choice.  Instead of the mean, it uses the mode of the beta
 | 
						||
# distribution for the interior points.  Per Hyndman & Fan, "One nice
 | 
						||
# property is that the vertices of Q7(p) divide the range into n - 1
 | 
						||
# intervals, and exactly 100p% of the intervals lie to the left of
 | 
						||
# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
 | 
						||
 | 
						||
# If needed, other methods could be added.  However, for now, the
 | 
						||
# position is that fewer options make for easier choices and that
 | 
						||
# external packages can be used for anything more advanced.
 | 
						||
 | 
						||
def quantiles(data, *, n=4, method='exclusive'):
 | 
						||
    """Divide *data* into *n* continuous intervals with equal probability.
 | 
						||
 | 
						||
    Returns a list of (n - 1) cut points separating the intervals.
 | 
						||
 | 
						||
    Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | 
						||
    Set *n* to 100 for percentiles which gives the 99 cuts points that
 | 
						||
    separate *data* in to 100 equal sized groups.
 | 
						||
 | 
						||
    The *data* can be any iterable containing sample.
 | 
						||
    The cut points are linearly interpolated between data points.
 | 
						||
 | 
						||
    If *method* is set to *inclusive*, *data* is treated as population
 | 
						||
    data.  The minimum value is treated as the 0th percentile and the
 | 
						||
    maximum value is treated as the 100th percentile.
 | 
						||
    """
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('n must be at least 1')
 | 
						||
    data = sorted(data)
 | 
						||
    ld = len(data)
 | 
						||
    if ld < 2:
 | 
						||
        raise StatisticsError('must have at least two data points')
 | 
						||
    if method == 'inclusive':
 | 
						||
        m = ld - 1
 | 
						||
        result = []
 | 
						||
        for i in range(1, n):
 | 
						||
            j, delta = divmod(i * m, n)
 | 
						||
            interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
 | 
						||
            result.append(interpolated)
 | 
						||
        return result
 | 
						||
    if method == 'exclusive':
 | 
						||
        m = ld + 1
 | 
						||
        result = []
 | 
						||
        for i in range(1, n):
 | 
						||
            j = i * m // n                               # rescale i to m/n
 | 
						||
            j = 1 if j < 1 else ld-1 if j > ld-1 else j  # clamp to 1 .. ld-1
 | 
						||
            delta = i*m - j*n                            # exact integer math
 | 
						||
            interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
 | 
						||
            result.append(interpolated)
 | 
						||
        return result
 | 
						||
    raise ValueError(f'Unknown method: {method!r}')
 | 
						||
 | 
						||
 | 
						||
# === Measures of spread ===
 | 
						||
 | 
						||
# See http://mathworld.wolfram.com/Variance.html
 | 
						||
#     http://mathworld.wolfram.com/SampleVariance.html
 | 
						||
#     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
 | 
						||
#
 | 
						||
# Under no circumstances use the so-called "computational formula for
 | 
						||
# variance", as that is only suitable for hand calculations with a small
 | 
						||
# amount of low-precision data. It has terrible numeric properties.
 | 
						||
#
 | 
						||
# See a comparison of three computational methods here:
 | 
						||
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
 | 
						||
 | 
						||
def _ss(data, c=None):
 | 
						||
    """Return sum of square deviations of sequence data.
 | 
						||
 | 
						||
    If ``c`` is None, the mean is calculated in one pass, and the deviations
 | 
						||
    from the mean are calculated in a second pass. Otherwise, deviations are
 | 
						||
    calculated from ``c`` as given. Use the second case with care, as it can
 | 
						||
    lead to garbage results.
 | 
						||
    """
 | 
						||
    if c is not None:
 | 
						||
        T, total, count = _sum((x-c)**2 for x in data)
 | 
						||
        return (T, total)
 | 
						||
    c = mean(data)
 | 
						||
    T, total, count = _sum((x-c)**2 for x in data)
 | 
						||
    # The following sum should mathematically equal zero, but due to rounding
 | 
						||
    # error may not.
 | 
						||
    U, total2, count2 = _sum((x - c) for x in data)
 | 
						||
    assert T == U and count == count2
 | 
						||
    total -= total2 ** 2 / len(data)
 | 
						||
    assert not total < 0, 'negative sum of square deviations: %f' % total
 | 
						||
    return (T, total)
 | 
						||
 | 
						||
 | 
						||
def variance(data, xbar=None):
 | 
						||
    """Return the sample variance of data.
 | 
						||
 | 
						||
    data should be an iterable of Real-valued numbers, with at least two
 | 
						||
    values. The optional argument xbar, if given, should be the mean of
 | 
						||
    the data. If it is missing or None, the mean is automatically calculated.
 | 
						||
 | 
						||
    Use this function when your data is a sample from a population. To
 | 
						||
    calculate the variance from the entire population, see ``pvariance``.
 | 
						||
 | 
						||
    Examples:
 | 
						||
 | 
						||
    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
 | 
						||
    >>> variance(data)
 | 
						||
    1.3720238095238095
 | 
						||
 | 
						||
    If you have already calculated the mean of your data, you can pass it as
 | 
						||
    the optional second argument ``xbar`` to avoid recalculating it:
 | 
						||
 | 
						||
    >>> m = mean(data)
 | 
						||
    >>> variance(data, m)
 | 
						||
    1.3720238095238095
 | 
						||
 | 
						||
    This function does not check that ``xbar`` is actually the mean of
 | 
						||
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
 | 
						||
    impossible results.
 | 
						||
 | 
						||
    Decimals and Fractions are supported:
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | 
						||
    Decimal('31.01875')
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
 | 
						||
    Fraction(67, 108)
 | 
						||
 | 
						||
    """
 | 
						||
    if iter(data) is data:
 | 
						||
        data = list(data)
 | 
						||
    n = len(data)
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('variance requires at least two data points')
 | 
						||
    T, ss = _ss(data, xbar)
 | 
						||
    return _convert(ss / (n - 1), T)
 | 
						||
 | 
						||
 | 
						||
def pvariance(data, mu=None):
 | 
						||
    """Return the population variance of ``data``.
 | 
						||
 | 
						||
    data should be a sequence or iterable of Real-valued numbers, with at least one
 | 
						||
    value. The optional argument mu, if given, should be the mean of
 | 
						||
    the data. If it is missing or None, the mean is automatically calculated.
 | 
						||
 | 
						||
    Use this function to calculate the variance from the entire population.
 | 
						||
    To estimate the variance from a sample, the ``variance`` function is
 | 
						||
    usually a better choice.
 | 
						||
 | 
						||
    Examples:
 | 
						||
 | 
						||
    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
 | 
						||
    >>> pvariance(data)
 | 
						||
    1.25
 | 
						||
 | 
						||
    If you have already calculated the mean of the data, you can pass it as
 | 
						||
    the optional second argument to avoid recalculating it:
 | 
						||
 | 
						||
    >>> mu = mean(data)
 | 
						||
    >>> pvariance(data, mu)
 | 
						||
    1.25
 | 
						||
 | 
						||
    Decimals and Fractions are supported:
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | 
						||
    Decimal('24.815')
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
 | 
						||
    Fraction(13, 72)
 | 
						||
 | 
						||
    """
 | 
						||
    if iter(data) is data:
 | 
						||
        data = list(data)
 | 
						||
    n = len(data)
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('pvariance requires at least one data point')
 | 
						||
    T, ss = _ss(data, mu)
 | 
						||
    return _convert(ss / n, T)
 | 
						||
 | 
						||
 | 
						||
def stdev(data, xbar=None):
 | 
						||
    """Return the square root of the sample variance.
 | 
						||
 | 
						||
    See ``variance`` for arguments and other details.
 | 
						||
 | 
						||
    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | 
						||
    1.0810874155219827
 | 
						||
 | 
						||
    """
 | 
						||
    var = variance(data, xbar)
 | 
						||
    try:
 | 
						||
        return var.sqrt()
 | 
						||
    except AttributeError:
 | 
						||
        return math.sqrt(var)
 | 
						||
 | 
						||
 | 
						||
def pstdev(data, mu=None):
 | 
						||
    """Return the square root of the population variance.
 | 
						||
 | 
						||
    See ``pvariance`` for arguments and other details.
 | 
						||
 | 
						||
    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | 
						||
    0.986893273527251
 | 
						||
 | 
						||
    """
 | 
						||
    var = pvariance(data, mu)
 | 
						||
    try:
 | 
						||
        return var.sqrt()
 | 
						||
    except AttributeError:
 | 
						||
        return math.sqrt(var)
 | 
						||
 | 
						||
 | 
						||
# === Statistics for relations between two inputs ===
 | 
						||
 | 
						||
# See https://en.wikipedia.org/wiki/Covariance
 | 
						||
#     https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
 | 
						||
#     https://en.wikipedia.org/wiki/Simple_linear_regression
 | 
						||
 | 
						||
 | 
						||
def covariance(x, y, /):
 | 
						||
    """Covariance
 | 
						||
 | 
						||
    Return the sample covariance of two inputs *x* and *y*. Covariance
 | 
						||
    is a measure of the joint variability of two inputs.
 | 
						||
 | 
						||
    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | 
						||
    >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
 | 
						||
    >>> covariance(x, y)
 | 
						||
    0.75
 | 
						||
    >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
 | 
						||
    >>> covariance(x, z)
 | 
						||
    -7.5
 | 
						||
    >>> covariance(z, x)
 | 
						||
    -7.5
 | 
						||
 | 
						||
    """
 | 
						||
    n = len(x)
 | 
						||
    if len(y) != n:
 | 
						||
        raise StatisticsError('covariance requires that both inputs have same number of data points')
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('covariance requires at least two data points')
 | 
						||
    xbar = mean(x)
 | 
						||
    ybar = mean(y)
 | 
						||
    total = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
 | 
						||
    return total / (n - 1)
 | 
						||
 | 
						||
 | 
						||
def correlation(x, y, /):
 | 
						||
    """Pearson's correlation coefficient
 | 
						||
 | 
						||
    Return the Pearson's correlation coefficient for two inputs. Pearson's
 | 
						||
    correlation coefficient *r* takes values between -1 and +1. It measures the
 | 
						||
    strength and direction of the linear relationship, where +1 means very
 | 
						||
    strong, positive linear relationship, -1 very strong, negative linear
 | 
						||
    relationship, and 0 no linear relationship.
 | 
						||
 | 
						||
    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | 
						||
    >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
 | 
						||
    >>> correlation(x, x)
 | 
						||
    1.0
 | 
						||
    >>> correlation(x, y)
 | 
						||
    -1.0
 | 
						||
 | 
						||
    """
 | 
						||
    n = len(x)
 | 
						||
    if len(y) != n:
 | 
						||
        raise StatisticsError('correlation requires that both inputs have same number of data points')
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('correlation requires at least two data points')
 | 
						||
    cov = covariance(x, y)
 | 
						||
    stdx = stdev(x)
 | 
						||
    stdy = stdev(y)
 | 
						||
    try:
 | 
						||
        return cov / (stdx * stdy)
 | 
						||
    except ZeroDivisionError:
 | 
						||
        raise StatisticsError('at least one of the inputs is constant')
 | 
						||
 | 
						||
 | 
						||
LinearRegression = namedtuple('LinearRegression', ['intercept', 'slope'])
 | 
						||
 | 
						||
 | 
						||
def linear_regression(regressor, dependent_variable, /):
 | 
						||
    """Intercept and slope for simple linear regression
 | 
						||
 | 
						||
    Return the intercept and slope of simple linear regression
 | 
						||
    parameters estimated using ordinary least squares. Simple linear
 | 
						||
    regression describes relationship between *regressor* and
 | 
						||
    *dependent variable* in terms of linear function::
 | 
						||
 | 
						||
        dependent_variable = intercept + slope * regressor + noise
 | 
						||
 | 
						||
    where ``intercept`` and ``slope`` are the regression parameters that are
 | 
						||
    estimated, and noise term is an unobserved random variable, for the
 | 
						||
    variability of the data that was not explained by the linear regression
 | 
						||
    (it is equal to the difference between prediction and the actual values
 | 
						||
    of dependent variable).
 | 
						||
 | 
						||
    The parameters are returned as a named tuple.
 | 
						||
 | 
						||
    >>> regressor = [1, 2, 3, 4, 5]
 | 
						||
    >>> noise = NormalDist().samples(5, seed=42)
 | 
						||
    >>> dependent_variable = [2 + 3 * regressor[i] + noise[i] for i in range(5)]
 | 
						||
    >>> linear_regression(regressor, dependent_variable)  #doctest: +ELLIPSIS
 | 
						||
    LinearRegression(intercept=1.75684970486..., slope=3.09078914170...)
 | 
						||
 | 
						||
    """
 | 
						||
    n = len(regressor)
 | 
						||
    if len(dependent_variable) != n:
 | 
						||
        raise StatisticsError('linear regression requires that both inputs have same number of data points')
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('linear regression requires at least two data points')
 | 
						||
    try:
 | 
						||
        slope = covariance(regressor, dependent_variable) / variance(regressor)
 | 
						||
    except ZeroDivisionError:
 | 
						||
        raise StatisticsError('regressor is constant')
 | 
						||
    intercept = mean(dependent_variable) - slope * mean(regressor)
 | 
						||
    return LinearRegression(intercept=intercept, slope=slope)
 | 
						||
 | 
						||
 | 
						||
## Normal Distribution #####################################################
 | 
						||
 | 
						||
 | 
						||
def _normal_dist_inv_cdf(p, mu, sigma):
 | 
						||
    # There is no closed-form solution to the inverse CDF for the normal
 | 
						||
    # distribution, so we use a rational approximation instead:
 | 
						||
    # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
 | 
						||
    # Normal Distribution".  Applied Statistics. Blackwell Publishing. 37
 | 
						||
    # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
 | 
						||
    q = p - 0.5
 | 
						||
    if fabs(q) <= 0.425:
 | 
						||
        r = 0.180625 - q * q
 | 
						||
        # Hash sum: 55.88319_28806_14901_4439
 | 
						||
        num = (((((((2.50908_09287_30122_6727e+3 * r +
 | 
						||
                     3.34305_75583_58812_8105e+4) * r +
 | 
						||
                     6.72657_70927_00870_0853e+4) * r +
 | 
						||
                     4.59219_53931_54987_1457e+4) * r +
 | 
						||
                     1.37316_93765_50946_1125e+4) * r +
 | 
						||
                     1.97159_09503_06551_4427e+3) * r +
 | 
						||
                     1.33141_66789_17843_7745e+2) * r +
 | 
						||
                     3.38713_28727_96366_6080e+0) * q
 | 
						||
        den = (((((((5.22649_52788_52854_5610e+3 * r +
 | 
						||
                     2.87290_85735_72194_2674e+4) * r +
 | 
						||
                     3.93078_95800_09271_0610e+4) * r +
 | 
						||
                     2.12137_94301_58659_5867e+4) * r +
 | 
						||
                     5.39419_60214_24751_1077e+3) * r +
 | 
						||
                     6.87187_00749_20579_0830e+2) * r +
 | 
						||
                     4.23133_30701_60091_1252e+1) * r +
 | 
						||
                     1.0)
 | 
						||
        x = num / den
 | 
						||
        return mu + (x * sigma)
 | 
						||
    r = p if q <= 0.0 else 1.0 - p
 | 
						||
    r = sqrt(-log(r))
 | 
						||
    if r <= 5.0:
 | 
						||
        r = r - 1.6
 | 
						||
        # Hash sum: 49.33206_50330_16102_89036
 | 
						||
        num = (((((((7.74545_01427_83414_07640e-4 * r +
 | 
						||
                     2.27238_44989_26918_45833e-2) * r +
 | 
						||
                     2.41780_72517_74506_11770e-1) * r +
 | 
						||
                     1.27045_82524_52368_38258e+0) * r +
 | 
						||
                     3.64784_83247_63204_60504e+0) * r +
 | 
						||
                     5.76949_72214_60691_40550e+0) * r +
 | 
						||
                     4.63033_78461_56545_29590e+0) * r +
 | 
						||
                     1.42343_71107_49683_57734e+0)
 | 
						||
        den = (((((((1.05075_00716_44416_84324e-9 * r +
 | 
						||
                     5.47593_80849_95344_94600e-4) * r +
 | 
						||
                     1.51986_66563_61645_71966e-2) * r +
 | 
						||
                     1.48103_97642_74800_74590e-1) * r +
 | 
						||
                     6.89767_33498_51000_04550e-1) * r +
 | 
						||
                     1.67638_48301_83803_84940e+0) * r +
 | 
						||
                     2.05319_16266_37758_82187e+0) * r +
 | 
						||
                     1.0)
 | 
						||
    else:
 | 
						||
        r = r - 5.0
 | 
						||
        # Hash sum: 47.52583_31754_92896_71629
 | 
						||
        num = (((((((2.01033_43992_92288_13265e-7 * r +
 | 
						||
                     2.71155_55687_43487_57815e-5) * r +
 | 
						||
                     1.24266_09473_88078_43860e-3) * r +
 | 
						||
                     2.65321_89526_57612_30930e-2) * r +
 | 
						||
                     2.96560_57182_85048_91230e-1) * r +
 | 
						||
                     1.78482_65399_17291_33580e+0) * r +
 | 
						||
                     5.46378_49111_64114_36990e+0) * r +
 | 
						||
                     6.65790_46435_01103_77720e+0)
 | 
						||
        den = (((((((2.04426_31033_89939_78564e-15 * r +
 | 
						||
                     1.42151_17583_16445_88870e-7) * r +
 | 
						||
                     1.84631_83175_10054_68180e-5) * r +
 | 
						||
                     7.86869_13114_56132_59100e-4) * r +
 | 
						||
                     1.48753_61290_85061_48525e-2) * r +
 | 
						||
                     1.36929_88092_27358_05310e-1) * r +
 | 
						||
                     5.99832_20655_58879_37690e-1) * r +
 | 
						||
                     1.0)
 | 
						||
    x = num / den
 | 
						||
    if q < 0.0:
 | 
						||
        x = -x
 | 
						||
    return mu + (x * sigma)
 | 
						||
 | 
						||
 | 
						||
# If available, use C implementation
 | 
						||
try:
 | 
						||
    from _statistics import _normal_dist_inv_cdf
 | 
						||
except ImportError:
 | 
						||
    pass
 | 
						||
 | 
						||
 | 
						||
class NormalDist:
 | 
						||
    "Normal distribution of a random variable"
 | 
						||
    # https://en.wikipedia.org/wiki/Normal_distribution
 | 
						||
    # https://en.wikipedia.org/wiki/Variance#Properties
 | 
						||
 | 
						||
    __slots__ = {
 | 
						||
        '_mu': 'Arithmetic mean of a normal distribution',
 | 
						||
        '_sigma': 'Standard deviation of a normal distribution',
 | 
						||
    }
 | 
						||
 | 
						||
    def __init__(self, mu=0.0, sigma=1.0):
 | 
						||
        "NormalDist where mu is the mean and sigma is the standard deviation."
 | 
						||
        if sigma < 0.0:
 | 
						||
            raise StatisticsError('sigma must be non-negative')
 | 
						||
        self._mu = float(mu)
 | 
						||
        self._sigma = float(sigma)
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def from_samples(cls, data):
 | 
						||
        "Make a normal distribution instance from sample data."
 | 
						||
        if not isinstance(data, (list, tuple)):
 | 
						||
            data = list(data)
 | 
						||
        xbar = fmean(data)
 | 
						||
        return cls(xbar, stdev(data, xbar))
 | 
						||
 | 
						||
    def samples(self, n, *, seed=None):
 | 
						||
        "Generate *n* samples for a given mean and standard deviation."
 | 
						||
        gauss = random.gauss if seed is None else random.Random(seed).gauss
 | 
						||
        mu, sigma = self._mu, self._sigma
 | 
						||
        return [gauss(mu, sigma) for i in range(n)]
 | 
						||
 | 
						||
    def pdf(self, x):
 | 
						||
        "Probability density function.  P(x <= X < x+dx) / dx"
 | 
						||
        variance = self._sigma ** 2.0
 | 
						||
        if not variance:
 | 
						||
            raise StatisticsError('pdf() not defined when sigma is zero')
 | 
						||
        return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau*variance)
 | 
						||
 | 
						||
    def cdf(self, x):
 | 
						||
        "Cumulative distribution function.  P(X <= x)"
 | 
						||
        if not self._sigma:
 | 
						||
            raise StatisticsError('cdf() not defined when sigma is zero')
 | 
						||
        return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * sqrt(2.0))))
 | 
						||
 | 
						||
    def inv_cdf(self, p):
 | 
						||
        """Inverse cumulative distribution function.  x : P(X <= x) = p
 | 
						||
 | 
						||
        Finds the value of the random variable such that the probability of
 | 
						||
        the variable being less than or equal to that value equals the given
 | 
						||
        probability.
 | 
						||
 | 
						||
        This function is also called the percent point function or quantile
 | 
						||
        function.
 | 
						||
        """
 | 
						||
        if p <= 0.0 or p >= 1.0:
 | 
						||
            raise StatisticsError('p must be in the range 0.0 < p < 1.0')
 | 
						||
        if self._sigma <= 0.0:
 | 
						||
            raise StatisticsError('cdf() not defined when sigma at or below zero')
 | 
						||
        return _normal_dist_inv_cdf(p, self._mu, self._sigma)
 | 
						||
 | 
						||
    def quantiles(self, n=4):
 | 
						||
        """Divide into *n* continuous intervals with equal probability.
 | 
						||
 | 
						||
        Returns a list of (n - 1) cut points separating the intervals.
 | 
						||
 | 
						||
        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | 
						||
        Set *n* to 100 for percentiles which gives the 99 cuts points that
 | 
						||
        separate the normal distribution in to 100 equal sized groups.
 | 
						||
        """
 | 
						||
        return [self.inv_cdf(i / n) for i in range(1, n)]
 | 
						||
 | 
						||
    def overlap(self, other):
 | 
						||
        """Compute the overlapping coefficient (OVL) between two normal distributions.
 | 
						||
 | 
						||
        Measures the agreement between two normal probability distributions.
 | 
						||
        Returns a value between 0.0 and 1.0 giving the overlapping area in
 | 
						||
        the two underlying probability density functions.
 | 
						||
 | 
						||
            >>> N1 = NormalDist(2.4, 1.6)
 | 
						||
            >>> N2 = NormalDist(3.2, 2.0)
 | 
						||
            >>> N1.overlap(N2)
 | 
						||
            0.8035050657330205
 | 
						||
        """
 | 
						||
        # See: "The overlapping coefficient as a measure of agreement between
 | 
						||
        # probability distributions and point estimation of the overlap of two
 | 
						||
        # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
 | 
						||
        # http://dx.doi.org/10.1080/03610928908830127
 | 
						||
        if not isinstance(other, NormalDist):
 | 
						||
            raise TypeError('Expected another NormalDist instance')
 | 
						||
        X, Y = self, other
 | 
						||
        if (Y._sigma, Y._mu) < (X._sigma, X._mu):  # sort to assure commutativity
 | 
						||
            X, Y = Y, X
 | 
						||
        X_var, Y_var = X.variance, Y.variance
 | 
						||
        if not X_var or not Y_var:
 | 
						||
            raise StatisticsError('overlap() not defined when sigma is zero')
 | 
						||
        dv = Y_var - X_var
 | 
						||
        dm = fabs(Y._mu - X._mu)
 | 
						||
        if not dv:
 | 
						||
            return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0)))
 | 
						||
        a = X._mu * Y_var - Y._mu * X_var
 | 
						||
        b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
 | 
						||
        x1 = (a + b) / dv
 | 
						||
        x2 = (a - b) / dv
 | 
						||
        return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
 | 
						||
 | 
						||
    def zscore(self, x):
 | 
						||
        """Compute the Standard Score.  (x - mean) / stdev
 | 
						||
 | 
						||
        Describes *x* in terms of the number of standard deviations
 | 
						||
        above or below the mean of the normal distribution.
 | 
						||
        """
 | 
						||
        # https://www.statisticshowto.com/probability-and-statistics/z-score/
 | 
						||
        if not self._sigma:
 | 
						||
            raise StatisticsError('zscore() not defined when sigma is zero')
 | 
						||
        return (x - self._mu) / self._sigma
 | 
						||
 | 
						||
    @property
 | 
						||
    def mean(self):
 | 
						||
        "Arithmetic mean of the normal distribution."
 | 
						||
        return self._mu
 | 
						||
 | 
						||
    @property
 | 
						||
    def median(self):
 | 
						||
        "Return the median of the normal distribution"
 | 
						||
        return self._mu
 | 
						||
 | 
						||
    @property
 | 
						||
    def mode(self):
 | 
						||
        """Return the mode of the normal distribution
 | 
						||
 | 
						||
        The mode is the value x where which the probability density
 | 
						||
        function (pdf) takes its maximum value.
 | 
						||
        """
 | 
						||
        return self._mu
 | 
						||
 | 
						||
    @property
 | 
						||
    def stdev(self):
 | 
						||
        "Standard deviation of the normal distribution."
 | 
						||
        return self._sigma
 | 
						||
 | 
						||
    @property
 | 
						||
    def variance(self):
 | 
						||
        "Square of the standard deviation."
 | 
						||
        return self._sigma ** 2.0
 | 
						||
 | 
						||
    def __add__(x1, x2):
 | 
						||
        """Add a constant or another NormalDist instance.
 | 
						||
 | 
						||
        If *other* is a constant, translate mu by the constant,
 | 
						||
        leaving sigma unchanged.
 | 
						||
 | 
						||
        If *other* is a NormalDist, add both the means and the variances.
 | 
						||
        Mathematically, this works only if the two distributions are
 | 
						||
        independent or if they are jointly normally distributed.
 | 
						||
        """
 | 
						||
        if isinstance(x2, NormalDist):
 | 
						||
            return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
 | 
						||
        return NormalDist(x1._mu + x2, x1._sigma)
 | 
						||
 | 
						||
    def __sub__(x1, x2):
 | 
						||
        """Subtract a constant or another NormalDist instance.
 | 
						||
 | 
						||
        If *other* is a constant, translate by the constant mu,
 | 
						||
        leaving sigma unchanged.
 | 
						||
 | 
						||
        If *other* is a NormalDist, subtract the means and add the variances.
 | 
						||
        Mathematically, this works only if the two distributions are
 | 
						||
        independent or if they are jointly normally distributed.
 | 
						||
        """
 | 
						||
        if isinstance(x2, NormalDist):
 | 
						||
            return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
 | 
						||
        return NormalDist(x1._mu - x2, x1._sigma)
 | 
						||
 | 
						||
    def __mul__(x1, x2):
 | 
						||
        """Multiply both mu and sigma by a constant.
 | 
						||
 | 
						||
        Used for rescaling, perhaps to change measurement units.
 | 
						||
        Sigma is scaled with the absolute value of the constant.
 | 
						||
        """
 | 
						||
        return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
 | 
						||
 | 
						||
    def __truediv__(x1, x2):
 | 
						||
        """Divide both mu and sigma by a constant.
 | 
						||
 | 
						||
        Used for rescaling, perhaps to change measurement units.
 | 
						||
        Sigma is scaled with the absolute value of the constant.
 | 
						||
        """
 | 
						||
        return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
 | 
						||
 | 
						||
    def __pos__(x1):
 | 
						||
        "Return a copy of the instance."
 | 
						||
        return NormalDist(x1._mu, x1._sigma)
 | 
						||
 | 
						||
    def __neg__(x1):
 | 
						||
        "Negates mu while keeping sigma the same."
 | 
						||
        return NormalDist(-x1._mu, x1._sigma)
 | 
						||
 | 
						||
    __radd__ = __add__
 | 
						||
 | 
						||
    def __rsub__(x1, x2):
 | 
						||
        "Subtract a NormalDist from a constant or another NormalDist."
 | 
						||
        return -(x1 - x2)
 | 
						||
 | 
						||
    __rmul__ = __mul__
 | 
						||
 | 
						||
    def __eq__(x1, x2):
 | 
						||
        "Two NormalDist objects are equal if their mu and sigma are both equal."
 | 
						||
        if not isinstance(x2, NormalDist):
 | 
						||
            return NotImplemented
 | 
						||
        return x1._mu == x2._mu and x1._sigma == x2._sigma
 | 
						||
 | 
						||
    def __hash__(self):
 | 
						||
        "NormalDist objects hash equal if their mu and sigma are both equal."
 | 
						||
        return hash((self._mu, self._sigma))
 | 
						||
 | 
						||
    def __repr__(self):
 | 
						||
        return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
 |