mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 01:47:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			766 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			766 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import unittest
 | |
| import unittest.mock
 | |
| import random
 | |
| import time
 | |
| import pickle
 | |
| import warnings
 | |
| from functools import partial
 | |
| from math import log, exp, pi, fsum, sin
 | |
| from test import support
 | |
| 
 | |
| class TestBasicOps:
 | |
|     # Superclass with tests common to all generators.
 | |
|     # Subclasses must arrange for self.gen to retrieve the Random instance
 | |
|     # to be tested.
 | |
| 
 | |
|     def randomlist(self, n):
 | |
|         """Helper function to make a list of random numbers"""
 | |
|         return [self.gen.random() for i in range(n)]
 | |
| 
 | |
|     def test_autoseed(self):
 | |
|         self.gen.seed()
 | |
|         state1 = self.gen.getstate()
 | |
|         time.sleep(0.1)
 | |
|         self.gen.seed()      # diffent seeds at different times
 | |
|         state2 = self.gen.getstate()
 | |
|         self.assertNotEqual(state1, state2)
 | |
| 
 | |
|     def test_saverestore(self):
 | |
|         N = 1000
 | |
|         self.gen.seed()
 | |
|         state = self.gen.getstate()
 | |
|         randseq = self.randomlist(N)
 | |
|         self.gen.setstate(state)    # should regenerate the same sequence
 | |
|         self.assertEqual(randseq, self.randomlist(N))
 | |
| 
 | |
|     def test_seedargs(self):
 | |
|         # Seed value with a negative hash.
 | |
|         class MySeed(object):
 | |
|             def __hash__(self):
 | |
|                 return -1729
 | |
|         for arg in [None, 0, 0, 1, 1, -1, -1, 10**20, -(10**20),
 | |
|                     3.14, 1+2j, 'a', tuple('abc'), MySeed()]:
 | |
|             self.gen.seed(arg)
 | |
|         for arg in [list(range(3)), dict(one=1)]:
 | |
|             self.assertRaises(TypeError, self.gen.seed, arg)
 | |
|         self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
 | |
|         self.assertRaises(TypeError, type(self.gen), [])
 | |
| 
 | |
|     @unittest.mock.patch('random._urandom') # os.urandom
 | |
|     def test_seed_when_randomness_source_not_found(self, urandom_mock):
 | |
|         # Random.seed() uses time.time() when an operating system specific
 | |
|         # randomness source is not found. To test this on machines were it
 | |
|         # exists, run the above test, test_seedargs(), again after mocking
 | |
|         # os.urandom() so that it raises the exception expected when the
 | |
|         # randomness source is not available.
 | |
|         urandom_mock.side_effect = NotImplementedError
 | |
|         self.test_seedargs()
 | |
| 
 | |
|     def test_shuffle(self):
 | |
|         shuffle = self.gen.shuffle
 | |
|         lst = []
 | |
|         shuffle(lst)
 | |
|         self.assertEqual(lst, [])
 | |
|         lst = [37]
 | |
|         shuffle(lst)
 | |
|         self.assertEqual(lst, [37])
 | |
|         seqs = [list(range(n)) for n in range(10)]
 | |
|         shuffled_seqs = [list(range(n)) for n in range(10)]
 | |
|         for shuffled_seq in shuffled_seqs:
 | |
|             shuffle(shuffled_seq)
 | |
|         for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
 | |
|             self.assertEqual(len(seq), len(shuffled_seq))
 | |
|             self.assertEqual(set(seq), set(shuffled_seq))
 | |
|         # The above tests all would pass if the shuffle was a
 | |
|         # no-op. The following non-deterministic test covers that.  It
 | |
|         # asserts that the shuffled sequence of 1000 distinct elements
 | |
|         # must be different from the original one. Although there is
 | |
|         # mathematically a non-zero probability that this could
 | |
|         # actually happen in a genuinely random shuffle, it is
 | |
|         # completely negligible, given that the number of possible
 | |
|         # permutations of 1000 objects is 1000! (factorial of 1000),
 | |
|         # which is considerably larger than the number of atoms in the
 | |
|         # universe...
 | |
|         lst = list(range(1000))
 | |
|         shuffled_lst = list(range(1000))
 | |
|         shuffle(shuffled_lst)
 | |
|         self.assertTrue(lst != shuffled_lst)
 | |
|         shuffle(lst)
 | |
|         self.assertTrue(lst != shuffled_lst)
 | |
| 
 | |
|     def test_choice(self):
 | |
|         choice = self.gen.choice
 | |
|         with self.assertRaises(IndexError):
 | |
|             choice([])
 | |
|         self.assertEqual(choice([50]), 50)
 | |
|         self.assertIn(choice([25, 75]), [25, 75])
 | |
| 
 | |
|     def test_sample(self):
 | |
|         # For the entire allowable range of 0 <= k <= N, validate that
 | |
|         # the sample is of the correct length and contains only unique items
 | |
|         N = 100
 | |
|         population = range(N)
 | |
|         for k in range(N+1):
 | |
|             s = self.gen.sample(population, k)
 | |
|             self.assertEqual(len(s), k)
 | |
|             uniq = set(s)
 | |
|             self.assertEqual(len(uniq), k)
 | |
|             self.assertTrue(uniq <= set(population))
 | |
|         self.assertEqual(self.gen.sample([], 0), [])  # test edge case N==k==0
 | |
|         # Exception raised if size of sample exceeds that of population
 | |
|         self.assertRaises(ValueError, self.gen.sample, population, N+1)
 | |
| 
 | |
|     def test_sample_distribution(self):
 | |
|         # For the entire allowable range of 0 <= k <= N, validate that
 | |
|         # sample generates all possible permutations
 | |
|         n = 5
 | |
|         pop = range(n)
 | |
|         trials = 10000  # large num prevents false negatives without slowing normal case
 | |
|         def factorial(n):
 | |
|             if n == 0:
 | |
|                 return 1
 | |
|             return n * factorial(n - 1)
 | |
|         for k in range(n):
 | |
|             expected = factorial(n) // factorial(n-k)
 | |
|             perms = {}
 | |
|             for i in range(trials):
 | |
|                 perms[tuple(self.gen.sample(pop, k))] = None
 | |
|                 if len(perms) == expected:
 | |
|                     break
 | |
|             else:
 | |
|                 self.fail()
 | |
| 
 | |
|     def test_sample_inputs(self):
 | |
|         # SF bug #801342 -- population can be any iterable defining __len__()
 | |
|         self.gen.sample(set(range(20)), 2)
 | |
|         self.gen.sample(range(20), 2)
 | |
|         self.gen.sample(range(20), 2)
 | |
|         self.gen.sample(str('abcdefghijklmnopqrst'), 2)
 | |
|         self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
 | |
| 
 | |
|     def test_sample_on_dicts(self):
 | |
|         self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
 | |
| 
 | |
|     def test_gauss(self):
 | |
|         # Ensure that the seed() method initializes all the hidden state.  In
 | |
|         # particular, through 2.2.1 it failed to reset a piece of state used
 | |
|         # by (and only by) the .gauss() method.
 | |
| 
 | |
|         for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
 | |
|             self.gen.seed(seed)
 | |
|             x1 = self.gen.random()
 | |
|             y1 = self.gen.gauss(0, 1)
 | |
| 
 | |
|             self.gen.seed(seed)
 | |
|             x2 = self.gen.random()
 | |
|             y2 = self.gen.gauss(0, 1)
 | |
| 
 | |
|             self.assertEqual(x1, x2)
 | |
|             self.assertEqual(y1, y2)
 | |
| 
 | |
|     def test_pickling(self):
 | |
|         for proto in range(pickle.HIGHEST_PROTOCOL + 1):
 | |
|             state = pickle.dumps(self.gen, proto)
 | |
|             origseq = [self.gen.random() for i in range(10)]
 | |
|             newgen = pickle.loads(state)
 | |
|             restoredseq = [newgen.random() for i in range(10)]
 | |
|             self.assertEqual(origseq, restoredseq)
 | |
| 
 | |
|     def test_bug_1727780(self):
 | |
|         # verify that version-2-pickles can be loaded
 | |
|         # fine, whether they are created on 32-bit or 64-bit
 | |
|         # platforms, and that version-3-pickles load fine.
 | |
|         files = [("randv2_32.pck", 780),
 | |
|                  ("randv2_64.pck", 866),
 | |
|                  ("randv3.pck", 343)]
 | |
|         for file, value in files:
 | |
|             f = open(support.findfile(file),"rb")
 | |
|             r = pickle.load(f)
 | |
|             f.close()
 | |
|             self.assertEqual(int(r.random()*1000), value)
 | |
| 
 | |
|     def test_bug_9025(self):
 | |
|         # Had problem with an uneven distribution in int(n*random())
 | |
|         # Verify the fix by checking that distributions fall within expectations.
 | |
|         n = 100000
 | |
|         randrange = self.gen.randrange
 | |
|         k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n))
 | |
|         self.assertTrue(0.30 < k/n < .37, (k/n))
 | |
| 
 | |
| try:
 | |
|     random.SystemRandom().random()
 | |
| except NotImplementedError:
 | |
|     SystemRandom_available = False
 | |
| else:
 | |
|     SystemRandom_available = True
 | |
| 
 | |
| @unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available")
 | |
| class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase):
 | |
|     gen = random.SystemRandom()
 | |
| 
 | |
|     def test_autoseed(self):
 | |
|         # Doesn't need to do anything except not fail
 | |
|         self.gen.seed()
 | |
| 
 | |
|     def test_saverestore(self):
 | |
|         self.assertRaises(NotImplementedError, self.gen.getstate)
 | |
|         self.assertRaises(NotImplementedError, self.gen.setstate, None)
 | |
| 
 | |
|     def test_seedargs(self):
 | |
|         # Doesn't need to do anything except not fail
 | |
|         self.gen.seed(100)
 | |
| 
 | |
|     def test_gauss(self):
 | |
|         self.gen.gauss_next = None
 | |
|         self.gen.seed(100)
 | |
|         self.assertEqual(self.gen.gauss_next, None)
 | |
| 
 | |
|     def test_pickling(self):
 | |
|         for proto in range(pickle.HIGHEST_PROTOCOL + 1):
 | |
|             self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto)
 | |
| 
 | |
|     def test_53_bits_per_float(self):
 | |
|         # This should pass whenever a C double has 53 bit precision.
 | |
|         span = 2 ** 53
 | |
|         cum = 0
 | |
|         for i in range(100):
 | |
|             cum |= int(self.gen.random() * span)
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand(self):
 | |
|         # The randrange routine should build-up the required number of bits
 | |
|         # in stages so that all bit positions are active.
 | |
|         span = 2 ** 500
 | |
|         cum = 0
 | |
|         for i in range(100):
 | |
|             r = self.gen.randrange(span)
 | |
|             self.assertTrue(0 <= r < span)
 | |
|             cum |= r
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand_ranges(self):
 | |
|         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
 | |
|             start = self.gen.randrange(2 ** (i-2))
 | |
|             stop = self.gen.randrange(2 ** i)
 | |
|             if stop <= start:
 | |
|                 continue
 | |
|             self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
 | |
| 
 | |
|     def test_rangelimits(self):
 | |
|         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
 | |
|             self.assertEqual(set(range(start,stop)),
 | |
|                 set([self.gen.randrange(start,stop) for i in range(100)]))
 | |
| 
 | |
|     def test_randrange_nonunit_step(self):
 | |
|         rint = self.gen.randrange(0, 10, 2)
 | |
|         self.assertIn(rint, (0, 2, 4, 6, 8))
 | |
|         rint = self.gen.randrange(0, 2, 2)
 | |
|         self.assertEqual(rint, 0)
 | |
| 
 | |
|     def test_randrange_errors(self):
 | |
|         raises = partial(self.assertRaises, ValueError, self.gen.randrange)
 | |
|         # Empty range
 | |
|         raises(3, 3)
 | |
|         raises(-721)
 | |
|         raises(0, 100, -12)
 | |
|         # Non-integer start/stop
 | |
|         raises(3.14159)
 | |
|         raises(0, 2.71828)
 | |
|         # Zero and non-integer step
 | |
|         raises(0, 42, 0)
 | |
|         raises(0, 42, 3.14159)
 | |
| 
 | |
|     def test_genrandbits(self):
 | |
|         # Verify ranges
 | |
|         for k in range(1, 1000):
 | |
|             self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
 | |
| 
 | |
|         # Verify all bits active
 | |
|         getbits = self.gen.getrandbits
 | |
|         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
 | |
|             cum = 0
 | |
|             for i in range(100):
 | |
|                 cum |= getbits(span)
 | |
|             self.assertEqual(cum, 2**span-1)
 | |
| 
 | |
|         # Verify argument checking
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits)
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, 0)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, -1)
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
 | |
| 
 | |
|     def test_randbelow_logic(self, _log=log, int=int):
 | |
|         # check bitcount transition points:  2**i and 2**(i+1)-1
 | |
|         # show that: k = int(1.001 + _log(n, 2))
 | |
|         # is equal to or one greater than the number of bits in n
 | |
|         for i in range(1, 1000):
 | |
|             n = 1 << i # check an exact power of two
 | |
|             numbits = i+1
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)
 | |
|             self.assertEqual(n, 2**(k-1))
 | |
| 
 | |
|             n += n - 1      # check 1 below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertIn(k, [numbits, numbits+1])
 | |
|             self.assertTrue(2**k > n > 2**(k-2))
 | |
| 
 | |
|             n -= n >> 15     # check a little farther below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)        # note the stronger assertion
 | |
|             self.assertTrue(2**k > n > 2**(k-1))   # note the stronger assertion
 | |
| 
 | |
| 
 | |
| class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
 | |
|     gen = random.Random()
 | |
| 
 | |
|     def test_guaranteed_stable(self):
 | |
|         # These sequences are guaranteed to stay the same across versions of python
 | |
|         self.gen.seed(3456147, version=1)
 | |
|         self.assertEqual([self.gen.random().hex() for i in range(4)],
 | |
|             ['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1',
 | |
|              '0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1'])
 | |
|         self.gen.seed("the quick brown fox", version=2)
 | |
|         self.assertEqual([self.gen.random().hex() for i in range(4)],
 | |
|             ['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4',
 | |
|              '0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1'])
 | |
| 
 | |
|     def test_setstate_first_arg(self):
 | |
|         self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
 | |
| 
 | |
|     def test_setstate_middle_arg(self):
 | |
|         # Wrong type, s/b tuple
 | |
|         self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
 | |
|         # Wrong length, s/b 625
 | |
|         self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
 | |
|         # Wrong type, s/b tuple of 625 ints
 | |
|         self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
 | |
|         # Last element s/b an int also
 | |
|         self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
 | |
|         # Last element s/b between 0 and 624
 | |
|         with self.assertRaises((ValueError, OverflowError)):
 | |
|             self.gen.setstate((2, (1,)*624+(625,), None))
 | |
|         with self.assertRaises((ValueError, OverflowError)):
 | |
|             self.gen.setstate((2, (1,)*624+(-1,), None))
 | |
| 
 | |
|         # Little trick to make "tuple(x % (2**32) for x in internalstate)"
 | |
|         # raise ValueError. I cannot think of a simple way to achieve this, so
 | |
|         # I am opting for using a generator as the middle argument of setstate
 | |
|         # which attempts to cast a NaN to integer.
 | |
|         state_values = self.gen.getstate()[1]
 | |
|         state_values = list(state_values)
 | |
|         state_values[-1] = float('nan')
 | |
|         state = (int(x) for x in state_values)
 | |
|         self.assertRaises(TypeError, self.gen.setstate, (2, state, None))
 | |
| 
 | |
|     def test_referenceImplementation(self):
 | |
|         # Compare the python implementation with results from the original
 | |
|         # code.  Create 2000 53-bit precision random floats.  Compare only
 | |
|         # the last ten entries to show that the independent implementations
 | |
|         # are tracking.  Here is the main() function needed to create the
 | |
|         # list of expected random numbers:
 | |
|         #    void main(void){
 | |
|         #         int i;
 | |
|         #         unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
 | |
|         #         init_by_array(init, length);
 | |
|         #         for (i=0; i<2000; i++) {
 | |
|         #           printf("%.15f ", genrand_res53());
 | |
|         #           if (i%5==4) printf("\n");
 | |
|         #         }
 | |
|         #     }
 | |
|         expected = [0.45839803073713259,
 | |
|                     0.86057815201978782,
 | |
|                     0.92848331726782152,
 | |
|                     0.35932681119782461,
 | |
|                     0.081823493762449573,
 | |
|                     0.14332226470169329,
 | |
|                     0.084297823823520024,
 | |
|                     0.53814864671831453,
 | |
|                     0.089215024911993401,
 | |
|                     0.78486196105372907]
 | |
| 
 | |
|         self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
 | |
|         actual = self.randomlist(2000)[-10:]
 | |
|         for a, e in zip(actual, expected):
 | |
|             self.assertAlmostEqual(a,e,places=14)
 | |
| 
 | |
|     def test_strong_reference_implementation(self):
 | |
|         # Like test_referenceImplementation, but checks for exact bit-level
 | |
|         # equality.  This should pass on any box where C double contains
 | |
|         # at least 53 bits of precision (the underlying algorithm suffers
 | |
|         # no rounding errors -- all results are exact).
 | |
|         from math import ldexp
 | |
| 
 | |
|         expected = [0x0eab3258d2231f,
 | |
|                     0x1b89db315277a5,
 | |
|                     0x1db622a5518016,
 | |
|                     0x0b7f9af0d575bf,
 | |
|                     0x029e4c4db82240,
 | |
|                     0x04961892f5d673,
 | |
|                     0x02b291598e4589,
 | |
|                     0x11388382c15694,
 | |
|                     0x02dad977c9e1fe,
 | |
|                     0x191d96d4d334c6]
 | |
|         self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
 | |
|         actual = self.randomlist(2000)[-10:]
 | |
|         for a, e in zip(actual, expected):
 | |
|             self.assertEqual(int(ldexp(a, 53)), e)
 | |
| 
 | |
|     def test_long_seed(self):
 | |
|         # This is most interesting to run in debug mode, just to make sure
 | |
|         # nothing blows up.  Under the covers, a dynamically resized array
 | |
|         # is allocated, consuming space proportional to the number of bits
 | |
|         # in the seed.  Unfortunately, that's a quadratic-time algorithm,
 | |
|         # so don't make this horribly big.
 | |
|         seed = (1 << (10000 * 8)) - 1  # about 10K bytes
 | |
|         self.gen.seed(seed)
 | |
| 
 | |
|     def test_53_bits_per_float(self):
 | |
|         # This should pass whenever a C double has 53 bit precision.
 | |
|         span = 2 ** 53
 | |
|         cum = 0
 | |
|         for i in range(100):
 | |
|             cum |= int(self.gen.random() * span)
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand(self):
 | |
|         # The randrange routine should build-up the required number of bits
 | |
|         # in stages so that all bit positions are active.
 | |
|         span = 2 ** 500
 | |
|         cum = 0
 | |
|         for i in range(100):
 | |
|             r = self.gen.randrange(span)
 | |
|             self.assertTrue(0 <= r < span)
 | |
|             cum |= r
 | |
|         self.assertEqual(cum, span-1)
 | |
| 
 | |
|     def test_bigrand_ranges(self):
 | |
|         for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
 | |
|             start = self.gen.randrange(2 ** (i-2))
 | |
|             stop = self.gen.randrange(2 ** i)
 | |
|             if stop <= start:
 | |
|                 continue
 | |
|             self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
 | |
| 
 | |
|     def test_rangelimits(self):
 | |
|         for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
 | |
|             self.assertEqual(set(range(start,stop)),
 | |
|                 set([self.gen.randrange(start,stop) for i in range(100)]))
 | |
| 
 | |
|     def test_genrandbits(self):
 | |
|         # Verify cross-platform repeatability
 | |
|         self.gen.seed(1234567)
 | |
|         self.assertEqual(self.gen.getrandbits(100),
 | |
|                          97904845777343510404718956115)
 | |
|         # Verify ranges
 | |
|         for k in range(1, 1000):
 | |
|             self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
 | |
| 
 | |
|         # Verify all bits active
 | |
|         getbits = self.gen.getrandbits
 | |
|         for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
 | |
|             cum = 0
 | |
|             for i in range(100):
 | |
|                 cum |= getbits(span)
 | |
|             self.assertEqual(cum, 2**span-1)
 | |
| 
 | |
|         # Verify argument checking
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits)
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 'a')
 | |
|         self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, 0)
 | |
|         self.assertRaises(ValueError, self.gen.getrandbits, -1)
 | |
| 
 | |
|     def test_randbelow_logic(self, _log=log, int=int):
 | |
|         # check bitcount transition points:  2**i and 2**(i+1)-1
 | |
|         # show that: k = int(1.001 + _log(n, 2))
 | |
|         # is equal to or one greater than the number of bits in n
 | |
|         for i in range(1, 1000):
 | |
|             n = 1 << i # check an exact power of two
 | |
|             numbits = i+1
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)
 | |
|             self.assertEqual(n, 2**(k-1))
 | |
| 
 | |
|             n += n - 1      # check 1 below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertIn(k, [numbits, numbits+1])
 | |
|             self.assertTrue(2**k > n > 2**(k-2))
 | |
| 
 | |
|             n -= n >> 15     # check a little farther below the next power of two
 | |
|             k = int(1.00001 + _log(n, 2))
 | |
|             self.assertEqual(k, numbits)        # note the stronger assertion
 | |
|             self.assertTrue(2**k > n > 2**(k-1))   # note the stronger assertion
 | |
| 
 | |
|     @unittest.mock.patch('random.Random.random')
 | |
|     def test_randbelow_overriden_random(self, random_mock):
 | |
|         # Random._randbelow() can only use random() when the built-in one
 | |
|         # has been overridden but no new getrandbits() method was supplied.
 | |
|         random_mock.side_effect = random.SystemRandom().random
 | |
|         maxsize = 1<<random.BPF
 | |
|         with warnings.catch_warnings():
 | |
|             warnings.simplefilter("ignore", UserWarning)
 | |
|             # Population range too large (n >= maxsize)
 | |
|             self.gen._randbelow(maxsize+1, maxsize = maxsize)
 | |
|         self.gen._randbelow(5640, maxsize = maxsize)
 | |
| 
 | |
|         # This might be going too far to test a single line, but because of our
 | |
|         # noble aim of achieving 100% test coverage we need to write a case in
 | |
|         # which the following line in Random._randbelow() gets executed:
 | |
|         #
 | |
|         # rem = maxsize % n
 | |
|         # limit = (maxsize - rem) / maxsize
 | |
|         # r = random()
 | |
|         # while r >= limit:
 | |
|         #     r = random() # <== *This line* <==<
 | |
|         #
 | |
|         # Therefore, to guarantee that the while loop is executed at least
 | |
|         # once, we need to mock random() so that it returns a number greater
 | |
|         # than 'limit' the first time it gets called.
 | |
| 
 | |
|         n = 42
 | |
|         epsilon = 0.01
 | |
|         limit = (maxsize - (maxsize % n)) / maxsize
 | |
|         random_mock.side_effect = [limit + epsilon, limit - epsilon]
 | |
|         self.gen._randbelow(n, maxsize = maxsize)
 | |
| 
 | |
|     def test_randrange_bug_1590891(self):
 | |
|         start = 1000000000000
 | |
|         stop = -100000000000000000000
 | |
|         step = -200
 | |
|         x = self.gen.randrange(start, stop, step)
 | |
|         self.assertTrue(stop < x <= start)
 | |
|         self.assertEqual((x+stop)%step, 0)
 | |
| 
 | |
| def gamma(z, sqrt2pi=(2.0*pi)**0.5):
 | |
|     # Reflection to right half of complex plane
 | |
|     if z < 0.5:
 | |
|         return pi / sin(pi*z) / gamma(1.0-z)
 | |
|     # Lanczos approximation with g=7
 | |
|     az = z + (7.0 - 0.5)
 | |
|     return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
 | |
|         0.9999999999995183,
 | |
|         676.5203681218835 / z,
 | |
|         -1259.139216722289 / (z+1.0),
 | |
|         771.3234287757674 / (z+2.0),
 | |
|         -176.6150291498386 / (z+3.0),
 | |
|         12.50734324009056 / (z+4.0),
 | |
|         -0.1385710331296526 / (z+5.0),
 | |
|         0.9934937113930748e-05 / (z+6.0),
 | |
|         0.1659470187408462e-06 / (z+7.0),
 | |
|     ])
 | |
| 
 | |
| class TestDistributions(unittest.TestCase):
 | |
|     def test_zeroinputs(self):
 | |
|         # Verify that distributions can handle a series of zero inputs'
 | |
|         g = random.Random()
 | |
|         x = [g.random() for i in range(50)] + [0.0]*5
 | |
|         g.random = x[:].pop; g.uniform(1,10)
 | |
|         g.random = x[:].pop; g.paretovariate(1.0)
 | |
|         g.random = x[:].pop; g.expovariate(1.0)
 | |
|         g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
 | |
|         g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
 | |
|         g.random = x[:].pop; g.normalvariate(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.gauss(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
 | |
|         g.random = x[:].pop; g.gammavariate(0.01, 1.0)
 | |
|         g.random = x[:].pop; g.gammavariate(1.0, 1.0)
 | |
|         g.random = x[:].pop; g.gammavariate(200.0, 1.0)
 | |
|         g.random = x[:].pop; g.betavariate(3.0, 3.0)
 | |
|         g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
 | |
| 
 | |
|     def test_avg_std(self):
 | |
|         # Use integration to test distribution average and standard deviation.
 | |
|         # Only works for distributions which do not consume variates in pairs
 | |
|         g = random.Random()
 | |
|         N = 5000
 | |
|         x = [i/float(N) for i in range(1,N)]
 | |
|         for variate, args, mu, sigmasqrd in [
 | |
|                 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
 | |
|                 (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
 | |
|                 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
 | |
|                 (g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
 | |
|                 (g.paretovariate, (5.0,), 5.0/(5.0-1),
 | |
|                                   5.0/((5.0-1)**2*(5.0-2))),
 | |
|                 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
 | |
|                                   gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
 | |
|             g.random = x[:].pop
 | |
|             y = []
 | |
|             for i in range(len(x)):
 | |
|                 try:
 | |
|                     y.append(variate(*args))
 | |
|                 except IndexError:
 | |
|                     pass
 | |
|             s1 = s2 = 0
 | |
|             for e in y:
 | |
|                 s1 += e
 | |
|                 s2 += (e - mu) ** 2
 | |
|             N = len(y)
 | |
|             self.assertAlmostEqual(s1/N, mu, places=2,
 | |
|                                    msg='%s%r' % (variate.__name__, args))
 | |
|             self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
 | |
|                                    msg='%s%r' % (variate.__name__, args))
 | |
| 
 | |
|     def test_constant(self):
 | |
|         g = random.Random()
 | |
|         N = 100
 | |
|         for variate, args, expected in [
 | |
|                 (g.uniform, (10.0, 10.0), 10.0),
 | |
|                 (g.triangular, (10.0, 10.0), 10.0),
 | |
|                 (g.triangular, (10.0, 10.0, 10.0), 10.0),
 | |
|                 (g.expovariate, (float('inf'),), 0.0),
 | |
|                 (g.vonmisesvariate, (3.0, float('inf')), 3.0),
 | |
|                 (g.gauss, (10.0, 0.0), 10.0),
 | |
|                 (g.lognormvariate, (0.0, 0.0), 1.0),
 | |
|                 (g.lognormvariate, (-float('inf'), 0.0), 0.0),
 | |
|                 (g.normalvariate, (10.0, 0.0), 10.0),
 | |
|                 (g.paretovariate, (float('inf'),), 1.0),
 | |
|                 (g.weibullvariate, (10.0, float('inf')), 10.0),
 | |
|                 (g.weibullvariate, (0.0, 10.0), 0.0),
 | |
|             ]:
 | |
|             for i in range(N):
 | |
|                 self.assertEqual(variate(*args), expected)
 | |
| 
 | |
|     def test_von_mises_range(self):
 | |
|         # Issue 17149: von mises variates were not consistently in the
 | |
|         # range [0, 2*PI].
 | |
|         g = random.Random()
 | |
|         N = 100
 | |
|         for mu in 0.0, 0.1, 3.1, 6.2:
 | |
|             for kappa in 0.0, 2.3, 500.0:
 | |
|                 for _ in range(N):
 | |
|                     sample = g.vonmisesvariate(mu, kappa)
 | |
|                     self.assertTrue(
 | |
|                         0 <= sample <= random.TWOPI,
 | |
|                         msg=("vonmisesvariate({}, {}) produced a result {} out"
 | |
|                              " of range [0, 2*pi]").format(mu, kappa, sample))
 | |
| 
 | |
|     def test_von_mises_large_kappa(self):
 | |
|         # Issue #17141: vonmisesvariate() was hang for large kappas
 | |
|         random.vonmisesvariate(0, 1e15)
 | |
|         random.vonmisesvariate(0, 1e100)
 | |
| 
 | |
|     def test_gammavariate_errors(self):
 | |
|         # Both alpha and beta must be > 0.0
 | |
|         self.assertRaises(ValueError, random.gammavariate, -1, 3)
 | |
|         self.assertRaises(ValueError, random.gammavariate, 0, 2)
 | |
|         self.assertRaises(ValueError, random.gammavariate, 2, 0)
 | |
|         self.assertRaises(ValueError, random.gammavariate, 1, -3)
 | |
| 
 | |
|     @unittest.mock.patch('random.Random.random')
 | |
|     def test_gammavariate_full_code_coverage(self, random_mock):
 | |
|         # There are three different possibilities in the current implementation
 | |
|         # of random.gammavariate(), depending on the value of 'alpha'. What we
 | |
|         # are going to do here is to fix the values returned by random() to
 | |
|         # generate test cases that provide 100% line coverage of the method.
 | |
| 
 | |
|         # #1: alpha > 1.0: we want the first random number to be outside the
 | |
|         # [1e-7, .9999999] range, so that the continue statement executes
 | |
|         # once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
 | |
|         random_mock.side_effect = [1e-8, 0.5, 0.3]
 | |
|         returned_value = random.gammavariate(1.1, 2.3)
 | |
|         self.assertAlmostEqual(returned_value, 2.53)
 | |
| 
 | |
|         # #2: alpha == 1: first random number less than 1e-7 to that the body
 | |
|         # of the while loop executes once. Then random.random() returns 0.45,
 | |
|         # which causes while to stop looping and the algorithm to terminate.
 | |
|         random_mock.side_effect = [1e-8, 0.45]
 | |
|         returned_value = random.gammavariate(1.0, 3.14)
 | |
|         self.assertAlmostEqual(returned_value, 2.507314166123803)
 | |
| 
 | |
|         # #3: 0 < alpha < 1. This is the most complex region of code to cover,
 | |
|         # as there are multiple if-else statements. Let's take a look at the
 | |
|         # source code, and determine the values that we need accordingly:
 | |
|         #
 | |
|         # while 1:
 | |
|         #     u = random()
 | |
|         #     b = (_e + alpha)/_e
 | |
|         #     p = b*u
 | |
|         #     if p <= 1.0: # <=== (A)
 | |
|         #         x = p ** (1.0/alpha)
 | |
|         #     else: # <=== (B)
 | |
|         #         x = -_log((b-p)/alpha)
 | |
|         #     u1 = random()
 | |
|         #     if p > 1.0: # <=== (C)
 | |
|         #         if u1 <= x ** (alpha - 1.0): # <=== (D)
 | |
|         #             break
 | |
|         #     elif u1 <= _exp(-x): # <=== (E)
 | |
|         #         break
 | |
|         # return x * beta
 | |
|         #
 | |
|         # First, we want (A) to be True. For that we need that:
 | |
|         # b*random() <= 1.0
 | |
|         # r1 = random() <= 1.0 / b
 | |
|         #
 | |
|         # We now get to the second if-else branch, and here, since p <= 1.0,
 | |
|         # (C) is False and we take the elif branch, (E). For it to be True,
 | |
|         # so that the break is executed, we need that:
 | |
|         # r2 = random() <= _exp(-x)
 | |
|         # r2 <= _exp(-(p ** (1.0/alpha)))
 | |
|         # r2 <= _exp(-((b*r1) ** (1.0/alpha)))
 | |
| 
 | |
|         _e = random._e
 | |
|         _exp = random._exp
 | |
|         _log = random._log
 | |
|         alpha = 0.35
 | |
|         beta = 1.45
 | |
|         b = (_e + alpha)/_e
 | |
|         epsilon = 0.01
 | |
| 
 | |
|         r1 = 0.8859296441566 # 1.0 / b
 | |
|         r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))
 | |
| 
 | |
|         # These four "random" values result in the following trace:
 | |
|         # (A) True, (E) False --> [next iteration of while]
 | |
|         # (A) True, (E) True --> [while loop breaks]
 | |
|         random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
 | |
|         returned_value = random.gammavariate(alpha, beta)
 | |
|         self.assertAlmostEqual(returned_value, 1.4499999999997544)
 | |
| 
 | |
|         # Let's now make (A) be False. If this is the case, when we get to the
 | |
|         # second if-else 'p' is greater than 1, so (C) evaluates to True. We
 | |
|         # now encounter a second if statement, (D), which in order to execute
 | |
|         # must satisfy the following condition:
 | |
|         # r2 <= x ** (alpha - 1.0)
 | |
|         # r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
 | |
|         # r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
 | |
|         r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
 | |
|         r2 = 0.9445400408898141
 | |
| 
 | |
|         # And these four values result in the following trace:
 | |
|         # (B) and (C) True, (D) False --> [next iteration of while]
 | |
|         # (B) and (C) True, (D) True [while loop breaks]
 | |
|         random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
 | |
|         returned_value = random.gammavariate(alpha, beta)
 | |
|         self.assertAlmostEqual(returned_value, 1.5830349561760781)
 | |
| 
 | |
|     @unittest.mock.patch('random.Random.gammavariate')
 | |
|     def test_betavariate_return_zero(self, gammavariate_mock):
 | |
|         # betavariate() returns zero when the Gamma distribution
 | |
|         # that it uses internally returns this same value.
 | |
|         gammavariate_mock.return_value = 0.0
 | |
|         self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))
 | |
| 
 | |
| class TestModule(unittest.TestCase):
 | |
|     def testMagicConstants(self):
 | |
|         self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
 | |
|         self.assertAlmostEqual(random.TWOPI, 6.28318530718)
 | |
|         self.assertAlmostEqual(random.LOG4, 1.38629436111989)
 | |
|         self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
 | |
| 
 | |
|     def test__all__(self):
 | |
|         # tests validity but not completeness of the __all__ list
 | |
|         self.assertTrue(set(random.__all__) <= set(dir(random)))
 | |
| 
 | |
|     def test_random_subclass_with_kwargs(self):
 | |
|         # SF bug #1486663 -- this used to erroneously raise a TypeError
 | |
|         class Subclass(random.Random):
 | |
|             def __init__(self, newarg=None):
 | |
|                 random.Random.__init__(self)
 | |
|         Subclass(newarg=1)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 | 
