mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 10:26:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			721 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			721 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Drop in replacement for heapq.py
 | |
| 
 | |
| C implementation derived directly from heapq.py in Py2.3
 | |
| which was written by Kevin O'Connor, augmented by Tim Peters,
 | |
| annotated by François Pinard, and converted to C by Raymond Hettinger.
 | |
| 
 | |
| */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| static int
 | |
| _siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
 | |
| {
 | |
|     PyObject *newitem, *parent, *olditem;
 | |
|     int cmp;
 | |
|     Py_ssize_t parentpos;
 | |
|     Py_ssize_t size;
 | |
| 
 | |
|     assert(PyList_Check(heap));
 | |
|     size = PyList_GET_SIZE(heap);
 | |
|     if (pos >= size) {
 | |
|         PyErr_SetString(PyExc_IndexError, "index out of range");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     newitem = PyList_GET_ITEM(heap, pos);
 | |
|     Py_INCREF(newitem);
 | |
|     /* Follow the path to the root, moving parents down until finding
 | |
|        a place newitem fits. */
 | |
|     while (pos > startpos){
 | |
|         parentpos = (pos - 1) >> 1;
 | |
|         parent = PyList_GET_ITEM(heap, parentpos);
 | |
|         cmp = PyObject_RichCompareBool(newitem, parent, Py_LT);
 | |
|         if (cmp == -1) {
 | |
|             Py_DECREF(newitem);
 | |
|             return -1;
 | |
|         }
 | |
|         if (size != PyList_GET_SIZE(heap)) {
 | |
|             Py_DECREF(newitem);
 | |
|             PyErr_SetString(PyExc_RuntimeError,
 | |
|                             "list changed size during iteration");
 | |
|             return -1;
 | |
|         }
 | |
|         if (cmp == 0)
 | |
|             break;
 | |
|         Py_INCREF(parent);
 | |
|         olditem = PyList_GET_ITEM(heap, pos);
 | |
|         PyList_SET_ITEM(heap, pos, parent);
 | |
|         Py_DECREF(olditem);
 | |
|         pos = parentpos;
 | |
|         if (size != PyList_GET_SIZE(heap)) {
 | |
|             PyErr_SetString(PyExc_RuntimeError,
 | |
|                             "list changed size during iteration");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     Py_DECREF(PyList_GET_ITEM(heap, pos));
 | |
|     PyList_SET_ITEM(heap, pos, newitem);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _siftup(PyListObject *heap, Py_ssize_t pos)
 | |
| {
 | |
|     Py_ssize_t startpos, endpos, childpos, rightpos;
 | |
|     int cmp;
 | |
|     PyObject *newitem, *tmp, *olditem;
 | |
|     Py_ssize_t size;
 | |
| 
 | |
|     assert(PyList_Check(heap));
 | |
|     size = PyList_GET_SIZE(heap);
 | |
|     endpos = size;
 | |
|     startpos = pos;
 | |
|     if (pos >= endpos) {
 | |
|         PyErr_SetString(PyExc_IndexError, "index out of range");
 | |
|         return -1;
 | |
|     }
 | |
|     newitem = PyList_GET_ITEM(heap, pos);
 | |
|     Py_INCREF(newitem);
 | |
| 
 | |
|     /* Bubble up the smaller child until hitting a leaf. */
 | |
|     childpos = 2*pos + 1;    /* leftmost child position  */
 | |
|     while (childpos < endpos) {
 | |
|         /* Set childpos to index of smaller child.   */
 | |
|         rightpos = childpos + 1;
 | |
|         if (rightpos < endpos) {
 | |
|             cmp = PyObject_RichCompareBool(
 | |
|                 PyList_GET_ITEM(heap, childpos),
 | |
|                 PyList_GET_ITEM(heap, rightpos),
 | |
|                 Py_LT);
 | |
|             if (cmp == -1) {
 | |
|                 Py_DECREF(newitem);
 | |
|                 return -1;
 | |
|             }
 | |
|             if (cmp == 0)
 | |
|                 childpos = rightpos;
 | |
|         }
 | |
|         if (size != PyList_GET_SIZE(heap)) {
 | |
|             Py_DECREF(newitem);
 | |
|             PyErr_SetString(PyExc_RuntimeError,
 | |
|                             "list changed size during iteration");
 | |
|             return -1;
 | |
|         }
 | |
|         /* Move the smaller child up. */
 | |
|         tmp = PyList_GET_ITEM(heap, childpos);
 | |
|         Py_INCREF(tmp);
 | |
|         olditem = PyList_GET_ITEM(heap, pos);
 | |
|         PyList_SET_ITEM(heap, pos, tmp);
 | |
|         Py_DECREF(olditem);
 | |
|         pos = childpos;
 | |
|         childpos = 2*pos + 1;
 | |
|         if (size != PyList_GET_SIZE(heap)) {
 | |
|             PyErr_SetString(PyExc_RuntimeError,
 | |
|                             "list changed size during iteration");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* The leaf at pos is empty now.  Put newitem there, and bubble
 | |
|        it up to its final resting place (by sifting its parents down). */
 | |
|     Py_DECREF(PyList_GET_ITEM(heap, pos));
 | |
|     PyList_SET_ITEM(heap, pos, newitem);
 | |
|     return _siftdown(heap, startpos, pos);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| heappush(PyObject *self, PyObject *args)
 | |
| {
 | |
|     PyObject *heap, *item;
 | |
| 
 | |
|     if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item))
 | |
|         return NULL;
 | |
| 
 | |
|     if (!PyList_Check(heap)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (PyList_Append(heap, item) == -1)
 | |
|         return NULL;
 | |
| 
 | |
|     if (_siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1) == -1)
 | |
|         return NULL;
 | |
|     Py_INCREF(Py_None);
 | |
|     return Py_None;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(heappush_doc,
 | |
| "heappush(heap, item) -> None. Push item onto heap, maintaining the heap invariant.");
 | |
| 
 | |
| static PyObject *
 | |
| heappop(PyObject *self, PyObject *heap)
 | |
| {
 | |
|     PyObject *lastelt, *returnitem;
 | |
|     Py_ssize_t n;
 | |
| 
 | |
|     if (!PyList_Check(heap)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* # raises appropriate IndexError if heap is empty */
 | |
|     n = PyList_GET_SIZE(heap);
 | |
|     if (n == 0) {
 | |
|         PyErr_SetString(PyExc_IndexError, "index out of range");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     lastelt = PyList_GET_ITEM(heap, n-1) ;
 | |
|     Py_INCREF(lastelt);
 | |
|     if (PyList_SetSlice(heap, n-1, n, NULL) < 0) {
 | |
|         Py_DECREF(lastelt);
 | |
|         return NULL;
 | |
|     }
 | |
|     n--;
 | |
| 
 | |
|     if (!n)
 | |
|         return lastelt;
 | |
|     returnitem = PyList_GET_ITEM(heap, 0);
 | |
|     PyList_SET_ITEM(heap, 0, lastelt);
 | |
|     if (_siftup((PyListObject *)heap, 0) == -1) {
 | |
|         Py_DECREF(returnitem);
 | |
|         return NULL;
 | |
|     }
 | |
|     return returnitem;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(heappop_doc,
 | |
| "Pop the smallest item off the heap, maintaining the heap invariant.");
 | |
| 
 | |
| static PyObject *
 | |
| heapreplace(PyObject *self, PyObject *args)
 | |
| {
 | |
|     PyObject *heap, *item, *returnitem;
 | |
| 
 | |
|     if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item))
 | |
|         return NULL;
 | |
| 
 | |
|     if (!PyList_Check(heap)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (PyList_GET_SIZE(heap) < 1) {
 | |
|         PyErr_SetString(PyExc_IndexError, "index out of range");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     returnitem = PyList_GET_ITEM(heap, 0);
 | |
|     Py_INCREF(item);
 | |
|     PyList_SET_ITEM(heap, 0, item);
 | |
|     if (_siftup((PyListObject *)heap, 0) == -1) {
 | |
|         Py_DECREF(returnitem);
 | |
|         return NULL;
 | |
|     }
 | |
|     return returnitem;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(heapreplace_doc,
 | |
| "heapreplace(heap, item) -> value. Pop and return the current smallest value, and add the new item.\n\
 | |
| \n\
 | |
| This is more efficient than heappop() followed by heappush(), and can be\n\
 | |
| more appropriate when using a fixed-size heap.  Note that the value\n\
 | |
| returned may be larger than item!  That constrains reasonable uses of\n\
 | |
| this routine unless written as part of a conditional replacement:\n\n\
 | |
|     if item > heap[0]:\n\
 | |
|         item = heapreplace(heap, item)\n");
 | |
| 
 | |
| static PyObject *
 | |
| heappushpop(PyObject *self, PyObject *args)
 | |
| {
 | |
|     PyObject *heap, *item, *returnitem;
 | |
|     int cmp;
 | |
| 
 | |
|     if (!PyArg_UnpackTuple(args, "heappushpop", 2, 2, &heap, &item))
 | |
|         return NULL;
 | |
| 
 | |
|     if (!PyList_Check(heap)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (PyList_GET_SIZE(heap) < 1) {
 | |
|         Py_INCREF(item);
 | |
|         return item;
 | |
|     }
 | |
| 
 | |
|     cmp = PyObject_RichCompareBool(PyList_GET_ITEM(heap, 0), item, Py_LT);
 | |
|     if (cmp == -1)
 | |
|         return NULL;
 | |
|     if (cmp == 0) {
 | |
|         Py_INCREF(item);
 | |
|         return item;
 | |
|     }
 | |
| 
 | |
|     returnitem = PyList_GET_ITEM(heap, 0);
 | |
|     Py_INCREF(item);
 | |
|     PyList_SET_ITEM(heap, 0, item);
 | |
|     if (_siftup((PyListObject *)heap, 0) == -1) {
 | |
|         Py_DECREF(returnitem);
 | |
|         return NULL;
 | |
|     }
 | |
|     return returnitem;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(heappushpop_doc,
 | |
| "heappushpop(heap, item) -> value. Push item on the heap, then pop and return the smallest item\n\
 | |
| from the heap. The combined action runs more efficiently than\n\
 | |
| heappush() followed by a separate call to heappop().");
 | |
| 
 | |
| static PyObject *
 | |
| heapify(PyObject *self, PyObject *heap)
 | |
| {
 | |
|     Py_ssize_t i, n;
 | |
| 
 | |
|     if (!PyList_Check(heap)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     n = PyList_GET_SIZE(heap);
 | |
|     /* Transform bottom-up.  The largest index there's any point to
 | |
|        looking at is the largest with a child index in-range, so must
 | |
|        have 2*i + 1 < n, or i < (n-1)/2.  If n is even = 2*j, this is
 | |
|        (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1.  If
 | |
|        n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
 | |
|        and that's again n//2-1.
 | |
|     */
 | |
|     for (i=n/2-1 ; i>=0 ; i--)
 | |
|         if(_siftup((PyListObject *)heap, i) == -1)
 | |
|             return NULL;
 | |
|     Py_INCREF(Py_None);
 | |
|     return Py_None;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(heapify_doc,
 | |
| "Transform list into a heap, in-place, in O(len(heap)) time.");
 | |
| 
 | |
| static PyObject *
 | |
| nlargest(PyObject *self, PyObject *args)
 | |
| {
 | |
|     PyObject *heap=NULL, *elem, *iterable, *sol, *it, *oldelem;
 | |
|     Py_ssize_t i, n;
 | |
|     int cmp;
 | |
| 
 | |
|     if (!PyArg_ParseTuple(args, "nO:nlargest", &n, &iterable))
 | |
|         return NULL;
 | |
| 
 | |
|     it = PyObject_GetIter(iterable);
 | |
|     if (it == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     heap = PyList_New(0);
 | |
|     if (heap == NULL)
 | |
|         goto fail;
 | |
| 
 | |
|     for (i=0 ; i<n ; i++ ){
 | |
|         elem = PyIter_Next(it);
 | |
|         if (elem == NULL) {
 | |
|             if (PyErr_Occurred())
 | |
|                 goto fail;
 | |
|             else
 | |
|                 goto sortit;
 | |
|         }
 | |
|         if (PyList_Append(heap, elem) == -1) {
 | |
|             Py_DECREF(elem);
 | |
|             goto fail;
 | |
|         }
 | |
|         Py_DECREF(elem);
 | |
|     }
 | |
|     if (PyList_GET_SIZE(heap) == 0)
 | |
|         goto sortit;
 | |
| 
 | |
|     for (i=n/2-1 ; i>=0 ; i--)
 | |
|         if(_siftup((PyListObject *)heap, i) == -1)
 | |
|             goto fail;
 | |
| 
 | |
|     sol = PyList_GET_ITEM(heap, 0);
 | |
|     while (1) {
 | |
|         elem = PyIter_Next(it);
 | |
|         if (elem == NULL) {
 | |
|             if (PyErr_Occurred())
 | |
|                 goto fail;
 | |
|             else
 | |
|                 goto sortit;
 | |
|         }
 | |
|         cmp = PyObject_RichCompareBool(sol, elem, Py_LT);
 | |
|         if (cmp == -1) {
 | |
|             Py_DECREF(elem);
 | |
|             goto fail;
 | |
|         }
 | |
|         if (cmp == 0) {
 | |
|             Py_DECREF(elem);
 | |
|             continue;
 | |
|         }
 | |
|         oldelem = PyList_GET_ITEM(heap, 0);
 | |
|         PyList_SET_ITEM(heap, 0, elem);
 | |
|         Py_DECREF(oldelem);
 | |
|         if (_siftup((PyListObject *)heap, 0) == -1)
 | |
|             goto fail;
 | |
|         sol = PyList_GET_ITEM(heap, 0);
 | |
|     }
 | |
| sortit:
 | |
|     if (PyList_Sort(heap) == -1)
 | |
|         goto fail;
 | |
|     if (PyList_Reverse(heap) == -1)
 | |
|         goto fail;
 | |
|     Py_DECREF(it);
 | |
|     return heap;
 | |
| 
 | |
| fail:
 | |
|     Py_DECREF(it);
 | |
|     Py_XDECREF(heap);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(nlargest_doc,
 | |
| "Find the n largest elements in a dataset.\n\
 | |
| \n\
 | |
| Equivalent to:  sorted(iterable, reverse=True)[:n]\n");
 | |
| 
 | |
| static int
 | |
| _siftdownmax(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
 | |
| {
 | |
|     PyObject *newitem, *parent;
 | |
|     int cmp;
 | |
|     Py_ssize_t parentpos;
 | |
| 
 | |
|     assert(PyList_Check(heap));
 | |
|     if (pos >= PyList_GET_SIZE(heap)) {
 | |
|         PyErr_SetString(PyExc_IndexError, "index out of range");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     newitem = PyList_GET_ITEM(heap, pos);
 | |
|     Py_INCREF(newitem);
 | |
|     /* Follow the path to the root, moving parents down until finding
 | |
|        a place newitem fits. */
 | |
|     while (pos > startpos){
 | |
|         parentpos = (pos - 1) >> 1;
 | |
|         parent = PyList_GET_ITEM(heap, parentpos);
 | |
|         cmp = PyObject_RichCompareBool(parent, newitem, Py_LT);
 | |
|         if (cmp == -1) {
 | |
|             Py_DECREF(newitem);
 | |
|             return -1;
 | |
|         }
 | |
|         if (cmp == 0)
 | |
|             break;
 | |
|         Py_INCREF(parent);
 | |
|         Py_DECREF(PyList_GET_ITEM(heap, pos));
 | |
|         PyList_SET_ITEM(heap, pos, parent);
 | |
|         pos = parentpos;
 | |
|     }
 | |
|     Py_DECREF(PyList_GET_ITEM(heap, pos));
 | |
|     PyList_SET_ITEM(heap, pos, newitem);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| _siftupmax(PyListObject *heap, Py_ssize_t pos)
 | |
| {
 | |
|     Py_ssize_t startpos, endpos, childpos, rightpos;
 | |
|     int cmp;
 | |
|     PyObject *newitem, *tmp;
 | |
| 
 | |
|     assert(PyList_Check(heap));
 | |
|     endpos = PyList_GET_SIZE(heap);
 | |
|     startpos = pos;
 | |
|     if (pos >= endpos) {
 | |
|         PyErr_SetString(PyExc_IndexError, "index out of range");
 | |
|         return -1;
 | |
|     }
 | |
|     newitem = PyList_GET_ITEM(heap, pos);
 | |
|     Py_INCREF(newitem);
 | |
| 
 | |
|     /* Bubble up the smaller child until hitting a leaf. */
 | |
|     childpos = 2*pos + 1;    /* leftmost child position  */
 | |
|     while (childpos < endpos) {
 | |
|         /* Set childpos to index of smaller child.   */
 | |
|         rightpos = childpos + 1;
 | |
|         if (rightpos < endpos) {
 | |
|             cmp = PyObject_RichCompareBool(
 | |
|                 PyList_GET_ITEM(heap, rightpos),
 | |
|                 PyList_GET_ITEM(heap, childpos),
 | |
|                 Py_LT);
 | |
|             if (cmp == -1) {
 | |
|                 Py_DECREF(newitem);
 | |
|                 return -1;
 | |
|             }
 | |
|             if (cmp == 0)
 | |
|                 childpos = rightpos;
 | |
|         }
 | |
|         /* Move the smaller child up. */
 | |
|         tmp = PyList_GET_ITEM(heap, childpos);
 | |
|         Py_INCREF(tmp);
 | |
|         Py_DECREF(PyList_GET_ITEM(heap, pos));
 | |
|         PyList_SET_ITEM(heap, pos, tmp);
 | |
|         pos = childpos;
 | |
|         childpos = 2*pos + 1;
 | |
|     }
 | |
| 
 | |
|     /* The leaf at pos is empty now.  Put newitem there, and bubble
 | |
|        it up to its final resting place (by sifting its parents down). */
 | |
|     Py_DECREF(PyList_GET_ITEM(heap, pos));
 | |
|     PyList_SET_ITEM(heap, pos, newitem);
 | |
|     return _siftdownmax(heap, startpos, pos);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| nsmallest(PyObject *self, PyObject *args)
 | |
| {
 | |
|     PyObject *heap=NULL, *elem, *iterable, *los, *it, *oldelem;
 | |
|     Py_ssize_t i, n;
 | |
|     int cmp;
 | |
| 
 | |
|     if (!PyArg_ParseTuple(args, "nO:nsmallest", &n, &iterable))
 | |
|         return NULL;
 | |
| 
 | |
|     it = PyObject_GetIter(iterable);
 | |
|     if (it == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     heap = PyList_New(0);
 | |
|     if (heap == NULL)
 | |
|         goto fail;
 | |
| 
 | |
|     for (i=0 ; i<n ; i++ ){
 | |
|         elem = PyIter_Next(it);
 | |
|         if (elem == NULL) {
 | |
|             if (PyErr_Occurred())
 | |
|                 goto fail;
 | |
|             else
 | |
|                 goto sortit;
 | |
|         }
 | |
|         if (PyList_Append(heap, elem) == -1) {
 | |
|             Py_DECREF(elem);
 | |
|             goto fail;
 | |
|         }
 | |
|         Py_DECREF(elem);
 | |
|     }
 | |
|     n = PyList_GET_SIZE(heap);
 | |
|     if (n == 0)
 | |
|         goto sortit;
 | |
| 
 | |
|     for (i=n/2-1 ; i>=0 ; i--)
 | |
|         if(_siftupmax((PyListObject *)heap, i) == -1)
 | |
|             goto fail;
 | |
| 
 | |
|     los = PyList_GET_ITEM(heap, 0);
 | |
|     while (1) {
 | |
|         elem = PyIter_Next(it);
 | |
|         if (elem == NULL) {
 | |
|             if (PyErr_Occurred())
 | |
|                 goto fail;
 | |
|             else
 | |
|                 goto sortit;
 | |
|         }
 | |
|         cmp = PyObject_RichCompareBool(elem, los, Py_LT);
 | |
|         if (cmp == -1) {
 | |
|             Py_DECREF(elem);
 | |
|             goto fail;
 | |
|         }
 | |
|         if (cmp == 0) {
 | |
|             Py_DECREF(elem);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         oldelem = PyList_GET_ITEM(heap, 0);
 | |
|         PyList_SET_ITEM(heap, 0, elem);
 | |
|         Py_DECREF(oldelem);
 | |
|         if (_siftupmax((PyListObject *)heap, 0) == -1)
 | |
|             goto fail;
 | |
|         los = PyList_GET_ITEM(heap, 0);
 | |
|     }
 | |
| 
 | |
| sortit:
 | |
|     if (PyList_Sort(heap) == -1)
 | |
|         goto fail;
 | |
|     Py_DECREF(it);
 | |
|     return heap;
 | |
| 
 | |
| fail:
 | |
|     Py_DECREF(it);
 | |
|     Py_XDECREF(heap);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(nsmallest_doc,
 | |
| "Find the n smallest elements in a dataset.\n\
 | |
| \n\
 | |
| Equivalent to:  sorted(iterable)[:n]\n");
 | |
| 
 | |
| static PyMethodDef heapq_methods[] = {
 | |
|     {"heappush",        (PyCFunction)heappush,
 | |
|         METH_VARARGS,           heappush_doc},
 | |
|     {"heappushpop",     (PyCFunction)heappushpop,
 | |
|         METH_VARARGS,           heappushpop_doc},
 | |
|     {"heappop",         (PyCFunction)heappop,
 | |
|         METH_O,                 heappop_doc},
 | |
|     {"heapreplace",     (PyCFunction)heapreplace,
 | |
|         METH_VARARGS,           heapreplace_doc},
 | |
|     {"heapify",         (PyCFunction)heapify,
 | |
|         METH_O,                 heapify_doc},
 | |
|     {"nlargest",        (PyCFunction)nlargest,
 | |
|         METH_VARARGS,           nlargest_doc},
 | |
|     {"nsmallest",       (PyCFunction)nsmallest,
 | |
|         METH_VARARGS,           nsmallest_doc},
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "Heap queue algorithm (a.k.a. priority queue).\n\
 | |
| \n\
 | |
| Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
 | |
| all k, counting elements from 0.  For the sake of comparison,\n\
 | |
| non-existing elements are considered to be infinite.  The interesting\n\
 | |
| property of a heap is that a[0] is always its smallest element.\n\
 | |
| \n\
 | |
| Usage:\n\
 | |
| \n\
 | |
| heap = []            # creates an empty heap\n\
 | |
| heappush(heap, item) # pushes a new item on the heap\n\
 | |
| item = heappop(heap) # pops the smallest item from the heap\n\
 | |
| item = heap[0]       # smallest item on the heap without popping it\n\
 | |
| heapify(x)           # transforms list into a heap, in-place, in linear time\n\
 | |
| item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
 | |
|                                # new item; the heap size is unchanged\n\
 | |
| \n\
 | |
| Our API differs from textbook heap algorithms as follows:\n\
 | |
| \n\
 | |
| - We use 0-based indexing.  This makes the relationship between the\n\
 | |
|   index for a node and the indexes for its children slightly less\n\
 | |
|   obvious, but is more suitable since Python uses 0-based indexing.\n\
 | |
| \n\
 | |
| - Our heappop() method returns the smallest item, not the largest.\n\
 | |
| \n\
 | |
| These two make it possible to view the heap as a regular Python list\n\
 | |
| without surprises: heap[0] is the smallest item, and heap.sort()\n\
 | |
| maintains the heap invariant!\n");
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(__about__,
 | |
| "Heap queues\n\
 | |
| \n\
 | |
| [explanation by Fran\xc3\xa7ois Pinard]\n\
 | |
| \n\
 | |
| Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
 | |
| all k, counting elements from 0.  For the sake of comparison,\n\
 | |
| non-existing elements are considered to be infinite.  The interesting\n\
 | |
| property of a heap is that a[0] is always its smallest element.\n"
 | |
| "\n\
 | |
| The strange invariant above is meant to be an efficient memory\n\
 | |
| representation for a tournament.  The numbers below are `k', not a[k]:\n\
 | |
| \n\
 | |
|                                    0\n\
 | |
| \n\
 | |
|                   1                                 2\n\
 | |
| \n\
 | |
|           3               4                5               6\n\
 | |
| \n\
 | |
|       7       8       9       10      11      12      13      14\n\
 | |
| \n\
 | |
|     15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30\n\
 | |
| \n\
 | |
| \n\
 | |
| In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In\n\
 | |
| an usual binary tournament we see in sports, each cell is the winner\n\
 | |
| over the two cells it tops, and we can trace the winner down the tree\n\
 | |
| to see all opponents s/he had.  However, in many computer applications\n\
 | |
| of such tournaments, we do not need to trace the history of a winner.\n\
 | |
| To be more memory efficient, when a winner is promoted, we try to\n\
 | |
| replace it by something else at a lower level, and the rule becomes\n\
 | |
| that a cell and the two cells it tops contain three different items,\n\
 | |
| but the top cell \"wins\" over the two topped cells.\n"
 | |
| "\n\
 | |
| If this heap invariant is protected at all time, index 0 is clearly\n\
 | |
| the overall winner.  The simplest algorithmic way to remove it and\n\
 | |
| find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
 | |
| diagram above) into the 0 position, and then percolate this new 0 down\n\
 | |
| the tree, exchanging values, until the invariant is re-established.\n\
 | |
| This is clearly logarithmic on the total number of items in the tree.\n\
 | |
| By iterating over all items, you get an O(n ln n) sort.\n"
 | |
| "\n\
 | |
| A nice feature of this sort is that you can efficiently insert new\n\
 | |
| items while the sort is going on, provided that the inserted items are\n\
 | |
| not \"better\" than the last 0'th element you extracted.  This is\n\
 | |
| especially useful in simulation contexts, where the tree holds all\n\
 | |
| incoming events, and the \"win\" condition means the smallest scheduled\n\
 | |
| time.  When an event schedule other events for execution, they are\n\
 | |
| scheduled into the future, so they can easily go into the heap.  So, a\n\
 | |
| heap is a good structure for implementing schedulers (this is what I\n\
 | |
| used for my MIDI sequencer :-).\n"
 | |
| "\n\
 | |
| Various structures for implementing schedulers have been extensively\n\
 | |
| studied, and heaps are good for this, as they are reasonably speedy,\n\
 | |
| the speed is almost constant, and the worst case is not much different\n\
 | |
| than the average case.  However, there are other representations which\n\
 | |
| are more efficient overall, yet the worst cases might be terrible.\n"
 | |
| "\n\
 | |
| Heaps are also very useful in big disk sorts.  You most probably all\n\
 | |
| know that a big sort implies producing \"runs\" (which are pre-sorted\n\
 | |
| sequences, which size is usually related to the amount of CPU memory),\n\
 | |
| followed by a merging passes for these runs, which merging is often\n\
 | |
| very cleverly organised[1].  It is very important that the initial\n\
 | |
| sort produces the longest runs possible.  Tournaments are a good way\n\
 | |
| to that.  If, using all the memory available to hold a tournament, you\n\
 | |
| replace and percolate items that happen to fit the current run, you'll\n\
 | |
| produce runs which are twice the size of the memory for random input,\n\
 | |
| and much better for input fuzzily ordered.\n"
 | |
| "\n\
 | |
| Moreover, if you output the 0'th item on disk and get an input which\n\
 | |
| may not fit in the current tournament (because the value \"wins\" over\n\
 | |
| the last output value), it cannot fit in the heap, so the size of the\n\
 | |
| heap decreases.  The freed memory could be cleverly reused immediately\n\
 | |
| for progressively building a second heap, which grows at exactly the\n\
 | |
| same rate the first heap is melting.  When the first heap completely\n\
 | |
| vanishes, you switch heaps and start a new run.  Clever and quite\n\
 | |
| effective!\n\
 | |
| \n\
 | |
| In a word, heaps are useful memory structures to know.  I use them in\n\
 | |
| a few applications, and I think it is good to keep a `heap' module\n\
 | |
| around. :-)\n"
 | |
| "\n\
 | |
| --------------------\n\
 | |
| [1] The disk balancing algorithms which are current, nowadays, are\n\
 | |
| more annoying than clever, and this is a consequence of the seeking\n\
 | |
| capabilities of the disks.  On devices which cannot seek, like big\n\
 | |
| tape drives, the story was quite different, and one had to be very\n\
 | |
| clever to ensure (far in advance) that each tape movement will be the\n\
 | |
| most effective possible (that is, will best participate at\n\
 | |
| \"progressing\" the merge).  Some tapes were even able to read\n\
 | |
| backwards, and this was also used to avoid the rewinding time.\n\
 | |
| Believe me, real good tape sorts were quite spectacular to watch!\n\
 | |
| From all times, sorting has always been a Great Art! :-)\n");
 | |
| 
 | |
| 
 | |
| static struct PyModuleDef _heapqmodule = {
 | |
|     PyModuleDef_HEAD_INIT,
 | |
|     "_heapq",
 | |
|     module_doc,
 | |
|     -1,
 | |
|     heapq_methods,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| PyInit__heapq(void)
 | |
| {
 | |
|     PyObject *m, *about;
 | |
| 
 | |
|     m = PyModule_Create(&_heapqmodule);
 | |
|     if (m == NULL)
 | |
|         return NULL;
 | |
|     about = PyUnicode_DecodeUTF8(__about__, strlen(__about__), NULL);
 | |
|     PyModule_AddObject(m, "__about__", about);
 | |
|     return m;
 | |
| }
 | |
| 
 | 
