mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			307 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
'''\
 | 
						|
This module implements rational numbers.
 | 
						|
 | 
						|
The entry point of this module is the function
 | 
						|
	rat(numerator, denominator)
 | 
						|
If either numerator or denominator is of an integral or rational type,
 | 
						|
the result is a rational number, else, the result is the simplest of
 | 
						|
the types float and complex which can hold numerator/denominator.
 | 
						|
If denominator is omitted, it defaults to 1.
 | 
						|
Rational numbers can be used in calculations with any other numeric
 | 
						|
type.  The result of the calculation will be rational if possible.
 | 
						|
 | 
						|
There is also a test function with calling sequence
 | 
						|
	test()
 | 
						|
The documentation string of the test function contains the expected
 | 
						|
output.
 | 
						|
'''
 | 
						|
 | 
						|
# Contributed by Sjoerd Mullender
 | 
						|
 | 
						|
from types import *
 | 
						|
 | 
						|
def gcd(a, b):
 | 
						|
	'''Calculate the Greatest Common Divisor.'''
 | 
						|
	while b:
 | 
						|
		a, b = b, a%b
 | 
						|
	return a
 | 
						|
 | 
						|
def rat(num, den = 1):
 | 
						|
	# must check complex before float
 | 
						|
	if type(num) is ComplexType or type(den) is ComplexType:
 | 
						|
		# numerator or denominator is complex: return a complex
 | 
						|
		return complex(num) / complex(den)
 | 
						|
	if type(num) is FloatType or type(den) is FloatType:
 | 
						|
		# numerator or denominator is float: return a float
 | 
						|
		return float(num) / float(den)
 | 
						|
	# otherwise return a rational
 | 
						|
	return Rat(num, den)
 | 
						|
 | 
						|
class Rat:
 | 
						|
	'''This class implements rational numbers.'''
 | 
						|
 | 
						|
	def __init__(self, num, den = 1):
 | 
						|
		if den == 0:
 | 
						|
			raise ZeroDivisionError, 'rat(x, 0)'
 | 
						|
 | 
						|
		# normalize
 | 
						|
 | 
						|
		# must check complex before float
 | 
						|
		if type(num) is ComplexType or type(den) is ComplexType:
 | 
						|
			# numerator or denominator is complex:
 | 
						|
			# normalized form has denominator == 1+0j
 | 
						|
			self.__num = complex(num) / complex(den)
 | 
						|
			self.__den = complex(1)
 | 
						|
			return
 | 
						|
		if type(num) is FloatType or type(den) is FloatType:
 | 
						|
			# numerator or denominator is float:
 | 
						|
			# normalized form has denominator == 1.0
 | 
						|
			self.__num = float(num) / float(den)
 | 
						|
			self.__den = 1.0
 | 
						|
			return
 | 
						|
		if (type(num) is InstanceType and
 | 
						|
		    num.__class__ is self.__class__) or \
 | 
						|
		   (type(den) is InstanceType and
 | 
						|
		    den.__class__ is self.__class__):
 | 
						|
			# numerator or denominator is rational
 | 
						|
			new = num / den
 | 
						|
			if type(new) is not InstanceType or \
 | 
						|
			   new.__class__ is not self.__class__:
 | 
						|
				self.__num = new
 | 
						|
				if type(new) is ComplexType:
 | 
						|
					self.__den = complex(1)
 | 
						|
				else:
 | 
						|
					self.__den = 1.0
 | 
						|
			else:
 | 
						|
				self.__num = new.__num
 | 
						|
				self.__den = new.__den
 | 
						|
		else:
 | 
						|
			# make sure numerator and denominator don't
 | 
						|
			# have common factors
 | 
						|
			# this also makes sure that denominator > 0
 | 
						|
			g = gcd(num, den)
 | 
						|
			self.__num = num / g
 | 
						|
			self.__den = den / g
 | 
						|
		# try making numerator and denominator of IntType if they fit
 | 
						|
		try:
 | 
						|
			numi = int(self.__num)
 | 
						|
			deni = int(self.__den)
 | 
						|
		except (OverflowError, TypeError):
 | 
						|
			pass
 | 
						|
		else:
 | 
						|
			if self.__num == numi and self.__den == deni:
 | 
						|
				self.__num = numi
 | 
						|
				self.__den = deni
 | 
						|
 | 
						|
	def __repr__(self):
 | 
						|
		return 'Rat(%s,%s)' % (self.__num, self.__den)
 | 
						|
 | 
						|
	def __str__(self):
 | 
						|
		if self.__den == 1:
 | 
						|
			return str(self.__num)
 | 
						|
		else:
 | 
						|
			return '%s/%s' % (str(self.__num), str(self.__den))
 | 
						|
 | 
						|
	# a + b
 | 
						|
	def __add__(a, b):
 | 
						|
		try:
 | 
						|
			return rat(a.__num * b.__den + b.__num * a.__den,
 | 
						|
				   a.__den * b.__den)
 | 
						|
		except OverflowError:
 | 
						|
			return rat(long(a.__num) * long(b.__den) +
 | 
						|
				   long(b.__num) * long(a.__den),
 | 
						|
				   long(a.__den) * long(b.__den))
 | 
						|
 | 
						|
	def __radd__(b, a):
 | 
						|
		return Rat(a) + b
 | 
						|
 | 
						|
	# a - b
 | 
						|
	def __sub__(a, b):
 | 
						|
		try:
 | 
						|
			return rat(a.__num * b.__den - b.__num * a.__den,
 | 
						|
				   a.__den * b.__den)
 | 
						|
		except OverflowError:
 | 
						|
			return rat(long(a.__num) * long(b.__den) -
 | 
						|
				   long(b.__num) * long(a.__den),
 | 
						|
				   long(a.__den) * long(b.__den))
 | 
						|
 | 
						|
	def __rsub__(b, a):
 | 
						|
		return Rat(a) - b
 | 
						|
 | 
						|
	# a * b
 | 
						|
	def __mul__(a, b):
 | 
						|
		try:
 | 
						|
			return rat(a.__num * b.__num, a.__den * b.__den)
 | 
						|
		except OverflowError:
 | 
						|
			return rat(long(a.__num) * long(b.__num),
 | 
						|
				   long(a.__den) * long(b.__den))
 | 
						|
 | 
						|
	def __rmul__(b, a):
 | 
						|
		return Rat(a) * b
 | 
						|
 | 
						|
	# a / b
 | 
						|
	def __div__(a, b):
 | 
						|
		try:
 | 
						|
			return rat(a.__num * b.__den, a.__den * b.__num)
 | 
						|
		except OverflowError:
 | 
						|
			return rat(long(a.__num) * long(b.__den),
 | 
						|
				   long(a.__den) * long(b.__num))
 | 
						|
 | 
						|
	def __rdiv__(b, a):
 | 
						|
		return Rat(a) / b
 | 
						|
 | 
						|
	# a % b
 | 
						|
	def __mod__(a, b):
 | 
						|
		div = a / b
 | 
						|
		try:
 | 
						|
			div = int(div)
 | 
						|
		except OverflowError:
 | 
						|
			div = long(div)
 | 
						|
		return a - b * div
 | 
						|
 | 
						|
	def __rmod__(b, a):
 | 
						|
		return Rat(a) % b
 | 
						|
 | 
						|
	# a ** b
 | 
						|
	def __pow__(a, b):
 | 
						|
		if b.__den != 1:
 | 
						|
			if type(a.__num) is ComplexType:
 | 
						|
				a = complex(a)
 | 
						|
			else:
 | 
						|
				a = float(a)
 | 
						|
			if type(b.__num) is ComplexType:
 | 
						|
				b = complex(b)
 | 
						|
			else:
 | 
						|
				b = float(b)
 | 
						|
			return a ** b
 | 
						|
		try:
 | 
						|
			return rat(a.__num ** b.__num, a.__den ** b.__num)
 | 
						|
		except OverflowError:
 | 
						|
			return rat(long(a.__num) ** b.__num,
 | 
						|
				   long(a.__den) ** b.__num)
 | 
						|
 | 
						|
	def __rpow__(b, a):
 | 
						|
		return Rat(a) ** b
 | 
						|
 | 
						|
	# -a
 | 
						|
	def __neg__(a):
 | 
						|
		try:
 | 
						|
			return rat(-a.__num, a.__den)
 | 
						|
		except OverflowError:
 | 
						|
			# a.__num == sys.maxint
 | 
						|
			return rat(-long(a.__num), a.__den)
 | 
						|
 | 
						|
	# abs(a)
 | 
						|
	def __abs__(a):
 | 
						|
		return rat(abs(a.__num), a.__den)
 | 
						|
 | 
						|
	# int(a)
 | 
						|
	def __int__(a):
 | 
						|
		return int(a.__num / a.__den)
 | 
						|
 | 
						|
	# long(a)
 | 
						|
	def __long__(a):
 | 
						|
		return long(a.__num) / long(a.__den)
 | 
						|
 | 
						|
	# float(a)
 | 
						|
	def __float__(a):
 | 
						|
		return float(a.__num) / float(a.__den)
 | 
						|
 | 
						|
	# complex(a)
 | 
						|
	def __complex__(a):
 | 
						|
		return complex(a.__num) / complex(a.__den)
 | 
						|
 | 
						|
	# cmp(a,b)
 | 
						|
	def __cmp__(a, b):
 | 
						|
		diff = a - b
 | 
						|
		if diff.__num < 0:
 | 
						|
			return -1
 | 
						|
		elif diff.__num > 0:
 | 
						|
			return 1
 | 
						|
		else:
 | 
						|
			return 0
 | 
						|
 | 
						|
	def __rcmp__(b, a):
 | 
						|
		   return cmp(Rat(a), b)
 | 
						|
 | 
						|
	# a != 0
 | 
						|
	def __nonzero__(a):
 | 
						|
		return a.__num != 0
 | 
						|
 | 
						|
	# coercion
 | 
						|
	def __coerce__(a, b):
 | 
						|
		return a, Rat(b)
 | 
						|
 | 
						|
def test():
 | 
						|
	'''\
 | 
						|
	Test function for rat module.
 | 
						|
 | 
						|
	The expected output is (module some differences in floating
 | 
						|
	precission):
 | 
						|
	-1
 | 
						|
	-1
 | 
						|
	0 0L 0.1 (0.1+0j)
 | 
						|
	[Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)]
 | 
						|
	[Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)]
 | 
						|
	0
 | 
						|
	11/10
 | 
						|
	11/10
 | 
						|
	1.1
 | 
						|
	OK
 | 
						|
	2 1.5 3/2 (1.5+1.5j) 15707963/5000000
 | 
						|
	2 2 2.0 (2+0j)
 | 
						|
 | 
						|
	4 0 4 1 4 0
 | 
						|
	3.5 0.5 3.0 1.33333333333 2.82842712475 1
 | 
						|
	7/2 1/2 3 4/3 2.82842712475 1
 | 
						|
	(3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1
 | 
						|
	1.5 1 1.5 (1.5+0j)
 | 
						|
 | 
						|
	3.5 -0.5 3.0 0.75 2.25 -1
 | 
						|
	3.0 0.0 2.25 1.0 1.83711730709 0
 | 
						|
	3.0 0.0 2.25 1.0 1.83711730709 1
 | 
						|
	(3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
 | 
						|
	3/2 1 1.5 (1.5+0j)
 | 
						|
 | 
						|
	7/2 -1/2 3 3/4 9/4 -1
 | 
						|
	3.0 0.0 2.25 1.0 1.83711730709 -1
 | 
						|
	3 0 9/4 1 1.83711730709 0
 | 
						|
	(3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
 | 
						|
	(1.5+1.5j) (1.5+1.5j)
 | 
						|
 | 
						|
	(3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1
 | 
						|
	(3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
 | 
						|
	(3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
 | 
						|
	(3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0
 | 
						|
	'''
 | 
						|
	print rat(-1L, 1)
 | 
						|
	print rat(1, -1)
 | 
						|
	a = rat(1, 10)
 | 
						|
	print int(a), long(a), float(a), complex(a)
 | 
						|
	b = rat(2, 5)
 | 
						|
	l = [a+b, a-b, a*b, a/b]
 | 
						|
	print l
 | 
						|
	l.sort()
 | 
						|
	print l
 | 
						|
	print rat(0, 1)
 | 
						|
	print a+1
 | 
						|
	print a+1L
 | 
						|
	print a+1.0
 | 
						|
	try:
 | 
						|
		print rat(1, 0)
 | 
						|
		raise SystemError, 'should have been ZeroDivisionError'
 | 
						|
	except ZeroDivisionError:
 | 
						|
		print 'OK'
 | 
						|
	print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000)
 | 
						|
	list = [2, 1.5, rat(3,2), 1.5+1.5j]
 | 
						|
	for i in list:
 | 
						|
		print i,
 | 
						|
		if type(i) is not ComplexType:
 | 
						|
			print int(i), float(i),
 | 
						|
		print complex(i)
 | 
						|
		print
 | 
						|
		for j in list:
 | 
						|
			print i + j, i - j, i * j, i / j, i ** j, cmp(i, j)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test()
 |