mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 10:26:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1271 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1271 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* Float object implementation */
 | |
| 
 | |
| /* XXX There should be overflow checks here, but it's hard to check
 | |
|    for any kind of float exception without losing portability. */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| #include <ctype.h>
 | |
| 
 | |
| #if !defined(__STDC__)
 | |
| extern double fmod(double, double);
 | |
| extern double pow(double, double);
 | |
| #endif
 | |
| 
 | |
| /* Special free list -- see comments for same code in intobject.c. */
 | |
| #define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
 | |
| #define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */
 | |
| #define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
 | |
| 
 | |
| struct _floatblock {
 | |
| 	struct _floatblock *next;
 | |
| 	PyFloatObject objects[N_FLOATOBJECTS];
 | |
| };
 | |
| 
 | |
| typedef struct _floatblock PyFloatBlock;
 | |
| 
 | |
| static PyFloatBlock *block_list = NULL;
 | |
| static PyFloatObject *free_list = NULL;
 | |
| 
 | |
| static PyFloatObject *
 | |
| fill_free_list(void)
 | |
| {
 | |
| 	PyFloatObject *p, *q;
 | |
| 	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
 | |
| 	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
 | |
| 	if (p == NULL)
 | |
| 		return (PyFloatObject *) PyErr_NoMemory();
 | |
| 	((PyFloatBlock *)p)->next = block_list;
 | |
| 	block_list = (PyFloatBlock *)p;
 | |
| 	p = &((PyFloatBlock *)p)->objects[0];
 | |
| 	q = p + N_FLOATOBJECTS;
 | |
| 	while (--q > p)
 | |
| 		q->ob_type = (struct _typeobject *)(q-1);
 | |
| 	q->ob_type = NULL;
 | |
| 	return p + N_FLOATOBJECTS - 1;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyFloat_FromDouble(double fval)
 | |
| {
 | |
| 	register PyFloatObject *op;
 | |
| 	if (free_list == NULL) {
 | |
| 		if ((free_list = fill_free_list()) == NULL)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	/* Inline PyObject_New */
 | |
| 	op = free_list;
 | |
| 	free_list = (PyFloatObject *)op->ob_type;
 | |
| 	PyObject_INIT(op, &PyFloat_Type);
 | |
| 	op->ob_fval = fval;
 | |
| 	return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| RED_FLAG 22-Sep-2000 tim
 | |
| PyFloat_FromString's pend argument is braindead.  Prior to this RED_FLAG,
 | |
| 
 | |
| 1.  If v was a regular string, *pend was set to point to its terminating
 | |
|     null byte.  That's useless (the caller can find that without any
 | |
|     help from this function!).
 | |
| 
 | |
| 2.  If v was a Unicode string, or an object convertible to a character
 | |
|     buffer, *pend was set to point into stack trash (the auto temp
 | |
|     vector holding the character buffer).  That was downright dangerous.
 | |
| 
 | |
| Since we can't change the interface of a public API function, pend is
 | |
| still supported but now *officially* useless:  if pend is not NULL,
 | |
| *pend is set to NULL.
 | |
| **************************************************************************/
 | |
| PyObject *
 | |
| PyFloat_FromString(PyObject *v, char **pend)
 | |
| {
 | |
| 	const char *s, *last, *end;
 | |
| 	double x;
 | |
| 	char buffer[256]; /* for errors */
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	char s_buffer[256]; /* for objects convertible to a char buffer */
 | |
| #endif
 | |
| 	int len;
 | |
| 
 | |
| 	if (pend)
 | |
| 		*pend = NULL;
 | |
| 	if (PyString_Check(v)) {
 | |
| 		s = PyString_AS_STRING(v);
 | |
| 		len = PyString_GET_SIZE(v);
 | |
| 	}
 | |
| #ifdef Py_USING_UNICODE
 | |
| 	else if (PyUnicode_Check(v)) {
 | |
| 		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 				"Unicode float() literal too long to convert");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
 | |
| 					    PyUnicode_GET_SIZE(v),
 | |
| 					    s_buffer,
 | |
| 					    NULL))
 | |
| 			return NULL;
 | |
| 		s = s_buffer;
 | |
| 		len = (int)strlen(s);
 | |
| 	}
 | |
| #endif
 | |
| 	else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"float() argument must be a string or a number");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	last = s + len;
 | |
| 	while (*s && isspace(Py_CHARMASK(*s)))
 | |
| 		s++;
 | |
| 	if (*s == '\0') {
 | |
| 		PyErr_SetString(PyExc_ValueError, "empty string for float()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* We don't care about overflow or underflow.  If the platform supports
 | |
| 	 * them, infinities and signed zeroes (on underflow) are fine.
 | |
| 	 * However, strtod can return 0 for denormalized numbers, where atof
 | |
| 	 * does not.  So (alas!) we special-case a zero result.  Note that
 | |
| 	 * whether strtod sets errno on underflow is not defined, so we can't
 | |
| 	 * key off errno.
 | |
|          */
 | |
| 	PyFPE_START_PROTECT("strtod", return NULL)
 | |
| 	x = PyOS_ascii_strtod(s, (char **)&end);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	errno = 0;
 | |
| 	/* Believe it or not, Solaris 2.6 can move end *beyond* the null
 | |
| 	   byte at the end of the string, when the input is inf(inity). */
 | |
| 	if (end > last)
 | |
| 		end = last;
 | |
| 	if (end == s) {
 | |
| 		PyOS_snprintf(buffer, sizeof(buffer),
 | |
| 			      "invalid literal for float(): %.200s", s);
 | |
| 		PyErr_SetString(PyExc_ValueError, buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* Since end != s, the platform made *some* kind of sense out
 | |
| 	   of the input.  Trust it. */
 | |
| 	while (*end && isspace(Py_CHARMASK(*end)))
 | |
| 		end++;
 | |
| 	if (*end != '\0') {
 | |
| 		PyOS_snprintf(buffer, sizeof(buffer),
 | |
| 			      "invalid literal for float(): %.200s", s);
 | |
| 		PyErr_SetString(PyExc_ValueError, buffer);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else if (end != last) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"null byte in argument for float()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (x == 0.0) {
 | |
| 		/* See above -- may have been strtod being anal
 | |
| 		   about denorms. */
 | |
| 		PyFPE_START_PROTECT("atof", return NULL)
 | |
| 		x = PyOS_ascii_atof(s);
 | |
| 		PyFPE_END_PROTECT(x)
 | |
| 		errno = 0;    /* whether atof ever set errno is undefined */
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(x);
 | |
| }
 | |
| 
 | |
| static void
 | |
| float_dealloc(PyFloatObject *op)
 | |
| {
 | |
| 	if (PyFloat_CheckExact(op)) {
 | |
| 		op->ob_type = (struct _typeobject *)free_list;
 | |
| 		free_list = op;
 | |
| 	}
 | |
| 	else
 | |
| 		op->ob_type->tp_free((PyObject *)op);
 | |
| }
 | |
| 
 | |
| double
 | |
| PyFloat_AsDouble(PyObject *op)
 | |
| {
 | |
| 	PyNumberMethods *nb;
 | |
| 	PyFloatObject *fo;
 | |
| 	double val;
 | |
| 
 | |
| 	if (op && PyFloat_Check(op))
 | |
| 		return PyFloat_AS_DOUBLE((PyFloatObject*) op);
 | |
| 
 | |
| 	if (op == NULL) {
 | |
| 		PyErr_BadArgument();
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "a float is required");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	fo = (PyFloatObject*) (*nb->nb_float) (op);
 | |
| 	if (fo == NULL)
 | |
| 		return -1;
 | |
| 	if (!PyFloat_Check(fo)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"nb_float should return float object");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	val = PyFloat_AS_DOUBLE(fo);
 | |
| 	Py_DECREF(fo);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static void
 | |
| format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
 | |
| {
 | |
| 	register char *cp;
 | |
| 	char format[32];
 | |
| 	/* Subroutine for float_repr and float_print.
 | |
| 	   We want float numbers to be recognizable as such,
 | |
| 	   i.e., they should contain a decimal point or an exponent.
 | |
| 	   However, %g may print the number as an integer;
 | |
| 	   in such cases, we append ".0" to the string. */
 | |
| 
 | |
| 	assert(PyFloat_Check(v));
 | |
| 	PyOS_snprintf(format, 32, "%%.%ig", precision);
 | |
| 	PyOS_ascii_formatd(buf, buflen, format, v->ob_fval);
 | |
| 	cp = buf;
 | |
| 	if (*cp == '-')
 | |
| 		cp++;
 | |
| 	for (; *cp != '\0'; cp++) {
 | |
| 		/* Any non-digit means it's not an integer;
 | |
| 		   this takes care of NAN and INF as well. */
 | |
| 		if (!isdigit(Py_CHARMASK(*cp)))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (*cp == '\0') {
 | |
| 		*cp++ = '.';
 | |
| 		*cp++ = '0';
 | |
| 		*cp++ = '\0';
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* XXX PyFloat_AsStringEx should not be a public API function (for one
 | |
|    XXX thing, its signature passes a buffer without a length; for another,
 | |
|    XXX it isn't useful outside this file).
 | |
| */
 | |
| void
 | |
| PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
 | |
| {
 | |
| 	format_float(buf, 100, v, precision);
 | |
| }
 | |
| 
 | |
| /* Macro and helper that convert PyObject obj to a C double and store
 | |
|    the value in dbl; this replaces the functionality of the coercion
 | |
|    slot function.  If conversion to double raises an exception, obj is
 | |
|    set to NULL, and the function invoking this macro returns NULL.  If
 | |
|    obj is not of float, int or long type, Py_NotImplemented is incref'ed,
 | |
|    stored in obj, and returned from the function invoking this macro.
 | |
| */
 | |
| #define CONVERT_TO_DOUBLE(obj, dbl)			\
 | |
| 	if (PyFloat_Check(obj))				\
 | |
| 		dbl = PyFloat_AS_DOUBLE(obj);		\
 | |
| 	else if (convert_to_double(&(obj), &(dbl)) < 0)	\
 | |
| 		return obj;
 | |
| 
 | |
| static int
 | |
| convert_to_double(PyObject **v, double *dbl)
 | |
| {
 | |
| 	register PyObject *obj = *v;
 | |
| 
 | |
| 	if (PyInt_Check(obj)) {
 | |
| 		*dbl = (double)PyInt_AS_LONG(obj);
 | |
| 	}
 | |
| 	else if (PyLong_Check(obj)) {
 | |
| 		*dbl = PyLong_AsDouble(obj);
 | |
| 		if (*dbl == -1.0 && PyErr_Occurred()) {
 | |
| 			*v = NULL;
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		*v = Py_NotImplemented;
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Precisions used by repr() and str(), respectively.
 | |
| 
 | |
|    The repr() precision (17 significant decimal digits) is the minimal number
 | |
|    that is guaranteed to have enough precision so that if the number is read
 | |
|    back in the exact same binary value is recreated.  This is true for IEEE
 | |
|    floating point by design, and also happens to work for all other modern
 | |
|    hardware.
 | |
| 
 | |
|    The str() precision is chosen so that in most cases, the rounding noise
 | |
|    created by various operations is suppressed, while giving plenty of
 | |
|    precision for practical use.
 | |
| 
 | |
| */
 | |
| 
 | |
| #define PREC_REPR	17
 | |
| #define PREC_STR	12
 | |
| 
 | |
| /* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated:
 | |
|    XXX they pass a char buffer without passing a length.
 | |
| */
 | |
| void
 | |
| PyFloat_AsString(char *buf, PyFloatObject *v)
 | |
| {
 | |
| 	format_float(buf, 100, v, PREC_STR);
 | |
| }
 | |
| 
 | |
| void
 | |
| PyFloat_AsReprString(char *buf, PyFloatObject *v)
 | |
| {
 | |
| 	format_float(buf, 100, v, PREC_REPR);
 | |
| }
 | |
| 
 | |
| /* ARGSUSED */
 | |
| static int
 | |
| float_print(PyFloatObject *v, FILE *fp, int flags)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	format_float(buf, sizeof(buf), v,
 | |
| 		     (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
 | |
| 	fputs(buf, fp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_repr(PyFloatObject *v)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	format_float(buf, sizeof(buf), v, PREC_REPR);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_str(PyFloatObject *v)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	format_float(buf, sizeof(buf), v, PREC_STR);
 | |
| 	return PyString_FromString(buf);
 | |
| }
 | |
| 
 | |
| static PyObject*
 | |
| float_richcompare(PyObject *v, PyObject *w, int op)
 | |
| {
 | |
| 	double i, j;
 | |
| 	int r = 0;
 | |
| 
 | |
| 	CONVERT_TO_DOUBLE(v, i);
 | |
| 	CONVERT_TO_DOUBLE(w, j);
 | |
| 
 | |
| 	PyFPE_START_PROTECT("richcompare", return NULL)
 | |
| 	switch (op) {
 | |
| 	case Py_EQ:
 | |
| 		r = i==j;
 | |
| 		break;
 | |
| 	case Py_NE:
 | |
| 		r = i!=j;
 | |
| 		break;
 | |
| 	case Py_LE:
 | |
| 		r = i<=j;
 | |
| 		break;
 | |
| 	case Py_GE:
 | |
| 		r = i>=j;
 | |
| 		break;
 | |
| 	case Py_LT:
 | |
| 		r = i<j;
 | |
| 		break;
 | |
| 	case Py_GT:
 | |
| 		r = i>j;
 | |
| 		break;
 | |
| 	}
 | |
| 	PyFPE_END_PROTECT(r)
 | |
| 	return PyBool_FromLong(r);
 | |
| }
 | |
| 
 | |
| static long
 | |
| float_hash(PyFloatObject *v)
 | |
| {
 | |
| 	return _Py_HashDouble(v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_add(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	PyFPE_START_PROTECT("add", return 0)
 | |
| 	a = a + b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_sub(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	PyFPE_START_PROTECT("subtract", return 0)
 | |
| 	a = a - b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_mul(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	PyFPE_START_PROTECT("multiply", return 0)
 | |
| 	a = a * b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	if (b == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("divide", return 0)
 | |
| 	a = a / b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_classic_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double a,b;
 | |
| 	CONVERT_TO_DOUBLE(v, a);
 | |
| 	CONVERT_TO_DOUBLE(w, b);
 | |
| 	if (Py_DivisionWarningFlag >= 2 &&
 | |
| 	    PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
 | |
| 		return NULL;
 | |
| 	if (b == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("divide", return 0)
 | |
| 	a = a / b;
 | |
| 	PyFPE_END_PROTECT(a)
 | |
| 	return PyFloat_FromDouble(a);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_rem(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double vx, wx;
 | |
| 	double mod;
 | |
|  	CONVERT_TO_DOUBLE(v, vx);
 | |
|  	CONVERT_TO_DOUBLE(w, wx);
 | |
| 	if (wx == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("modulo", return 0)
 | |
| 	mod = fmod(vx, wx);
 | |
| 	/* note: checking mod*wx < 0 is incorrect -- underflows to
 | |
| 	   0 if wx < sqrt(smallest nonzero double) */
 | |
| 	if (mod && ((wx < 0) != (mod < 0))) {
 | |
| 		mod += wx;
 | |
| 	}
 | |
| 	PyFPE_END_PROTECT(mod)
 | |
| 	return PyFloat_FromDouble(mod);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_divmod(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	double vx, wx;
 | |
| 	double div, mod, floordiv;
 | |
|  	CONVERT_TO_DOUBLE(v, vx);
 | |
|  	CONVERT_TO_DOUBLE(w, wx);
 | |
| 	if (wx == 0.0) {
 | |
| 		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyFPE_START_PROTECT("divmod", return 0)
 | |
| 	mod = fmod(vx, wx);
 | |
| 	/* fmod is typically exact, so vx-mod is *mathematically* an
 | |
| 	   exact multiple of wx.  But this is fp arithmetic, and fp
 | |
| 	   vx - mod is an approximation; the result is that div may
 | |
| 	   not be an exact integral value after the division, although
 | |
| 	   it will always be very close to one.
 | |
| 	*/
 | |
| 	div = (vx - mod) / wx;
 | |
| 	if (mod) {
 | |
| 		/* ensure the remainder has the same sign as the denominator */
 | |
| 		if ((wx < 0) != (mod < 0)) {
 | |
| 			mod += wx;
 | |
| 			div -= 1.0;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* the remainder is zero, and in the presence of signed zeroes
 | |
| 		   fmod returns different results across platforms; ensure
 | |
| 		   it has the same sign as the denominator; we'd like to do
 | |
| 		   "mod = wx * 0.0", but that may get optimized away */
 | |
| 		mod *= mod;  /* hide "mod = +0" from optimizer */
 | |
| 		if (wx < 0.0)
 | |
| 			mod = -mod;
 | |
| 	}
 | |
| 	/* snap quotient to nearest integral value */
 | |
| 	if (div) {
 | |
| 		floordiv = floor(div);
 | |
| 		if (div - floordiv > 0.5)
 | |
| 			floordiv += 1.0;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* div is zero - get the same sign as the true quotient */
 | |
| 		div *= div;	/* hide "div = +0" from optimizers */
 | |
| 		floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
 | |
| 	}
 | |
| 	PyFPE_END_PROTECT(floordiv)
 | |
| 	return Py_BuildValue("(dd)", floordiv, mod);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_floor_div(PyObject *v, PyObject *w)
 | |
| {
 | |
| 	PyObject *t, *r;
 | |
| 
 | |
| 	t = float_divmod(v, w);
 | |
| 	if (t == NULL || t == Py_NotImplemented)
 | |
| 		return t;
 | |
| 	assert(PyTuple_CheckExact(t));
 | |
| 	r = PyTuple_GET_ITEM(t, 0);
 | |
| 	Py_INCREF(r);
 | |
| 	Py_DECREF(t);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_pow(PyObject *v, PyObject *w, PyObject *z)
 | |
| {
 | |
| 	double iv, iw, ix;
 | |
| 
 | |
| 	if ((PyObject *)z != Py_None) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
 | |
| 			"allowed unless all arguments are integers");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	CONVERT_TO_DOUBLE(v, iv);
 | |
| 	CONVERT_TO_DOUBLE(w, iw);
 | |
| 
 | |
| 	/* Sort out special cases here instead of relying on pow() */
 | |
| 	if (iw == 0) { 		/* v**0 is 1, even 0**0 */
 | |
| 		PyFPE_START_PROTECT("pow", return NULL)
 | |
| 		if ((PyObject *)z != Py_None) {
 | |
| 			double iz;
 | |
| 			CONVERT_TO_DOUBLE(z, iz);
 | |
| 			ix = fmod(1.0, iz);
 | |
| 			if (ix != 0 && iz < 0)
 | |
| 				ix += iz;
 | |
| 		}
 | |
| 		else
 | |
| 			ix = 1.0;
 | |
| 		PyFPE_END_PROTECT(ix)
 | |
| 		return PyFloat_FromDouble(ix);
 | |
| 	}
 | |
| 	if (iv == 0.0) {  /* 0**w is error if w<0, else 1 */
 | |
| 		if (iw < 0.0) {
 | |
| 			PyErr_SetString(PyExc_ZeroDivisionError,
 | |
| 					"0.0 cannot be raised to a negative power");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		return PyFloat_FromDouble(0.0);
 | |
| 	}
 | |
| 	if (iv < 0.0) {
 | |
| 		/* Whether this is an error is a mess, and bumps into libm
 | |
| 		 * bugs so we have to figure it out ourselves.
 | |
| 		 */
 | |
| 		if (iw != floor(iw)) {
 | |
| 			PyErr_SetString(PyExc_ValueError, "negative number "
 | |
| 				"cannot be raised to a fractional power");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		/* iw is an exact integer, albeit perhaps a very large one.
 | |
| 		 * -1 raised to an exact integer should never be exceptional.
 | |
| 		 * Alas, some libms (chiefly glibc as of early 2003) return
 | |
| 		 * NaN and set EDOM on pow(-1, large_int) if the int doesn't
 | |
| 		 * happen to be representable in a *C* integer.  That's a
 | |
| 		 * bug; we let that slide in math.pow() (which currently
 | |
| 		 * reflects all platform accidents), but not for Python's **.
 | |
| 		 */
 | |
| 		 if (iv == -1.0 && !Py_IS_INFINITY(iw) && iw == iw) {
 | |
| 		 	/* XXX the "iw == iw" was to weed out NaNs.  This
 | |
| 		 	 * XXX doesn't actually work on all platforms.
 | |
| 		 	 */
 | |
| 		 	/* Return 1 if iw is even, -1 if iw is odd; there's
 | |
| 		 	 * no guarantee that any C integral type is big
 | |
| 		 	 * enough to hold iw, so we have to check this
 | |
| 		 	 * indirectly.
 | |
| 		 	 */
 | |
| 		 	ix = floor(iw * 0.5) * 2.0;
 | |
| 			return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0);
 | |
| 		}
 | |
| 		/* Else iv != -1.0, and overflow or underflow are possible.
 | |
| 		 * Unless we're to write pow() ourselves, we have to trust
 | |
| 		 * the platform to do this correctly.
 | |
| 		 */
 | |
| 	}
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("pow", return NULL)
 | |
| 	ix = pow(iv, iw);
 | |
| 	PyFPE_END_PROTECT(ix)
 | |
| 	Py_ADJUST_ERANGE1(ix);
 | |
| 	if (errno != 0) {
 | |
| 		/* We don't expect any errno value other than ERANGE, but
 | |
| 		 * the range of libm bugs appears unbounded.
 | |
| 		 */
 | |
| 		PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
 | |
| 						     PyExc_ValueError);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return PyFloat_FromDouble(ix);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_neg(PyFloatObject *v)
 | |
| {
 | |
| 	return PyFloat_FromDouble(-v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_pos(PyFloatObject *v)
 | |
| {
 | |
| 	if (PyFloat_CheckExact(v)) {
 | |
| 		Py_INCREF(v);
 | |
| 		return (PyObject *)v;
 | |
| 	}
 | |
| 	else
 | |
| 		return PyFloat_FromDouble(v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_abs(PyFloatObject *v)
 | |
| {
 | |
| 	return PyFloat_FromDouble(fabs(v->ob_fval));
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_nonzero(PyFloatObject *v)
 | |
| {
 | |
| 	return v->ob_fval != 0.0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_coerce(PyObject **pv, PyObject **pw)
 | |
| {
 | |
| 	if (PyInt_Check(*pw)) {
 | |
| 		long x = PyInt_AsLong(*pw);
 | |
| 		*pw = PyFloat_FromDouble((double)x);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyLong_Check(*pw)) {
 | |
| 		double x = PyLong_AsDouble(*pw);
 | |
| 		if (x == -1.0 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		*pw = PyFloat_FromDouble(x);
 | |
| 		Py_INCREF(*pv);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (PyFloat_Check(*pw)) {
 | |
| 		Py_INCREF(*pv);
 | |
| 		Py_INCREF(*pw);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1; /* Can't do it */
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_long(PyObject *v)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(v);
 | |
| 	return PyLong_FromDouble(x);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_int(PyObject *v)
 | |
| {
 | |
| 	double x = PyFloat_AsDouble(v);
 | |
| 	double wholepart;	/* integral portion of x, rounded toward 0 */
 | |
| 
 | |
| 	(void)modf(x, &wholepart);
 | |
| 	/* Try to get out cheap if this fits in a Python int.  The attempt
 | |
| 	 * to cast to long must be protected, as C doesn't define what
 | |
| 	 * happens if the double is too big to fit in a long.  Some rare
 | |
| 	 * systems raise an exception then (RISCOS was mentioned as one,
 | |
| 	 * and someone using a non-default option on Sun also bumped into
 | |
| 	 * that).  Note that checking for >= and <= LONG_{MIN,MAX} would
 | |
| 	 * still be vulnerable:  if a long has more bits of precision than
 | |
| 	 * a double, casting MIN/MAX to double may yield an approximation,
 | |
| 	 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
 | |
| 	 * yield true from the C expression wholepart<=LONG_MAX, despite
 | |
| 	 * that wholepart is actually greater than LONG_MAX.
 | |
| 	 */
 | |
| 	if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
 | |
| 		const long aslong = (long)wholepart;
 | |
| 		return PyInt_FromLong(aslong);
 | |
| 	}
 | |
| 	return PyLong_FromDouble(wholepart);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_float(PyObject *v)
 | |
| {
 | |
| 	Py_INCREF(v);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | |
| 
 | |
| static PyObject *
 | |
| float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *x = Py_False; /* Integer zero */
 | |
| 	static char *kwlist[] = {"x", 0};
 | |
| 
 | |
| 	if (type != &PyFloat_Type)
 | |
| 		return float_subtype_new(type, args, kwds); /* Wimp out */
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
 | |
| 		return NULL;
 | |
| 	if (PyString_Check(x))
 | |
| 		return PyFloat_FromString(x, NULL);
 | |
| 	return PyNumber_Float(x);
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of float:
 | |
|    first create a regular float from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize its ob_fval
 | |
|    from the regular float.  The regular float is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *tmp, *new;
 | |
| 
 | |
| 	assert(PyType_IsSubtype(type, &PyFloat_Type));
 | |
| 	tmp = float_new(&PyFloat_Type, args, kwds);
 | |
| 	if (tmp == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyFloat_CheckExact(tmp));
 | |
| 	new = type->tp_alloc(type, 0);
 | |
| 	if (new == NULL) {
 | |
| 		Py_DECREF(tmp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
 | |
| 	Py_DECREF(tmp);
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| float_getnewargs(PyFloatObject *v)
 | |
| {
 | |
| 	return Py_BuildValue("(d)", v->ob_fval);
 | |
| }
 | |
| 
 | |
| static PyMethodDef float_methods[] = {
 | |
| 	{"__getnewargs__",	(PyCFunction)float_getnewargs,	METH_NOARGS},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(float_doc,
 | |
| "float(x) -> floating point number\n\
 | |
| \n\
 | |
| Convert a string or number to a floating point number, if possible.");
 | |
| 
 | |
| 
 | |
| static PyNumberMethods float_as_number = {
 | |
| 	(binaryfunc)float_add, /*nb_add*/
 | |
| 	(binaryfunc)float_sub, /*nb_subtract*/
 | |
| 	(binaryfunc)float_mul, /*nb_multiply*/
 | |
| 	(binaryfunc)float_classic_div, /*nb_divide*/
 | |
| 	(binaryfunc)float_rem, /*nb_remainder*/
 | |
| 	(binaryfunc)float_divmod, /*nb_divmod*/
 | |
| 	(ternaryfunc)float_pow, /*nb_power*/
 | |
| 	(unaryfunc)float_neg, /*nb_negative*/
 | |
| 	(unaryfunc)float_pos, /*nb_positive*/
 | |
| 	(unaryfunc)float_abs, /*nb_absolute*/
 | |
| 	(inquiry)float_nonzero, /*nb_nonzero*/
 | |
| 	0,		/*nb_invert*/
 | |
| 	0,		/*nb_lshift*/
 | |
| 	0,		/*nb_rshift*/
 | |
| 	0,		/*nb_and*/
 | |
| 	0,		/*nb_xor*/
 | |
| 	0,		/*nb_or*/
 | |
| 	(coercion)float_coerce, /*nb_coerce*/
 | |
| 	(unaryfunc)float_int, /*nb_int*/
 | |
| 	(unaryfunc)float_long, /*nb_long*/
 | |
| 	(unaryfunc)float_float, /*nb_float*/
 | |
| 	0,		/* nb_oct */
 | |
| 	0,		/* nb_hex */
 | |
| 	0,		/* nb_inplace_add */
 | |
| 	0,		/* nb_inplace_subtract */
 | |
| 	0,		/* nb_inplace_multiply */
 | |
| 	0,		/* nb_inplace_divide */
 | |
| 	0,		/* nb_inplace_remainder */
 | |
| 	0, 		/* nb_inplace_power */
 | |
| 	0,		/* nb_inplace_lshift */
 | |
| 	0,		/* nb_inplace_rshift */
 | |
| 	0,		/* nb_inplace_and */
 | |
| 	0,		/* nb_inplace_xor */
 | |
| 	0,		/* nb_inplace_or */
 | |
| 	float_floor_div, /* nb_floor_divide */
 | |
| 	float_div,	/* nb_true_divide */
 | |
| 	0,		/* nb_inplace_floor_divide */
 | |
| 	0,		/* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyFloat_Type = {
 | |
| 	PyObject_HEAD_INIT(&PyType_Type)
 | |
| 	0,
 | |
| 	"float",
 | |
| 	sizeof(PyFloatObject),
 | |
| 	0,
 | |
| 	(destructor)float_dealloc,		/* tp_dealloc */
 | |
| 	(printfunc)float_print, 		/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,			 		/* tp_compare */
 | |
| 	(reprfunc)float_repr,			/* tp_repr */
 | |
| 	&float_as_number,			/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)float_hash,			/* tp_hash */
 | |
| 	0,					/* tp_call */
 | |
| 	(reprfunc)float_str,			/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | |
| 		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | |
| 	float_doc,				/* tp_doc */
 | |
|  	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	(richcmpfunc)float_richcompare,		/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	float_methods,				/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	0,					/* tp_alloc */
 | |
| 	float_new,				/* tp_new */
 | |
| };
 | |
| 
 | |
| void
 | |
| PyFloat_Fini(void)
 | |
| {
 | |
| 	PyFloatObject *p;
 | |
| 	PyFloatBlock *list, *next;
 | |
| 	unsigned i;
 | |
| 	int bc, bf;	/* block count, number of freed blocks */
 | |
| 	int frem, fsum;	/* remaining unfreed floats per block, total */
 | |
| 
 | |
| 	bc = 0;
 | |
| 	bf = 0;
 | |
| 	fsum = 0;
 | |
| 	list = block_list;
 | |
| 	block_list = NULL;
 | |
| 	free_list = NULL;
 | |
| 	while (list != NULL) {
 | |
| 		bc++;
 | |
| 		frem = 0;
 | |
| 		for (i = 0, p = &list->objects[0];
 | |
| 		     i < N_FLOATOBJECTS;
 | |
| 		     i++, p++) {
 | |
| 			if (PyFloat_CheckExact(p) && p->ob_refcnt != 0)
 | |
| 				frem++;
 | |
| 		}
 | |
| 		next = list->next;
 | |
| 		if (frem) {
 | |
| 			list->next = block_list;
 | |
| 			block_list = list;
 | |
| 			for (i = 0, p = &list->objects[0];
 | |
| 			     i < N_FLOATOBJECTS;
 | |
| 			     i++, p++) {
 | |
| 				if (!PyFloat_CheckExact(p) ||
 | |
| 				    p->ob_refcnt == 0) {
 | |
| 					p->ob_type = (struct _typeobject *)
 | |
| 						free_list;
 | |
| 					free_list = p;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			PyMem_FREE(list); /* XXX PyObject_FREE ??? */
 | |
| 			bf++;
 | |
| 		}
 | |
| 		fsum += frem;
 | |
| 		list = next;
 | |
| 	}
 | |
| 	if (!Py_VerboseFlag)
 | |
| 		return;
 | |
| 	fprintf(stderr, "# cleanup floats");
 | |
| 	if (!fsum) {
 | |
| 		fprintf(stderr, "\n");
 | |
| 	}
 | |
| 	else {
 | |
| 		fprintf(stderr,
 | |
| 			": %d unfreed float%s in %d out of %d block%s\n",
 | |
| 			fsum, fsum == 1 ? "" : "s",
 | |
| 			bc - bf, bc, bc == 1 ? "" : "s");
 | |
| 	}
 | |
| 	if (Py_VerboseFlag > 1) {
 | |
| 		list = block_list;
 | |
| 		while (list != NULL) {
 | |
| 			for (i = 0, p = &list->objects[0];
 | |
| 			     i < N_FLOATOBJECTS;
 | |
| 			     i++, p++) {
 | |
| 				if (PyFloat_CheckExact(p) &&
 | |
| 				    p->ob_refcnt != 0) {
 | |
| 					char buf[100];
 | |
| 					PyFloat_AsString(buf, p);
 | |
| 					fprintf(stderr,
 | |
| 			     "#   <float at %p, refcnt=%d, val=%s>\n",
 | |
| 						p, p->ob_refcnt, buf);
 | |
| 				}
 | |
| 			}
 | |
| 			list = list->next;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
|  * _PyFloat_{Pack,Unpack}{4,8}.  See floatobject.h.
 | |
|  *
 | |
|  * TODO:  On platforms that use the standard IEEE-754 single and double
 | |
|  * formats natively, these routines could simply copy the bytes.
 | |
|  */
 | |
| int
 | |
| _PyFloat_Pack4(double x, unsigned char *p, int le)
 | |
| {
 | |
| 	unsigned char sign;
 | |
| 	int e;
 | |
| 	double f;
 | |
| 	unsigned int fbits;
 | |
| 	int incr = 1;
 | |
| 
 | |
| 	if (le) {
 | |
| 		p += 3;
 | |
| 		incr = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (x < 0) {
 | |
| 		sign = 1;
 | |
| 		x = -x;
 | |
| 	}
 | |
| 	else
 | |
| 		sign = 0;
 | |
| 
 | |
| 	f = frexp(x, &e);
 | |
| 
 | |
| 	/* Normalize f to be in the range [1.0, 2.0) */
 | |
| 	if (0.5 <= f && f < 1.0) {
 | |
| 		f *= 2.0;
 | |
| 		e--;
 | |
| 	}
 | |
| 	else if (f == 0.0)
 | |
| 		e = 0;
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_SystemError,
 | |
| 				"frexp() result out of range");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (e >= 128)
 | |
| 		goto Overflow;
 | |
| 	else if (e < -126) {
 | |
| 		/* Gradual underflow */
 | |
| 		f = ldexp(f, 126 + e);
 | |
| 		e = 0;
 | |
| 	}
 | |
| 	else if (!(e == 0 && f == 0.0)) {
 | |
| 		e += 127;
 | |
| 		f -= 1.0; /* Get rid of leading 1 */
 | |
| 	}
 | |
| 
 | |
| 	f *= 8388608.0; /* 2**23 */
 | |
| 	fbits = (unsigned int)(f + 0.5); /* Round */
 | |
| 	assert(fbits <= 8388608);
 | |
| 	if (fbits >> 23) {
 | |
| 		/* The carry propagated out of a string of 23 1 bits. */
 | |
| 		fbits = 0;
 | |
| 		++e;
 | |
| 		if (e >= 255)
 | |
| 			goto Overflow;
 | |
| 	}
 | |
| 
 | |
| 	/* First byte */
 | |
| 	*p = (sign << 7) | (e >> 1);
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Second byte */
 | |
| 	*p = (char) (((e & 1) << 7) | (fbits >> 16));
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Third byte */
 | |
| 	*p = (fbits >> 8) & 0xFF;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Fourth byte */
 | |
| 	*p = fbits & 0xFF;
 | |
| 
 | |
| 	/* Done */
 | |
| 	return 0;
 | |
| 
 | |
|  Overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 			"float too large to pack with f format");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyFloat_Pack8(double x, unsigned char *p, int le)
 | |
| {
 | |
| 	unsigned char sign;
 | |
| 	int e;
 | |
| 	double f;
 | |
| 	unsigned int fhi, flo;
 | |
| 	int incr = 1;
 | |
| 
 | |
| 	if (le) {
 | |
| 		p += 7;
 | |
| 		incr = -1;
 | |
| 	}
 | |
| 
 | |
| 	if (x < 0) {
 | |
| 		sign = 1;
 | |
| 		x = -x;
 | |
| 	}
 | |
| 	else
 | |
| 		sign = 0;
 | |
| 
 | |
| 	f = frexp(x, &e);
 | |
| 
 | |
| 	/* Normalize f to be in the range [1.0, 2.0) */
 | |
| 	if (0.5 <= f && f < 1.0) {
 | |
| 		f *= 2.0;
 | |
| 		e--;
 | |
| 	}
 | |
| 	else if (f == 0.0)
 | |
| 		e = 0;
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_SystemError,
 | |
| 				"frexp() result out of range");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (e >= 1024)
 | |
| 		goto Overflow;
 | |
| 	else if (e < -1022) {
 | |
| 		/* Gradual underflow */
 | |
| 		f = ldexp(f, 1022 + e);
 | |
| 		e = 0;
 | |
| 	}
 | |
| 	else if (!(e == 0 && f == 0.0)) {
 | |
| 		e += 1023;
 | |
| 		f -= 1.0; /* Get rid of leading 1 */
 | |
| 	}
 | |
| 
 | |
| 	/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
 | |
| 	f *= 268435456.0; /* 2**28 */
 | |
| 	fhi = (unsigned int)f; /* Truncate */
 | |
| 	assert(fhi < 268435456);
 | |
| 
 | |
| 	f -= (double)fhi;
 | |
| 	f *= 16777216.0; /* 2**24 */
 | |
| 	flo = (unsigned int)(f + 0.5); /* Round */
 | |
| 	assert(flo <= 16777216);
 | |
| 	if (flo >> 24) {
 | |
| 		/* The carry propagated out of a string of 24 1 bits. */
 | |
| 		flo = 0;
 | |
| 		++fhi;
 | |
| 		if (fhi >> 28) {
 | |
| 			/* And it also progagated out of the next 28 bits. */
 | |
| 			fhi = 0;
 | |
| 			++e;
 | |
| 			if (e >= 2047)
 | |
| 				goto Overflow;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* First byte */
 | |
| 	*p = (sign << 7) | (e >> 4);
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Second byte */
 | |
| 	*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Third byte */
 | |
| 	*p = (fhi >> 16) & 0xFF;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Fourth byte */
 | |
| 	*p = (fhi >> 8) & 0xFF;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Fifth byte */
 | |
| 	*p = fhi & 0xFF;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Sixth byte */
 | |
| 	*p = (flo >> 16) & 0xFF;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Seventh byte */
 | |
| 	*p = (flo >> 8) & 0xFF;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Eighth byte */
 | |
| 	*p = flo & 0xFF;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Done */
 | |
| 	return 0;
 | |
| 
 | |
|  Overflow:
 | |
| 	PyErr_SetString(PyExc_OverflowError,
 | |
| 			"float too large to pack with d format");
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyFloat_Unpack4(const unsigned char *p, int le)
 | |
| {
 | |
| 	unsigned char sign;
 | |
| 	int e;
 | |
| 	unsigned int f;
 | |
| 	double x;
 | |
| 	int incr = 1;
 | |
| 
 | |
| 	if (le) {
 | |
| 		p += 3;
 | |
| 		incr = -1;
 | |
| 	}
 | |
| 
 | |
| 	/* First byte */
 | |
| 	sign = (*p >> 7) & 1;
 | |
| 	e = (*p & 0x7F) << 1;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Second byte */
 | |
| 	e |= (*p >> 7) & 1;
 | |
| 	f = (*p & 0x7F) << 16;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Third byte */
 | |
| 	f |= *p << 8;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Fourth byte */
 | |
| 	f |= *p;
 | |
| 
 | |
| 	x = (double)f / 8388608.0;
 | |
| 
 | |
| 	/* XXX This sadly ignores Inf/NaN issues */
 | |
| 	if (e == 0)
 | |
| 		e = -126;
 | |
| 	else {
 | |
| 		x += 1.0;
 | |
| 		e -= 127;
 | |
| 	}
 | |
| 	x = ldexp(x, e);
 | |
| 
 | |
| 	if (sign)
 | |
| 		x = -x;
 | |
| 
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| double
 | |
| _PyFloat_Unpack8(const unsigned char *p, int le)
 | |
| {
 | |
| 	unsigned char sign;
 | |
| 	int e;
 | |
| 	unsigned int fhi, flo;
 | |
| 	double x;
 | |
| 	int incr = 1;
 | |
| 
 | |
| 	if (le) {
 | |
| 		p += 7;
 | |
| 		incr = -1;
 | |
| 	}
 | |
| 
 | |
| 	/* First byte */
 | |
| 	sign = (*p >> 7) & 1;
 | |
| 	e = (*p & 0x7F) << 4;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Second byte */
 | |
| 	e |= (*p >> 4) & 0xF;
 | |
| 	fhi = (*p & 0xF) << 24;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Third byte */
 | |
| 	fhi |= *p << 16;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Fourth byte */
 | |
| 	fhi |= *p  << 8;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Fifth byte */
 | |
| 	fhi |= *p;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Sixth byte */
 | |
| 	flo = *p << 16;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Seventh byte */
 | |
| 	flo |= *p << 8;
 | |
| 	p += incr;
 | |
| 
 | |
| 	/* Eighth byte */
 | |
| 	flo |= *p;
 | |
| 
 | |
| 	x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
 | |
| 	x /= 268435456.0; /* 2**28 */
 | |
| 
 | |
| 	/* XXX This sadly ignores Inf/NaN */
 | |
| 	if (e == 0)
 | |
| 		e = -1022;
 | |
| 	else {
 | |
| 		x += 1.0;
 | |
| 		e -= 1023;
 | |
| 	}
 | |
| 	x = ldexp(x, e);
 | |
| 
 | |
| 	if (sign)
 | |
| 		x = -x;
 | |
| 
 | |
| 	return x;
 | |
| }
 | 
