mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 19:34:08 +00:00 
			
		
		
		
	This PR fixes the error message from float(s) in the case where s contains only whitespace.
		
			
				
	
	
		
			2648 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2648 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Float object implementation */
 | 
						|
 | 
						|
/* XXX There should be overflow checks here, but it's hard to check
 | 
						|
   for any kind of float exception without losing portability. */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "pycore_dtoa.h"          // _Py_dg_dtoa()
 | 
						|
#include "pycore_floatobject.h"   // _PyFloat_FormatAdvancedWriter()
 | 
						|
#include "pycore_initconfig.h"    // _PyStatus_OK()
 | 
						|
#include "pycore_interp.h"        // _PyInterpreterState.float_state
 | 
						|
#include "pycore_long.h"          // _PyLong_GetOne()
 | 
						|
#include "pycore_object.h"        // _PyObject_Init()
 | 
						|
#include "pycore_pymath.h"        // _PY_SHORT_FLOAT_REPR
 | 
						|
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
 | 
						|
#include "pycore_structseq.h"     // _PyStructSequence_FiniType()
 | 
						|
 | 
						|
#include <ctype.h>
 | 
						|
#include <float.h>
 | 
						|
#include <stdlib.h>               // strtol()
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
class float "PyObject *" "&PyFloat_Type"
 | 
						|
[clinic start generated code]*/
 | 
						|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/
 | 
						|
 | 
						|
#include "clinic/floatobject.c.h"
 | 
						|
 | 
						|
#ifndef PyFloat_MAXFREELIST
 | 
						|
#  define PyFloat_MAXFREELIST   100
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#if PyFloat_MAXFREELIST > 0
 | 
						|
static struct _Py_float_state *
 | 
						|
get_float_state(void)
 | 
						|
{
 | 
						|
    PyInterpreterState *interp = _PyInterpreterState_GET();
 | 
						|
    return &interp->float_state;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_GetMax(void)
 | 
						|
{
 | 
						|
    return DBL_MAX;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_GetMin(void)
 | 
						|
{
 | 
						|
    return DBL_MIN;
 | 
						|
}
 | 
						|
 | 
						|
static PyTypeObject FloatInfoType;
 | 
						|
 | 
						|
PyDoc_STRVAR(floatinfo__doc__,
 | 
						|
"sys.float_info\n\
 | 
						|
\n\
 | 
						|
A named tuple holding information about the float type. It contains low level\n\
 | 
						|
information about the precision and internal representation. Please study\n\
 | 
						|
your system's :file:`float.h` for more information.");
 | 
						|
 | 
						|
static PyStructSequence_Field floatinfo_fields[] = {
 | 
						|
    {"max",             "DBL_MAX -- maximum representable finite float"},
 | 
						|
    {"max_exp",         "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
 | 
						|
                    "is representable"},
 | 
						|
    {"max_10_exp",      "DBL_MAX_10_EXP -- maximum int e such that 10**e "
 | 
						|
                    "is representable"},
 | 
						|
    {"min",             "DBL_MIN -- Minimum positive normalized float"},
 | 
						|
    {"min_exp",         "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
 | 
						|
                    "is a normalized float"},
 | 
						|
    {"min_10_exp",      "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
 | 
						|
                    "a normalized float"},
 | 
						|
    {"dig",             "DBL_DIG -- maximum number of decimal digits that "
 | 
						|
                    "can be faithfully represented in a float"},
 | 
						|
    {"mant_dig",        "DBL_MANT_DIG -- mantissa digits"},
 | 
						|
    {"epsilon",         "DBL_EPSILON -- Difference between 1 and the next "
 | 
						|
                    "representable float"},
 | 
						|
    {"radix",           "FLT_RADIX -- radix of exponent"},
 | 
						|
    {"rounds",          "FLT_ROUNDS -- rounding mode used for arithmetic "
 | 
						|
                    "operations"},
 | 
						|
    {0}
 | 
						|
};
 | 
						|
 | 
						|
static PyStructSequence_Desc floatinfo_desc = {
 | 
						|
    "sys.float_info",           /* name */
 | 
						|
    floatinfo__doc__,           /* doc */
 | 
						|
    floatinfo_fields,           /* fields */
 | 
						|
    11
 | 
						|
};
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyFloat_GetInfo(void)
 | 
						|
{
 | 
						|
    PyObject* floatinfo;
 | 
						|
    int pos = 0;
 | 
						|
 | 
						|
    floatinfo = PyStructSequence_New(&FloatInfoType);
 | 
						|
    if (floatinfo == NULL) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
#define SetIntFlag(flag) \
 | 
						|
    PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
 | 
						|
#define SetDblFlag(flag) \
 | 
						|
    PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
 | 
						|
 | 
						|
    SetDblFlag(DBL_MAX);
 | 
						|
    SetIntFlag(DBL_MAX_EXP);
 | 
						|
    SetIntFlag(DBL_MAX_10_EXP);
 | 
						|
    SetDblFlag(DBL_MIN);
 | 
						|
    SetIntFlag(DBL_MIN_EXP);
 | 
						|
    SetIntFlag(DBL_MIN_10_EXP);
 | 
						|
    SetIntFlag(DBL_DIG);
 | 
						|
    SetIntFlag(DBL_MANT_DIG);
 | 
						|
    SetDblFlag(DBL_EPSILON);
 | 
						|
    SetIntFlag(FLT_RADIX);
 | 
						|
    SetIntFlag(FLT_ROUNDS);
 | 
						|
#undef SetIntFlag
 | 
						|
#undef SetDblFlag
 | 
						|
 | 
						|
    if (PyErr_Occurred()) {
 | 
						|
        Py_CLEAR(floatinfo);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return floatinfo;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyFloat_FromDouble(double fval)
 | 
						|
{
 | 
						|
    PyFloatObject *op;
 | 
						|
#if PyFloat_MAXFREELIST > 0
 | 
						|
    struct _Py_float_state *state = get_float_state();
 | 
						|
    op = state->free_list;
 | 
						|
    if (op != NULL) {
 | 
						|
#ifdef Py_DEBUG
 | 
						|
        // PyFloat_FromDouble() must not be called after _PyFloat_Fini()
 | 
						|
        assert(state->numfree != -1);
 | 
						|
#endif
 | 
						|
        state->free_list = (PyFloatObject *) Py_TYPE(op);
 | 
						|
        state->numfree--;
 | 
						|
        OBJECT_STAT_INC(from_freelist);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        op = PyObject_Malloc(sizeof(PyFloatObject));
 | 
						|
        if (!op) {
 | 
						|
            return PyErr_NoMemory();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    _PyObject_Init((PyObject*)op, &PyFloat_Type);
 | 
						|
    op->ob_fval = fval;
 | 
						|
    return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
 | 
						|
{
 | 
						|
    double x;
 | 
						|
    const char *end;
 | 
						|
    const char *last = s + len;
 | 
						|
    /* strip leading whitespace */
 | 
						|
    while (s < last && Py_ISSPACE(*s)) {
 | 
						|
        s++;
 | 
						|
    }
 | 
						|
    if (s == last) {
 | 
						|
        PyErr_Format(PyExc_ValueError,
 | 
						|
                     "could not convert string to float: "
 | 
						|
                     "%R", obj);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* strip trailing whitespace */
 | 
						|
    while (s < last - 1 && Py_ISSPACE(last[-1])) {
 | 
						|
        last--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* We don't care about overflow or underflow.  If the platform
 | 
						|
     * supports them, infinities and signed zeroes (on underflow) are
 | 
						|
     * fine. */
 | 
						|
    x = PyOS_string_to_double(s, (char **)&end, NULL);
 | 
						|
    if (end != last) {
 | 
						|
        PyErr_Format(PyExc_ValueError,
 | 
						|
                     "could not convert string to float: "
 | 
						|
                     "%R", obj);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    else if (x == -1.0 && PyErr_Occurred()) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyFloat_FromString(PyObject *v)
 | 
						|
{
 | 
						|
    const char *s;
 | 
						|
    PyObject *s_buffer = NULL;
 | 
						|
    Py_ssize_t len;
 | 
						|
    Py_buffer view = {NULL, NULL};
 | 
						|
    PyObject *result = NULL;
 | 
						|
 | 
						|
    if (PyUnicode_Check(v)) {
 | 
						|
        s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
 | 
						|
        if (s_buffer == NULL)
 | 
						|
            return NULL;
 | 
						|
        assert(PyUnicode_IS_ASCII(s_buffer));
 | 
						|
        /* Simply get a pointer to existing ASCII characters. */
 | 
						|
        s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
 | 
						|
        assert(s != NULL);
 | 
						|
    }
 | 
						|
    else if (PyBytes_Check(v)) {
 | 
						|
        s = PyBytes_AS_STRING(v);
 | 
						|
        len = PyBytes_GET_SIZE(v);
 | 
						|
    }
 | 
						|
    else if (PyByteArray_Check(v)) {
 | 
						|
        s = PyByteArray_AS_STRING(v);
 | 
						|
        len = PyByteArray_GET_SIZE(v);
 | 
						|
    }
 | 
						|
    else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
 | 
						|
        s = (const char *)view.buf;
 | 
						|
        len = view.len;
 | 
						|
        /* Copy to NUL-terminated buffer. */
 | 
						|
        s_buffer = PyBytes_FromStringAndSize(s, len);
 | 
						|
        if (s_buffer == NULL) {
 | 
						|
            PyBuffer_Release(&view);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        s = PyBytes_AS_STRING(s_buffer);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
            "float() argument must be a string or a real number, not '%.200s'",
 | 
						|
            Py_TYPE(v)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
 | 
						|
                                                   float_from_string_inner);
 | 
						|
    PyBuffer_Release(&view);
 | 
						|
    Py_XDECREF(s_buffer);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyFloat_ExactDealloc(PyObject *obj)
 | 
						|
{
 | 
						|
    assert(PyFloat_CheckExact(obj));
 | 
						|
    PyFloatObject *op = (PyFloatObject *)obj;
 | 
						|
#if PyFloat_MAXFREELIST > 0
 | 
						|
    struct _Py_float_state *state = get_float_state();
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    // float_dealloc() must not be called after _PyFloat_Fini()
 | 
						|
    assert(state->numfree != -1);
 | 
						|
#endif
 | 
						|
    if (state->numfree >= PyFloat_MAXFREELIST)  {
 | 
						|
        PyObject_Free(op);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    state->numfree++;
 | 
						|
    Py_SET_TYPE(op, (PyTypeObject *)state->free_list);
 | 
						|
    state->free_list = op;
 | 
						|
    OBJECT_STAT_INC(to_freelist);
 | 
						|
#else
 | 
						|
    PyObject_Free(op);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
float_dealloc(PyObject *op)
 | 
						|
{
 | 
						|
    assert(PyFloat_Check(op));
 | 
						|
#if PyFloat_MAXFREELIST > 0
 | 
						|
    if (PyFloat_CheckExact(op)) {
 | 
						|
        _PyFloat_ExactDealloc(op);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif
 | 
						|
    {
 | 
						|
        Py_TYPE(op)->tp_free(op);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_AsDouble(PyObject *op)
 | 
						|
{
 | 
						|
    PyNumberMethods *nb;
 | 
						|
    PyObject *res;
 | 
						|
    double val;
 | 
						|
 | 
						|
    if (op == NULL) {
 | 
						|
        PyErr_BadArgument();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyFloat_Check(op)) {
 | 
						|
        return PyFloat_AS_DOUBLE(op);
 | 
						|
    }
 | 
						|
 | 
						|
    nb = Py_TYPE(op)->tp_as_number;
 | 
						|
    if (nb == NULL || nb->nb_float == NULL) {
 | 
						|
        if (nb && nb->nb_index) {
 | 
						|
            PyObject *res = _PyNumber_Index(op);
 | 
						|
            if (!res) {
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
            double val = PyLong_AsDouble(res);
 | 
						|
            Py_DECREF(res);
 | 
						|
            return val;
 | 
						|
        }
 | 
						|
        PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
 | 
						|
                     Py_TYPE(op)->tp_name);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    res = (*nb->nb_float) (op);
 | 
						|
    if (res == NULL) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (!PyFloat_CheckExact(res)) {
 | 
						|
        if (!PyFloat_Check(res)) {
 | 
						|
            PyErr_Format(PyExc_TypeError,
 | 
						|
                         "%.50s.__float__ returned non-float (type %.50s)",
 | 
						|
                         Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name);
 | 
						|
            Py_DECREF(res);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
 | 
						|
                "%.50s.__float__ returned non-float (type %.50s).  "
 | 
						|
                "The ability to return an instance of a strict subclass of float "
 | 
						|
                "is deprecated, and may be removed in a future version of Python.",
 | 
						|
                Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name)) {
 | 
						|
            Py_DECREF(res);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    val = PyFloat_AS_DOUBLE(res);
 | 
						|
    Py_DECREF(res);
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/* Macro and helper that convert PyObject obj to a C double and store
 | 
						|
   the value in dbl.  If conversion to double raises an exception, obj is
 | 
						|
   set to NULL, and the function invoking this macro returns NULL.  If
 | 
						|
   obj is not of float or int type, Py_NotImplemented is incref'ed,
 | 
						|
   stored in obj, and returned from the function invoking this macro.
 | 
						|
*/
 | 
						|
#define CONVERT_TO_DOUBLE(obj, dbl)                     \
 | 
						|
    if (PyFloat_Check(obj))                             \
 | 
						|
        dbl = PyFloat_AS_DOUBLE(obj);                   \
 | 
						|
    else if (convert_to_double(&(obj), &(dbl)) < 0)     \
 | 
						|
        return obj;
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static int
 | 
						|
convert_to_double(PyObject **v, double *dbl)
 | 
						|
{
 | 
						|
    PyObject *obj = *v;
 | 
						|
 | 
						|
    if (PyLong_Check(obj)) {
 | 
						|
        *dbl = PyLong_AsDouble(obj);
 | 
						|
        if (*dbl == -1.0 && PyErr_Occurred()) {
 | 
						|
            *v = NULL;
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_INCREF(Py_NotImplemented);
 | 
						|
        *v = Py_NotImplemented;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_repr(PyFloatObject *v)
 | 
						|
{
 | 
						|
    PyObject *result;
 | 
						|
    char *buf;
 | 
						|
 | 
						|
    buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
 | 
						|
                                'r', 0,
 | 
						|
                                Py_DTSF_ADD_DOT_0,
 | 
						|
                                NULL);
 | 
						|
    if (!buf)
 | 
						|
        return PyErr_NoMemory();
 | 
						|
    result = _PyUnicode_FromASCII(buf, strlen(buf));
 | 
						|
    PyMem_Free(buf);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Comparison is pretty much a nightmare.  When comparing float to float,
 | 
						|
 * we do it as straightforwardly (and long-windedly) as conceivable, so
 | 
						|
 * that, e.g., Python x == y delivers the same result as the platform
 | 
						|
 * C x == y when x and/or y is a NaN.
 | 
						|
 * When mixing float with an integer type, there's no good *uniform* approach.
 | 
						|
 * Converting the double to an integer obviously doesn't work, since we
 | 
						|
 * may lose info from fractional bits.  Converting the integer to a double
 | 
						|
 * also has two failure modes:  (1) an int may trigger overflow (too
 | 
						|
 * large to fit in the dynamic range of a C double); (2) even a C long may have
 | 
						|
 * more bits than fit in a C double (e.g., on a 64-bit box long may have
 | 
						|
 * 63 bits of precision, but a C double probably has only 53), and then
 | 
						|
 * we can falsely claim equality when low-order integer bits are lost by
 | 
						|
 * coercion to double.  So this part is painful too.
 | 
						|
 */
 | 
						|
 | 
						|
static PyObject*
 | 
						|
float_richcompare(PyObject *v, PyObject *w, int op)
 | 
						|
{
 | 
						|
    double i, j;
 | 
						|
    int r = 0;
 | 
						|
 | 
						|
    assert(PyFloat_Check(v));
 | 
						|
    i = PyFloat_AS_DOUBLE(v);
 | 
						|
 | 
						|
    /* Switch on the type of w.  Set i and j to doubles to be compared,
 | 
						|
     * and op to the richcomp to use.
 | 
						|
     */
 | 
						|
    if (PyFloat_Check(w))
 | 
						|
        j = PyFloat_AS_DOUBLE(w);
 | 
						|
 | 
						|
    else if (!Py_IS_FINITE(i)) {
 | 
						|
        if (PyLong_Check(w))
 | 
						|
            /* If i is an infinity, its magnitude exceeds any
 | 
						|
             * finite integer, so it doesn't matter which int we
 | 
						|
             * compare i with.  If i is a NaN, similarly.
 | 
						|
             */
 | 
						|
            j = 0.0;
 | 
						|
        else
 | 
						|
            goto Unimplemented;
 | 
						|
    }
 | 
						|
 | 
						|
    else if (PyLong_Check(w)) {
 | 
						|
        int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
 | 
						|
        int wsign = _PyLong_Sign(w);
 | 
						|
        size_t nbits;
 | 
						|
        int exponent;
 | 
						|
 | 
						|
        if (vsign != wsign) {
 | 
						|
            /* Magnitudes are irrelevant -- the signs alone
 | 
						|
             * determine the outcome.
 | 
						|
             */
 | 
						|
            i = (double)vsign;
 | 
						|
            j = (double)wsign;
 | 
						|
            goto Compare;
 | 
						|
        }
 | 
						|
        /* The signs are the same. */
 | 
						|
        /* Convert w to a double if it fits.  In particular, 0 fits. */
 | 
						|
        nbits = _PyLong_NumBits(w);
 | 
						|
        if (nbits == (size_t)-1 && PyErr_Occurred()) {
 | 
						|
            /* This long is so large that size_t isn't big enough
 | 
						|
             * to hold the # of bits.  Replace with little doubles
 | 
						|
             * that give the same outcome -- w is so large that
 | 
						|
             * its magnitude must exceed the magnitude of any
 | 
						|
             * finite float.
 | 
						|
             */
 | 
						|
            PyErr_Clear();
 | 
						|
            i = (double)vsign;
 | 
						|
            assert(wsign != 0);
 | 
						|
            j = wsign * 2.0;
 | 
						|
            goto Compare;
 | 
						|
        }
 | 
						|
        if (nbits <= 48) {
 | 
						|
            j = PyLong_AsDouble(w);
 | 
						|
            /* It's impossible that <= 48 bits overflowed. */
 | 
						|
            assert(j != -1.0 || ! PyErr_Occurred());
 | 
						|
            goto Compare;
 | 
						|
        }
 | 
						|
        assert(wsign != 0); /* else nbits was 0 */
 | 
						|
        assert(vsign != 0); /* if vsign were 0, then since wsign is
 | 
						|
                             * not 0, we would have taken the
 | 
						|
                             * vsign != wsign branch at the start */
 | 
						|
        /* We want to work with non-negative numbers. */
 | 
						|
        if (vsign < 0) {
 | 
						|
            /* "Multiply both sides" by -1; this also swaps the
 | 
						|
             * comparator.
 | 
						|
             */
 | 
						|
            i = -i;
 | 
						|
            op = _Py_SwappedOp[op];
 | 
						|
        }
 | 
						|
        assert(i > 0.0);
 | 
						|
        (void) frexp(i, &exponent);
 | 
						|
        /* exponent is the # of bits in v before the radix point;
 | 
						|
         * we know that nbits (the # of bits in w) > 48 at this point
 | 
						|
         */
 | 
						|
        if (exponent < 0 || (size_t)exponent < nbits) {
 | 
						|
            i = 1.0;
 | 
						|
            j = 2.0;
 | 
						|
            goto Compare;
 | 
						|
        }
 | 
						|
        if ((size_t)exponent > nbits) {
 | 
						|
            i = 2.0;
 | 
						|
            j = 1.0;
 | 
						|
            goto Compare;
 | 
						|
        }
 | 
						|
        /* v and w have the same number of bits before the radix
 | 
						|
         * point.  Construct two ints that have the same comparison
 | 
						|
         * outcome.
 | 
						|
         */
 | 
						|
        {
 | 
						|
            double fracpart;
 | 
						|
            double intpart;
 | 
						|
            PyObject *result = NULL;
 | 
						|
            PyObject *vv = NULL;
 | 
						|
            PyObject *ww = w;
 | 
						|
 | 
						|
            if (wsign < 0) {
 | 
						|
                ww = PyNumber_Negative(w);
 | 
						|
                if (ww == NULL)
 | 
						|
                    goto Error;
 | 
						|
            }
 | 
						|
            else
 | 
						|
                Py_INCREF(ww);
 | 
						|
 | 
						|
            fracpart = modf(i, &intpart);
 | 
						|
            vv = PyLong_FromDouble(intpart);
 | 
						|
            if (vv == NULL)
 | 
						|
                goto Error;
 | 
						|
 | 
						|
            if (fracpart != 0.0) {
 | 
						|
                /* Shift left, and or a 1 bit into vv
 | 
						|
                 * to represent the lost fraction.
 | 
						|
                 */
 | 
						|
                PyObject *temp;
 | 
						|
 | 
						|
                temp = _PyLong_Lshift(ww, 1);
 | 
						|
                if (temp == NULL)
 | 
						|
                    goto Error;
 | 
						|
                Py_DECREF(ww);
 | 
						|
                ww = temp;
 | 
						|
 | 
						|
                temp = _PyLong_Lshift(vv, 1);
 | 
						|
                if (temp == NULL)
 | 
						|
                    goto Error;
 | 
						|
                Py_DECREF(vv);
 | 
						|
                vv = temp;
 | 
						|
 | 
						|
                temp = PyNumber_Or(vv, _PyLong_GetOne());
 | 
						|
                if (temp == NULL)
 | 
						|
                    goto Error;
 | 
						|
                Py_DECREF(vv);
 | 
						|
                vv = temp;
 | 
						|
            }
 | 
						|
 | 
						|
            r = PyObject_RichCompareBool(vv, ww, op);
 | 
						|
            if (r < 0)
 | 
						|
                goto Error;
 | 
						|
            result = PyBool_FromLong(r);
 | 
						|
         Error:
 | 
						|
            Py_XDECREF(vv);
 | 
						|
            Py_XDECREF(ww);
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
    } /* else if (PyLong_Check(w)) */
 | 
						|
 | 
						|
    else        /* w isn't float or int */
 | 
						|
        goto Unimplemented;
 | 
						|
 | 
						|
 Compare:
 | 
						|
    switch (op) {
 | 
						|
    case Py_EQ:
 | 
						|
        r = i == j;
 | 
						|
        break;
 | 
						|
    case Py_NE:
 | 
						|
        r = i != j;
 | 
						|
        break;
 | 
						|
    case Py_LE:
 | 
						|
        r = i <= j;
 | 
						|
        break;
 | 
						|
    case Py_GE:
 | 
						|
        r = i >= j;
 | 
						|
        break;
 | 
						|
    case Py_LT:
 | 
						|
        r = i < j;
 | 
						|
        break;
 | 
						|
    case Py_GT:
 | 
						|
        r = i > j;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    return PyBool_FromLong(r);
 | 
						|
 | 
						|
 Unimplemented:
 | 
						|
    Py_RETURN_NOTIMPLEMENTED;
 | 
						|
}
 | 
						|
 | 
						|
static Py_hash_t
 | 
						|
float_hash(PyFloatObject *v)
 | 
						|
{
 | 
						|
    return _Py_HashDouble((PyObject *)v, v->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_add(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    double a,b;
 | 
						|
    CONVERT_TO_DOUBLE(v, a);
 | 
						|
    CONVERT_TO_DOUBLE(w, b);
 | 
						|
    a = a + b;
 | 
						|
    return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_sub(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    double a,b;
 | 
						|
    CONVERT_TO_DOUBLE(v, a);
 | 
						|
    CONVERT_TO_DOUBLE(w, b);
 | 
						|
    a = a - b;
 | 
						|
    return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_mul(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    double a,b;
 | 
						|
    CONVERT_TO_DOUBLE(v, a);
 | 
						|
    CONVERT_TO_DOUBLE(w, b);
 | 
						|
    a = a * b;
 | 
						|
    return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    double a,b;
 | 
						|
    CONVERT_TO_DOUBLE(v, a);
 | 
						|
    CONVERT_TO_DOUBLE(w, b);
 | 
						|
    if (b == 0.0) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
                        "float division by zero");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    a = a / b;
 | 
						|
    return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_rem(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    double vx, wx;
 | 
						|
    double mod;
 | 
						|
    CONVERT_TO_DOUBLE(v, vx);
 | 
						|
    CONVERT_TO_DOUBLE(w, wx);
 | 
						|
    if (wx == 0.0) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
                        "float modulo");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    mod = fmod(vx, wx);
 | 
						|
    if (mod) {
 | 
						|
        /* ensure the remainder has the same sign as the denominator */
 | 
						|
        if ((wx < 0) != (mod < 0)) {
 | 
						|
            mod += wx;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* the remainder is zero, and in the presence of signed zeroes
 | 
						|
           fmod returns different results across platforms; ensure
 | 
						|
           it has the same sign as the denominator. */
 | 
						|
        mod = copysign(0.0, wx);
 | 
						|
    }
 | 
						|
    return PyFloat_FromDouble(mod);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_float_div_mod(double vx, double wx, double *floordiv, double *mod)
 | 
						|
{
 | 
						|
    double div;
 | 
						|
    *mod = fmod(vx, wx);
 | 
						|
    /* fmod is typically exact, so vx-mod is *mathematically* an
 | 
						|
       exact multiple of wx.  But this is fp arithmetic, and fp
 | 
						|
       vx - mod is an approximation; the result is that div may
 | 
						|
       not be an exact integral value after the division, although
 | 
						|
       it will always be very close to one.
 | 
						|
    */
 | 
						|
    div = (vx - *mod) / wx;
 | 
						|
    if (*mod) {
 | 
						|
        /* ensure the remainder has the same sign as the denominator */
 | 
						|
        if ((wx < 0) != (*mod < 0)) {
 | 
						|
            *mod += wx;
 | 
						|
            div -= 1.0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* the remainder is zero, and in the presence of signed zeroes
 | 
						|
           fmod returns different results across platforms; ensure
 | 
						|
           it has the same sign as the denominator. */
 | 
						|
        *mod = copysign(0.0, wx);
 | 
						|
    }
 | 
						|
    /* snap quotient to nearest integral value */
 | 
						|
    if (div) {
 | 
						|
        *floordiv = floor(div);
 | 
						|
        if (div - *floordiv > 0.5) {
 | 
						|
            *floordiv += 1.0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* div is zero - get the same sign as the true quotient */
 | 
						|
        *floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_divmod(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    double vx, wx;
 | 
						|
    double mod, floordiv;
 | 
						|
    CONVERT_TO_DOUBLE(v, vx);
 | 
						|
    CONVERT_TO_DOUBLE(w, wx);
 | 
						|
    if (wx == 0.0) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    _float_div_mod(vx, wx, &floordiv, &mod);
 | 
						|
    return Py_BuildValue("(dd)", floordiv, mod);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_floor_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    double vx, wx;
 | 
						|
    double mod, floordiv;
 | 
						|
    CONVERT_TO_DOUBLE(v, vx);
 | 
						|
    CONVERT_TO_DOUBLE(w, wx);
 | 
						|
    if (wx == 0.0) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError, "float floor division by zero");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    _float_div_mod(vx, wx, &floordiv, &mod);
 | 
						|
    return PyFloat_FromDouble(floordiv);
 | 
						|
}
 | 
						|
 | 
						|
/* determine whether x is an odd integer or not;  assumes that
 | 
						|
   x is not an infinity or nan. */
 | 
						|
#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_pow(PyObject *v, PyObject *w, PyObject *z)
 | 
						|
{
 | 
						|
    double iv, iw, ix;
 | 
						|
    int negate_result = 0;
 | 
						|
 | 
						|
    if ((PyObject *)z != Py_None) {
 | 
						|
        PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
 | 
						|
            "allowed unless all arguments are integers");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    CONVERT_TO_DOUBLE(v, iv);
 | 
						|
    CONVERT_TO_DOUBLE(w, iw);
 | 
						|
 | 
						|
    /* Sort out special cases here instead of relying on pow() */
 | 
						|
    if (iw == 0) {              /* v**0 is 1, even 0**0 */
 | 
						|
        return PyFloat_FromDouble(1.0);
 | 
						|
    }
 | 
						|
    if (Py_IS_NAN(iv)) {        /* nan**w = nan, unless w == 0 */
 | 
						|
        return PyFloat_FromDouble(iv);
 | 
						|
    }
 | 
						|
    if (Py_IS_NAN(iw)) {        /* v**nan = nan, unless v == 1; 1**nan = 1 */
 | 
						|
        return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(iw)) {
 | 
						|
        /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
 | 
						|
         *     abs(v) > 1 (including case where v infinite)
 | 
						|
         *
 | 
						|
         * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
 | 
						|
         *     abs(v) > 1 (including case where v infinite)
 | 
						|
         */
 | 
						|
        iv = fabs(iv);
 | 
						|
        if (iv == 1.0)
 | 
						|
            return PyFloat_FromDouble(1.0);
 | 
						|
        else if ((iw > 0.0) == (iv > 1.0))
 | 
						|
            return PyFloat_FromDouble(fabs(iw)); /* return inf */
 | 
						|
        else
 | 
						|
            return PyFloat_FromDouble(0.0);
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(iv)) {
 | 
						|
        /* (+-inf)**w is: inf for w positive, 0 for w negative; in
 | 
						|
         *     both cases, we need to add the appropriate sign if w is
 | 
						|
         *     an odd integer.
 | 
						|
         */
 | 
						|
        int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
 | 
						|
        if (iw > 0.0)
 | 
						|
            return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
 | 
						|
        else
 | 
						|
            return PyFloat_FromDouble(iw_is_odd ?
 | 
						|
                                      copysign(0.0, iv) : 0.0);
 | 
						|
    }
 | 
						|
    if (iv == 0.0) {  /* 0**w is: 0 for w positive, 1 for w zero
 | 
						|
                         (already dealt with above), and an error
 | 
						|
                         if w is negative. */
 | 
						|
        int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
 | 
						|
        if (iw < 0.0) {
 | 
						|
            PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
                            "0.0 cannot be raised to a "
 | 
						|
                            "negative power");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        /* use correct sign if iw is odd */
 | 
						|
        return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (iv < 0.0) {
 | 
						|
        /* Whether this is an error is a mess, and bumps into libm
 | 
						|
         * bugs so we have to figure it out ourselves.
 | 
						|
         */
 | 
						|
        if (iw != floor(iw)) {
 | 
						|
            /* Negative numbers raised to fractional powers
 | 
						|
             * become complex.
 | 
						|
             */
 | 
						|
            return PyComplex_Type.tp_as_number->nb_power(v, w, z);
 | 
						|
        }
 | 
						|
        /* iw is an exact integer, albeit perhaps a very large
 | 
						|
         * one.  Replace iv by its absolute value and remember
 | 
						|
         * to negate the pow result if iw is odd.
 | 
						|
         */
 | 
						|
        iv = -iv;
 | 
						|
        negate_result = DOUBLE_IS_ODD_INTEGER(iw);
 | 
						|
    }
 | 
						|
 | 
						|
    if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
 | 
						|
        /* (-1) ** large_integer also ends up here.  Here's an
 | 
						|
         * extract from the comments for the previous
 | 
						|
         * implementation explaining why this special case is
 | 
						|
         * necessary:
 | 
						|
         *
 | 
						|
         * -1 raised to an exact integer should never be exceptional.
 | 
						|
         * Alas, some libms (chiefly glibc as of early 2003) return
 | 
						|
         * NaN and set EDOM on pow(-1, large_int) if the int doesn't
 | 
						|
         * happen to be representable in a *C* integer.  That's a
 | 
						|
         * bug.
 | 
						|
         */
 | 
						|
        return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now iv and iw are finite, iw is nonzero, and iv is
 | 
						|
     * positive and not equal to 1.0.  We finally allow
 | 
						|
     * the platform pow to step in and do the rest.
 | 
						|
     */
 | 
						|
    errno = 0;
 | 
						|
    ix = pow(iv, iw);
 | 
						|
    _Py_ADJUST_ERANGE1(ix);
 | 
						|
    if (negate_result)
 | 
						|
        ix = -ix;
 | 
						|
 | 
						|
    if (errno != 0) {
 | 
						|
        /* We don't expect any errno value other than ERANGE, but
 | 
						|
         * the range of libm bugs appears unbounded.
 | 
						|
         */
 | 
						|
        PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
 | 
						|
                             PyExc_ValueError);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return PyFloat_FromDouble(ix);
 | 
						|
}
 | 
						|
 | 
						|
#undef DOUBLE_IS_ODD_INTEGER
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_neg(PyFloatObject *v)
 | 
						|
{
 | 
						|
    return PyFloat_FromDouble(-v->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_abs(PyFloatObject *v)
 | 
						|
{
 | 
						|
    return PyFloat_FromDouble(fabs(v->ob_fval));
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_bool(PyFloatObject *v)
 | 
						|
{
 | 
						|
    return v->ob_fval != 0.0;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.is_integer
 | 
						|
 | 
						|
Return True if the float is an integer.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_is_integer_impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(self);
 | 
						|
    PyObject *o;
 | 
						|
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    if (!Py_IS_FINITE(x))
 | 
						|
        Py_RETURN_FALSE;
 | 
						|
    errno = 0;
 | 
						|
    o = (floor(x) == x) ? Py_True : Py_False;
 | 
						|
    if (errno != 0) {
 | 
						|
        PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
 | 
						|
                             PyExc_ValueError);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    Py_INCREF(o);
 | 
						|
    return o;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.__trunc__
 | 
						|
 | 
						|
Return the Integral closest to x between 0 and x.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float___trunc___impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/
 | 
						|
{
 | 
						|
    return PyLong_FromDouble(PyFloat_AS_DOUBLE(self));
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.__floor__
 | 
						|
 | 
						|
Return the floor as an Integral.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float___floor___impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=e0551dbaea8c01d1 input=77bb13eb12e268df]*/
 | 
						|
{
 | 
						|
    double x = PyFloat_AS_DOUBLE(self);
 | 
						|
    return PyLong_FromDouble(floor(x));
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.__ceil__
 | 
						|
 | 
						|
Return the ceiling as an Integral.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float___ceil___impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=a2fd8858f73736f9 input=79e41ae94aa0a516]*/
 | 
						|
{
 | 
						|
    double x = PyFloat_AS_DOUBLE(self);
 | 
						|
    return PyLong_FromDouble(ceil(x));
 | 
						|
}
 | 
						|
 | 
						|
/* double_round: rounds a finite double to the closest multiple of
 | 
						|
   10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
 | 
						|
   ndigits <= 323).  Returns a Python float, or sets a Python error and
 | 
						|
   returns NULL on failure (OverflowError and memory errors are possible). */
 | 
						|
 | 
						|
#if _PY_SHORT_FLOAT_REPR == 1
 | 
						|
/* version of double_round that uses the correctly-rounded string<->double
 | 
						|
   conversions from Python/dtoa.c */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
double_round(double x, int ndigits) {
 | 
						|
 | 
						|
    double rounded;
 | 
						|
    Py_ssize_t buflen, mybuflen=100;
 | 
						|
    char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
 | 
						|
    int decpt, sign;
 | 
						|
    PyObject *result = NULL;
 | 
						|
    _Py_SET_53BIT_PRECISION_HEADER;
 | 
						|
 | 
						|
    /* round to a decimal string */
 | 
						|
    _Py_SET_53BIT_PRECISION_START;
 | 
						|
    buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
 | 
						|
    _Py_SET_53BIT_PRECISION_END;
 | 
						|
    if (buf == NULL) {
 | 
						|
        PyErr_NoMemory();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Get new buffer if shortbuf is too small.  Space needed <= buf_end -
 | 
						|
    buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0').  */
 | 
						|
    buflen = buf_end - buf;
 | 
						|
    if (buflen + 8 > mybuflen) {
 | 
						|
        mybuflen = buflen+8;
 | 
						|
        mybuf = (char *)PyMem_Malloc(mybuflen);
 | 
						|
        if (mybuf == NULL) {
 | 
						|
            PyErr_NoMemory();
 | 
						|
            goto exit;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* copy buf to mybuf, adding exponent, sign and leading 0 */
 | 
						|
    PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
 | 
						|
                  buf, decpt - (int)buflen);
 | 
						|
 | 
						|
    /* and convert the resulting string back to a double */
 | 
						|
    errno = 0;
 | 
						|
    _Py_SET_53BIT_PRECISION_START;
 | 
						|
    rounded = _Py_dg_strtod(mybuf, NULL);
 | 
						|
    _Py_SET_53BIT_PRECISION_END;
 | 
						|
    if (errno == ERANGE && fabs(rounded) >= 1.)
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "rounded value too large to represent");
 | 
						|
    else
 | 
						|
        result = PyFloat_FromDouble(rounded);
 | 
						|
 | 
						|
    /* done computing value;  now clean up */
 | 
						|
    if (mybuf != shortbuf)
 | 
						|
        PyMem_Free(mybuf);
 | 
						|
  exit:
 | 
						|
    _Py_dg_freedtoa(buf);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
#else  // _PY_SHORT_FLOAT_REPR == 0
 | 
						|
 | 
						|
/* fallback version, to be used when correctly rounded binary<->decimal
 | 
						|
   conversions aren't available */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
double_round(double x, int ndigits) {
 | 
						|
    double pow1, pow2, y, z;
 | 
						|
    if (ndigits >= 0) {
 | 
						|
        if (ndigits > 22) {
 | 
						|
            /* pow1 and pow2 are each safe from overflow, but
 | 
						|
               pow1*pow2 ~= pow(10.0, ndigits) might overflow */
 | 
						|
            pow1 = pow(10.0, (double)(ndigits-22));
 | 
						|
            pow2 = 1e22;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            pow1 = pow(10.0, (double)ndigits);
 | 
						|
            pow2 = 1.0;
 | 
						|
        }
 | 
						|
        y = (x*pow1)*pow2;
 | 
						|
        /* if y overflows, then rounded value is exactly x */
 | 
						|
        if (!Py_IS_FINITE(y))
 | 
						|
            return PyFloat_FromDouble(x);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        pow1 = pow(10.0, (double)-ndigits);
 | 
						|
        pow2 = 1.0; /* unused; silences a gcc compiler warning */
 | 
						|
        y = x / pow1;
 | 
						|
    }
 | 
						|
 | 
						|
    z = round(y);
 | 
						|
    if (fabs(y-z) == 0.5)
 | 
						|
        /* halfway between two integers; use round-half-even */
 | 
						|
        z = 2.0*round(y/2.0);
 | 
						|
 | 
						|
    if (ndigits >= 0)
 | 
						|
        z = (z / pow2) / pow1;
 | 
						|
    else
 | 
						|
        z *= pow1;
 | 
						|
 | 
						|
    /* if computation resulted in overflow, raise OverflowError */
 | 
						|
    if (!Py_IS_FINITE(z)) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "overflow occurred during round");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return PyFloat_FromDouble(z);
 | 
						|
}
 | 
						|
 | 
						|
#endif  // _PY_SHORT_FLOAT_REPR == 0
 | 
						|
 | 
						|
/* round a Python float v to the closest multiple of 10**-ndigits */
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.__round__
 | 
						|
 | 
						|
    ndigits as o_ndigits: object = None
 | 
						|
    /
 | 
						|
 | 
						|
Return the Integral closest to x, rounding half toward even.
 | 
						|
 | 
						|
When an argument is passed, work like built-in round(x, ndigits).
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float___round___impl(PyObject *self, PyObject *o_ndigits)
 | 
						|
/*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/
 | 
						|
{
 | 
						|
    double x, rounded;
 | 
						|
    Py_ssize_t ndigits;
 | 
						|
 | 
						|
    x = PyFloat_AsDouble(self);
 | 
						|
    if (o_ndigits == Py_None) {
 | 
						|
        /* single-argument round or with None ndigits:
 | 
						|
         * round to nearest integer */
 | 
						|
        rounded = round(x);
 | 
						|
        if (fabs(x-rounded) == 0.5)
 | 
						|
            /* halfway case: round to even */
 | 
						|
            rounded = 2.0*round(x/2.0);
 | 
						|
        return PyLong_FromDouble(rounded);
 | 
						|
    }
 | 
						|
 | 
						|
    /* interpret second argument as a Py_ssize_t; clips on overflow */
 | 
						|
    ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
 | 
						|
    if (ndigits == -1 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    /* nans and infinities round to themselves */
 | 
						|
    if (!Py_IS_FINITE(x))
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
 | 
						|
    /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
 | 
						|
       always rounds to itself.  For ndigits < NDIGITS_MIN, x always
 | 
						|
       rounds to +-0.0.  Here 0.30103 is an upper bound for log10(2). */
 | 
						|
#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
 | 
						|
#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
 | 
						|
    if (ndigits > NDIGITS_MAX)
 | 
						|
        /* return x */
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
    else if (ndigits < NDIGITS_MIN)
 | 
						|
        /* return 0.0, but with sign of x */
 | 
						|
        return PyFloat_FromDouble(0.0*x);
 | 
						|
    else
 | 
						|
        /* finite x, and ndigits is not unreasonably large */
 | 
						|
        return double_round(x, (int)ndigits);
 | 
						|
#undef NDIGITS_MAX
 | 
						|
#undef NDIGITS_MIN
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_float(PyObject *v)
 | 
						|
{
 | 
						|
    if (PyFloat_CheckExact(v))
 | 
						|
        Py_INCREF(v);
 | 
						|
    else
 | 
						|
        v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.conjugate
 | 
						|
 | 
						|
Return self, the complex conjugate of any float.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_conjugate_impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/
 | 
						|
{
 | 
						|
    return float_float(self);
 | 
						|
}
 | 
						|
 | 
						|
/* turn ASCII hex characters into integer values and vice versa */
 | 
						|
 | 
						|
static char
 | 
						|
char_from_hex(int x)
 | 
						|
{
 | 
						|
    assert(0 <= x && x < 16);
 | 
						|
    return Py_hexdigits[x];
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
hex_from_char(char c) {
 | 
						|
    int x;
 | 
						|
    switch(c) {
 | 
						|
    case '0':
 | 
						|
        x = 0;
 | 
						|
        break;
 | 
						|
    case '1':
 | 
						|
        x = 1;
 | 
						|
        break;
 | 
						|
    case '2':
 | 
						|
        x = 2;
 | 
						|
        break;
 | 
						|
    case '3':
 | 
						|
        x = 3;
 | 
						|
        break;
 | 
						|
    case '4':
 | 
						|
        x = 4;
 | 
						|
        break;
 | 
						|
    case '5':
 | 
						|
        x = 5;
 | 
						|
        break;
 | 
						|
    case '6':
 | 
						|
        x = 6;
 | 
						|
        break;
 | 
						|
    case '7':
 | 
						|
        x = 7;
 | 
						|
        break;
 | 
						|
    case '8':
 | 
						|
        x = 8;
 | 
						|
        break;
 | 
						|
    case '9':
 | 
						|
        x = 9;
 | 
						|
        break;
 | 
						|
    case 'a':
 | 
						|
    case 'A':
 | 
						|
        x = 10;
 | 
						|
        break;
 | 
						|
    case 'b':
 | 
						|
    case 'B':
 | 
						|
        x = 11;
 | 
						|
        break;
 | 
						|
    case 'c':
 | 
						|
    case 'C':
 | 
						|
        x = 12;
 | 
						|
        break;
 | 
						|
    case 'd':
 | 
						|
    case 'D':
 | 
						|
        x = 13;
 | 
						|
        break;
 | 
						|
    case 'e':
 | 
						|
    case 'E':
 | 
						|
        x = 14;
 | 
						|
        break;
 | 
						|
    case 'f':
 | 
						|
    case 'F':
 | 
						|
        x = 15;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        x = -1;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
/* convert a float to a hexadecimal string */
 | 
						|
 | 
						|
/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
 | 
						|
   of the form 4k+1. */
 | 
						|
#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.hex
 | 
						|
 | 
						|
Return a hexadecimal representation of a floating-point number.
 | 
						|
 | 
						|
>>> (-0.1).hex()
 | 
						|
'-0x1.999999999999ap-4'
 | 
						|
>>> 3.14159.hex()
 | 
						|
'0x1.921f9f01b866ep+1'
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_hex_impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/
 | 
						|
{
 | 
						|
    double x, m;
 | 
						|
    int e, shift, i, si, esign;
 | 
						|
    /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
 | 
						|
       trailing NUL byte. */
 | 
						|
    char s[(TOHEX_NBITS-1)/4+3];
 | 
						|
 | 
						|
    CONVERT_TO_DOUBLE(self, x);
 | 
						|
 | 
						|
    if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
 | 
						|
        return float_repr((PyFloatObject *)self);
 | 
						|
 | 
						|
    if (x == 0.0) {
 | 
						|
        if (copysign(1.0, x) == -1.0)
 | 
						|
            return PyUnicode_FromString("-0x0.0p+0");
 | 
						|
        else
 | 
						|
            return PyUnicode_FromString("0x0.0p+0");
 | 
						|
    }
 | 
						|
 | 
						|
    m = frexp(fabs(x), &e);
 | 
						|
    shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
 | 
						|
    m = ldexp(m, shift);
 | 
						|
    e -= shift;
 | 
						|
 | 
						|
    si = 0;
 | 
						|
    s[si] = char_from_hex((int)m);
 | 
						|
    si++;
 | 
						|
    m -= (int)m;
 | 
						|
    s[si] = '.';
 | 
						|
    si++;
 | 
						|
    for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
 | 
						|
        m *= 16.0;
 | 
						|
        s[si] = char_from_hex((int)m);
 | 
						|
        si++;
 | 
						|
        m -= (int)m;
 | 
						|
    }
 | 
						|
    s[si] = '\0';
 | 
						|
 | 
						|
    if (e < 0) {
 | 
						|
        esign = (int)'-';
 | 
						|
        e = -e;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        esign = (int)'+';
 | 
						|
 | 
						|
    if (x < 0.0)
 | 
						|
        return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
 | 
						|
    else
 | 
						|
        return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a hexadecimal string to a float. */
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
@classmethod
 | 
						|
float.fromhex
 | 
						|
 | 
						|
    string: object
 | 
						|
    /
 | 
						|
 | 
						|
Create a floating-point number from a hexadecimal string.
 | 
						|
 | 
						|
>>> float.fromhex('0x1.ffffp10')
 | 
						|
2047.984375
 | 
						|
>>> float.fromhex('-0x1p-1074')
 | 
						|
-5e-324
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_fromhex(PyTypeObject *type, PyObject *string)
 | 
						|
/*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/
 | 
						|
{
 | 
						|
    PyObject *result;
 | 
						|
    double x;
 | 
						|
    long exp, top_exp, lsb, key_digit;
 | 
						|
    const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
 | 
						|
    int half_eps, digit, round_up, negate=0;
 | 
						|
    Py_ssize_t length, ndigits, fdigits, i;
 | 
						|
 | 
						|
    /*
 | 
						|
     * For the sake of simplicity and correctness, we impose an artificial
 | 
						|
     * limit on ndigits, the total number of hex digits in the coefficient
 | 
						|
     * The limit is chosen to ensure that, writing exp for the exponent,
 | 
						|
     *
 | 
						|
     *   (1) if exp > LONG_MAX/2 then the value of the hex string is
 | 
						|
     *   guaranteed to overflow (provided it's nonzero)
 | 
						|
     *
 | 
						|
     *   (2) if exp < LONG_MIN/2 then the value of the hex string is
 | 
						|
     *   guaranteed to underflow to 0.
 | 
						|
     *
 | 
						|
     *   (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
 | 
						|
     *   overflow in the calculation of exp and top_exp below.
 | 
						|
     *
 | 
						|
     * More specifically, ndigits is assumed to satisfy the following
 | 
						|
     * inequalities:
 | 
						|
     *
 | 
						|
     *   4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
 | 
						|
     *   4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
 | 
						|
     *
 | 
						|
     * If either of these inequalities is not satisfied, a ValueError is
 | 
						|
     * raised.  Otherwise, write x for the value of the hex string, and
 | 
						|
     * assume x is nonzero.  Then
 | 
						|
     *
 | 
						|
     *   2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
 | 
						|
     *
 | 
						|
     * Now if exp > LONG_MAX/2 then:
 | 
						|
     *
 | 
						|
     *   exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
 | 
						|
     *                    = DBL_MAX_EXP
 | 
						|
     *
 | 
						|
     * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
 | 
						|
     * double, so overflows.  If exp < LONG_MIN/2, then
 | 
						|
     *
 | 
						|
     *   exp + 4*ndigits <= LONG_MIN/2 - 1 + (
 | 
						|
     *                      DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
 | 
						|
     *                    = DBL_MIN_EXP - DBL_MANT_DIG - 1
 | 
						|
     *
 | 
						|
     * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
 | 
						|
     * when converted to a C double.
 | 
						|
     *
 | 
						|
     * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
 | 
						|
     * exp+4*ndigits and exp-4*ndigits are within the range of a long.
 | 
						|
     */
 | 
						|
 | 
						|
    s = PyUnicode_AsUTF8AndSize(string, &length);
 | 
						|
    if (s == NULL)
 | 
						|
        return NULL;
 | 
						|
    s_end = s + length;
 | 
						|
 | 
						|
    /********************
 | 
						|
     * Parse the string *
 | 
						|
     ********************/
 | 
						|
 | 
						|
    /* leading whitespace */
 | 
						|
    while (Py_ISSPACE(*s))
 | 
						|
        s++;
 | 
						|
 | 
						|
    /* infinities and nans */
 | 
						|
    x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);
 | 
						|
    if (coeff_end != s) {
 | 
						|
        s = coeff_end;
 | 
						|
        goto finished;
 | 
						|
    }
 | 
						|
 | 
						|
    /* optional sign */
 | 
						|
    if (*s == '-') {
 | 
						|
        s++;
 | 
						|
        negate = 1;
 | 
						|
    }
 | 
						|
    else if (*s == '+')
 | 
						|
        s++;
 | 
						|
 | 
						|
    /* [0x] */
 | 
						|
    s_store = s;
 | 
						|
    if (*s == '0') {
 | 
						|
        s++;
 | 
						|
        if (*s == 'x' || *s == 'X')
 | 
						|
            s++;
 | 
						|
        else
 | 
						|
            s = s_store;
 | 
						|
    }
 | 
						|
 | 
						|
    /* coefficient: <integer> [. <fraction>] */
 | 
						|
    coeff_start = s;
 | 
						|
    while (hex_from_char(*s) >= 0)
 | 
						|
        s++;
 | 
						|
    s_store = s;
 | 
						|
    if (*s == '.') {
 | 
						|
        s++;
 | 
						|
        while (hex_from_char(*s) >= 0)
 | 
						|
            s++;
 | 
						|
        coeff_end = s-1;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        coeff_end = s;
 | 
						|
 | 
						|
    /* ndigits = total # of hex digits; fdigits = # after point */
 | 
						|
    ndigits = coeff_end - coeff_start;
 | 
						|
    fdigits = coeff_end - s_store;
 | 
						|
    if (ndigits == 0)
 | 
						|
        goto parse_error;
 | 
						|
    if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
 | 
						|
                         LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
 | 
						|
        goto insane_length_error;
 | 
						|
 | 
						|
    /* [p <exponent>] */
 | 
						|
    if (*s == 'p' || *s == 'P') {
 | 
						|
        s++;
 | 
						|
        exp_start = s;
 | 
						|
        if (*s == '-' || *s == '+')
 | 
						|
            s++;
 | 
						|
        if (!('0' <= *s && *s <= '9'))
 | 
						|
            goto parse_error;
 | 
						|
        s++;
 | 
						|
        while ('0' <= *s && *s <= '9')
 | 
						|
            s++;
 | 
						|
        exp = strtol(exp_start, NULL, 10);
 | 
						|
    }
 | 
						|
    else
 | 
						|
        exp = 0;
 | 
						|
 | 
						|
/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
 | 
						|
#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ?            \
 | 
						|
                     coeff_end-(j) :                                    \
 | 
						|
                     coeff_end-1-(j)))
 | 
						|
 | 
						|
    /*******************************************
 | 
						|
     * Compute rounded value of the hex string *
 | 
						|
     *******************************************/
 | 
						|
 | 
						|
    /* Discard leading zeros, and catch extreme overflow and underflow */
 | 
						|
    while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
 | 
						|
        ndigits--;
 | 
						|
    if (ndigits == 0 || exp < LONG_MIN/2) {
 | 
						|
        x = 0.0;
 | 
						|
        goto finished;
 | 
						|
    }
 | 
						|
    if (exp > LONG_MAX/2)
 | 
						|
        goto overflow_error;
 | 
						|
 | 
						|
    /* Adjust exponent for fractional part. */
 | 
						|
    exp = exp - 4*((long)fdigits);
 | 
						|
 | 
						|
    /* top_exp = 1 more than exponent of most sig. bit of coefficient */
 | 
						|
    top_exp = exp + 4*((long)ndigits - 1);
 | 
						|
    for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
 | 
						|
        top_exp++;
 | 
						|
 | 
						|
    /* catch almost all nonextreme cases of overflow and underflow here */
 | 
						|
    if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
 | 
						|
        x = 0.0;
 | 
						|
        goto finished;
 | 
						|
    }
 | 
						|
    if (top_exp > DBL_MAX_EXP)
 | 
						|
        goto overflow_error;
 | 
						|
 | 
						|
    /* lsb = exponent of least significant bit of the *rounded* value.
 | 
						|
       This is top_exp - DBL_MANT_DIG unless result is subnormal. */
 | 
						|
    lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
 | 
						|
 | 
						|
    x = 0.0;
 | 
						|
    if (exp >= lsb) {
 | 
						|
        /* no rounding required */
 | 
						|
        for (i = ndigits-1; i >= 0; i--)
 | 
						|
            x = 16.0*x + HEX_DIGIT(i);
 | 
						|
        x = ldexp(x, (int)(exp));
 | 
						|
        goto finished;
 | 
						|
    }
 | 
						|
    /* rounding required.  key_digit is the index of the hex digit
 | 
						|
       containing the first bit to be rounded away. */
 | 
						|
    half_eps = 1 << (int)((lsb - exp - 1) % 4);
 | 
						|
    key_digit = (lsb - exp - 1) / 4;
 | 
						|
    for (i = ndigits-1; i > key_digit; i--)
 | 
						|
        x = 16.0*x + HEX_DIGIT(i);
 | 
						|
    digit = HEX_DIGIT(key_digit);
 | 
						|
    x = 16.0*x + (double)(digit & (16-2*half_eps));
 | 
						|
 | 
						|
    /* round-half-even: round up if bit lsb-1 is 1 and at least one of
 | 
						|
       bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
 | 
						|
    if ((digit & half_eps) != 0) {
 | 
						|
        round_up = 0;
 | 
						|
        if ((digit & (3*half_eps-1)) != 0 || (half_eps == 8 &&
 | 
						|
                key_digit+1 < ndigits && (HEX_DIGIT(key_digit+1) & 1) != 0))
 | 
						|
            round_up = 1;
 | 
						|
        else
 | 
						|
            for (i = key_digit-1; i >= 0; i--)
 | 
						|
                if (HEX_DIGIT(i) != 0) {
 | 
						|
                    round_up = 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
        if (round_up) {
 | 
						|
            x += 2*half_eps;
 | 
						|
            if (top_exp == DBL_MAX_EXP &&
 | 
						|
                x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
 | 
						|
                /* overflow corner case: pre-rounded value <
 | 
						|
                   2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
 | 
						|
                goto overflow_error;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    x = ldexp(x, (int)(exp+4*key_digit));
 | 
						|
 | 
						|
  finished:
 | 
						|
    /* optional trailing whitespace leading to the end of the string */
 | 
						|
    while (Py_ISSPACE(*s))
 | 
						|
        s++;
 | 
						|
    if (s != s_end)
 | 
						|
        goto parse_error;
 | 
						|
    result = PyFloat_FromDouble(negate ? -x : x);
 | 
						|
    if (type != &PyFloat_Type && result != NULL) {
 | 
						|
        Py_SETREF(result, PyObject_CallOneArg((PyObject *)type, result));
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
 | 
						|
  overflow_error:
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "hexadecimal value too large to represent as a float");
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  parse_error:
 | 
						|
    PyErr_SetString(PyExc_ValueError,
 | 
						|
                    "invalid hexadecimal floating-point string");
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  insane_length_error:
 | 
						|
    PyErr_SetString(PyExc_ValueError,
 | 
						|
                    "hexadecimal string too long to convert");
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.as_integer_ratio
 | 
						|
 | 
						|
Return integer ratio.
 | 
						|
 | 
						|
Return a pair of integers, whose ratio is exactly equal to the original float
 | 
						|
and with a positive denominator.
 | 
						|
 | 
						|
Raise OverflowError on infinities and a ValueError on NaNs.
 | 
						|
 | 
						|
>>> (10.0).as_integer_ratio()
 | 
						|
(10, 1)
 | 
						|
>>> (0.0).as_integer_ratio()
 | 
						|
(0, 1)
 | 
						|
>>> (-.25).as_integer_ratio()
 | 
						|
(-1, 4)
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_as_integer_ratio_impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/
 | 
						|
{
 | 
						|
    double self_double;
 | 
						|
    double float_part;
 | 
						|
    int exponent;
 | 
						|
    int i;
 | 
						|
 | 
						|
    PyObject *py_exponent = NULL;
 | 
						|
    PyObject *numerator = NULL;
 | 
						|
    PyObject *denominator = NULL;
 | 
						|
    PyObject *result_pair = NULL;
 | 
						|
    PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
 | 
						|
 | 
						|
    CONVERT_TO_DOUBLE(self, self_double);
 | 
						|
 | 
						|
    if (Py_IS_INFINITY(self_double)) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "cannot convert Infinity to integer ratio");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_NAN(self_double)) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "cannot convert NaN to integer ratio");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    float_part = frexp(self_double, &exponent);        /* self_double == float_part * 2**exponent exactly */
 | 
						|
 | 
						|
    for (i=0; i<300 && float_part != floor(float_part) ; i++) {
 | 
						|
        float_part *= 2.0;
 | 
						|
        exponent--;
 | 
						|
    }
 | 
						|
    /* self == float_part * 2**exponent exactly and float_part is integral.
 | 
						|
       If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
 | 
						|
       to be truncated by PyLong_FromDouble(). */
 | 
						|
 | 
						|
    numerator = PyLong_FromDouble(float_part);
 | 
						|
    if (numerator == NULL)
 | 
						|
        goto error;
 | 
						|
    denominator = PyLong_FromLong(1);
 | 
						|
    if (denominator == NULL)
 | 
						|
        goto error;
 | 
						|
    py_exponent = PyLong_FromLong(Py_ABS(exponent));
 | 
						|
    if (py_exponent == NULL)
 | 
						|
        goto error;
 | 
						|
 | 
						|
    /* fold in 2**exponent */
 | 
						|
    if (exponent > 0) {
 | 
						|
        Py_SETREF(numerator,
 | 
						|
                  long_methods->nb_lshift(numerator, py_exponent));
 | 
						|
        if (numerator == NULL)
 | 
						|
            goto error;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_SETREF(denominator,
 | 
						|
                  long_methods->nb_lshift(denominator, py_exponent));
 | 
						|
        if (denominator == NULL)
 | 
						|
            goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    result_pair = PyTuple_Pack(2, numerator, denominator);
 | 
						|
 | 
						|
error:
 | 
						|
    Py_XDECREF(py_exponent);
 | 
						|
    Py_XDECREF(denominator);
 | 
						|
    Py_XDECREF(numerator);
 | 
						|
    return result_pair;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_subtype_new(PyTypeObject *type, PyObject *x);
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
@classmethod
 | 
						|
float.__new__ as float_new
 | 
						|
    x: object(c_default="NULL") = 0
 | 
						|
    /
 | 
						|
 | 
						|
Convert a string or number to a floating point number, if possible.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_new_impl(PyTypeObject *type, PyObject *x)
 | 
						|
/*[clinic end generated code: output=ccf1e8dc460ba6ba input=f43661b7de03e9d8]*/
 | 
						|
{
 | 
						|
    if (type != &PyFloat_Type) {
 | 
						|
        if (x == NULL) {
 | 
						|
            x = _PyLong_GetZero();
 | 
						|
        }
 | 
						|
        return float_subtype_new(type, x); /* Wimp out */
 | 
						|
    }
 | 
						|
 | 
						|
    if (x == NULL) {
 | 
						|
        return PyFloat_FromDouble(0.0);
 | 
						|
    }
 | 
						|
    /* If it's a string, but not a string subclass, use
 | 
						|
       PyFloat_FromString. */
 | 
						|
    if (PyUnicode_CheckExact(x))
 | 
						|
        return PyFloat_FromString(x);
 | 
						|
    return PyNumber_Float(x);
 | 
						|
}
 | 
						|
 | 
						|
/* Wimpy, slow approach to tp_new calls for subtypes of float:
 | 
						|
   first create a regular float from whatever arguments we got,
 | 
						|
   then allocate a subtype instance and initialize its ob_fval
 | 
						|
   from the regular float.  The regular float is then thrown away.
 | 
						|
*/
 | 
						|
static PyObject *
 | 
						|
float_subtype_new(PyTypeObject *type, PyObject *x)
 | 
						|
{
 | 
						|
    PyObject *tmp, *newobj;
 | 
						|
 | 
						|
    assert(PyType_IsSubtype(type, &PyFloat_Type));
 | 
						|
    tmp = float_new_impl(&PyFloat_Type, x);
 | 
						|
    if (tmp == NULL)
 | 
						|
        return NULL;
 | 
						|
    assert(PyFloat_Check(tmp));
 | 
						|
    newobj = type->tp_alloc(type, 0);
 | 
						|
    if (newobj == NULL) {
 | 
						|
        Py_DECREF(tmp);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
 | 
						|
    Py_DECREF(tmp);
 | 
						|
    return newobj;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_vectorcall(PyObject *type, PyObject * const*args,
 | 
						|
                 size_t nargsf, PyObject *kwnames)
 | 
						|
{
 | 
						|
    if (!_PyArg_NoKwnames("float", kwnames)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
 | 
						|
    if (!_PyArg_CheckPositional("float", nargs, 0, 1)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    PyObject *x = nargs >= 1 ? args[0] : NULL;
 | 
						|
    return float_new_impl(_PyType_CAST(type), x);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.__getnewargs__
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float___getnewargs___impl(PyObject *self)
 | 
						|
/*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/
 | 
						|
{
 | 
						|
    return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
/* this is for the benefit of the pack/unpack routines below */
 | 
						|
 | 
						|
typedef enum {
 | 
						|
    unknown_format, ieee_big_endian_format, ieee_little_endian_format
 | 
						|
} float_format_type;
 | 
						|
 | 
						|
static float_format_type double_format, float_format;
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
@classmethod
 | 
						|
float.__getformat__
 | 
						|
 | 
						|
    typestr: str
 | 
						|
        Must be 'double' or 'float'.
 | 
						|
    /
 | 
						|
 | 
						|
You probably don't want to use this function.
 | 
						|
 | 
						|
It exists mainly to be used in Python's test suite.
 | 
						|
 | 
						|
This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,
 | 
						|
little-endian' best describes the format of floating point numbers used by the
 | 
						|
C type named by typestr.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float___getformat___impl(PyTypeObject *type, const char *typestr)
 | 
						|
/*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/
 | 
						|
{
 | 
						|
    float_format_type r;
 | 
						|
 | 
						|
    if (strcmp(typestr, "double") == 0) {
 | 
						|
        r = double_format;
 | 
						|
    }
 | 
						|
    else if (strcmp(typestr, "float") == 0) {
 | 
						|
        r = float_format;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "__getformat__() argument 1 must be "
 | 
						|
                        "'double' or 'float'");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (r) {
 | 
						|
    case unknown_format:
 | 
						|
        return PyUnicode_FromString("unknown");
 | 
						|
    case ieee_little_endian_format:
 | 
						|
        return PyUnicode_FromString("IEEE, little-endian");
 | 
						|
    case ieee_big_endian_format:
 | 
						|
        return PyUnicode_FromString("IEEE, big-endian");
 | 
						|
    default:
 | 
						|
        PyErr_SetString(PyExc_RuntimeError,
 | 
						|
                        "insane float_format or double_format");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_getreal(PyObject *v, void *closure)
 | 
						|
{
 | 
						|
    return float_float(v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_getimag(PyObject *v, void *closure)
 | 
						|
{
 | 
						|
    return PyFloat_FromDouble(0.0);
 | 
						|
}
 | 
						|
 | 
						|
/*[clinic input]
 | 
						|
float.__format__
 | 
						|
 | 
						|
  format_spec: unicode
 | 
						|
  /
 | 
						|
 | 
						|
Formats the float according to format_spec.
 | 
						|
[clinic start generated code]*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float___format___impl(PyObject *self, PyObject *format_spec)
 | 
						|
/*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/
 | 
						|
{
 | 
						|
    _PyUnicodeWriter writer;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    _PyUnicodeWriter_Init(&writer);
 | 
						|
    ret = _PyFloat_FormatAdvancedWriter(
 | 
						|
        &writer,
 | 
						|
        self,
 | 
						|
        format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
 | 
						|
    if (ret == -1) {
 | 
						|
        _PyUnicodeWriter_Dealloc(&writer);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return _PyUnicodeWriter_Finish(&writer);
 | 
						|
}
 | 
						|
 | 
						|
static PyMethodDef float_methods[] = {
 | 
						|
    FLOAT_CONJUGATE_METHODDEF
 | 
						|
    FLOAT___TRUNC___METHODDEF
 | 
						|
    FLOAT___FLOOR___METHODDEF
 | 
						|
    FLOAT___CEIL___METHODDEF
 | 
						|
    FLOAT___ROUND___METHODDEF
 | 
						|
    FLOAT_AS_INTEGER_RATIO_METHODDEF
 | 
						|
    FLOAT_FROMHEX_METHODDEF
 | 
						|
    FLOAT_HEX_METHODDEF
 | 
						|
    FLOAT_IS_INTEGER_METHODDEF
 | 
						|
    FLOAT___GETNEWARGS___METHODDEF
 | 
						|
    FLOAT___GETFORMAT___METHODDEF
 | 
						|
    FLOAT___FORMAT___METHODDEF
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyGetSetDef float_getset[] = {
 | 
						|
    {"real",
 | 
						|
     float_getreal, (setter)NULL,
 | 
						|
     "the real part of a complex number",
 | 
						|
     NULL},
 | 
						|
    {"imag",
 | 
						|
     float_getimag, (setter)NULL,
 | 
						|
     "the imaginary part of a complex number",
 | 
						|
     NULL},
 | 
						|
    {NULL}  /* Sentinel */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static PyNumberMethods float_as_number = {
 | 
						|
    float_add,          /* nb_add */
 | 
						|
    float_sub,          /* nb_subtract */
 | 
						|
    float_mul,          /* nb_multiply */
 | 
						|
    float_rem,          /* nb_remainder */
 | 
						|
    float_divmod,       /* nb_divmod */
 | 
						|
    float_pow,          /* nb_power */
 | 
						|
    (unaryfunc)float_neg, /* nb_negative */
 | 
						|
    float_float,        /* nb_positive */
 | 
						|
    (unaryfunc)float_abs, /* nb_absolute */
 | 
						|
    (inquiry)float_bool, /* nb_bool */
 | 
						|
    0,                  /* nb_invert */
 | 
						|
    0,                  /* nb_lshift */
 | 
						|
    0,                  /* nb_rshift */
 | 
						|
    0,                  /* nb_and */
 | 
						|
    0,                  /* nb_xor */
 | 
						|
    0,                  /* nb_or */
 | 
						|
    float___trunc___impl, /* nb_int */
 | 
						|
    0,                  /* nb_reserved */
 | 
						|
    float_float,        /* nb_float */
 | 
						|
    0,                  /* nb_inplace_add */
 | 
						|
    0,                  /* nb_inplace_subtract */
 | 
						|
    0,                  /* nb_inplace_multiply */
 | 
						|
    0,                  /* nb_inplace_remainder */
 | 
						|
    0,                  /* nb_inplace_power */
 | 
						|
    0,                  /* nb_inplace_lshift */
 | 
						|
    0,                  /* nb_inplace_rshift */
 | 
						|
    0,                  /* nb_inplace_and */
 | 
						|
    0,                  /* nb_inplace_xor */
 | 
						|
    0,                  /* nb_inplace_or */
 | 
						|
    float_floor_div,    /* nb_floor_divide */
 | 
						|
    float_div,          /* nb_true_divide */
 | 
						|
    0,                  /* nb_inplace_floor_divide */
 | 
						|
    0,                  /* nb_inplace_true_divide */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyFloat_Type = {
 | 
						|
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | 
						|
    "float",
 | 
						|
    sizeof(PyFloatObject),
 | 
						|
    0,
 | 
						|
    (destructor)float_dealloc,                  /* tp_dealloc */
 | 
						|
    0,                                          /* tp_vectorcall_offset */
 | 
						|
    0,                                          /* tp_getattr */
 | 
						|
    0,                                          /* tp_setattr */
 | 
						|
    0,                                          /* tp_as_async */
 | 
						|
    (reprfunc)float_repr,                       /* tp_repr */
 | 
						|
    &float_as_number,                           /* tp_as_number */
 | 
						|
    0,                                          /* tp_as_sequence */
 | 
						|
    0,                                          /* tp_as_mapping */
 | 
						|
    (hashfunc)float_hash,                       /* tp_hash */
 | 
						|
    0,                                          /* tp_call */
 | 
						|
    0,                                          /* tp_str */
 | 
						|
    PyObject_GenericGetAttr,                    /* tp_getattro */
 | 
						|
    0,                                          /* tp_setattro */
 | 
						|
    0,                                          /* tp_as_buffer */
 | 
						|
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
 | 
						|
        _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */
 | 
						|
    float_new__doc__,                           /* tp_doc */
 | 
						|
    0,                                          /* tp_traverse */
 | 
						|
    0,                                          /* tp_clear */
 | 
						|
    float_richcompare,                          /* tp_richcompare */
 | 
						|
    0,                                          /* tp_weaklistoffset */
 | 
						|
    0,                                          /* tp_iter */
 | 
						|
    0,                                          /* tp_iternext */
 | 
						|
    float_methods,                              /* tp_methods */
 | 
						|
    0,                                          /* tp_members */
 | 
						|
    float_getset,                               /* tp_getset */
 | 
						|
    0,                                          /* tp_base */
 | 
						|
    0,                                          /* tp_dict */
 | 
						|
    0,                                          /* tp_descr_get */
 | 
						|
    0,                                          /* tp_descr_set */
 | 
						|
    0,                                          /* tp_dictoffset */
 | 
						|
    0,                                          /* tp_init */
 | 
						|
    0,                                          /* tp_alloc */
 | 
						|
    float_new,                                  /* tp_new */
 | 
						|
    .tp_vectorcall = (vectorcallfunc)float_vectorcall,
 | 
						|
};
 | 
						|
 | 
						|
void
 | 
						|
_PyFloat_InitState(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
    if (!_Py_IsMainInterpreter(interp)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    float_format_type detected_double_format, detected_float_format;
 | 
						|
 | 
						|
    /* We attempt to determine if this machine is using IEEE
 | 
						|
       floating point formats by peering at the bits of some
 | 
						|
       carefully chosen values.  If it looks like we are on an
 | 
						|
       IEEE platform, the float packing/unpacking routines can
 | 
						|
       just copy bits, if not they resort to arithmetic & shifts
 | 
						|
       and masks.  The shifts & masks approach works on all finite
 | 
						|
       values, but what happens to infinities, NaNs and signed
 | 
						|
       zeroes on packing is an accident, and attempting to unpack
 | 
						|
       a NaN or an infinity will raise an exception.
 | 
						|
 | 
						|
       Note that if we're on some whacked-out platform which uses
 | 
						|
       IEEE formats but isn't strictly little-endian or big-
 | 
						|
       endian, we will fall back to the portable shifts & masks
 | 
						|
       method. */
 | 
						|
 | 
						|
#if SIZEOF_DOUBLE == 8
 | 
						|
    {
 | 
						|
        double x = 9006104071832581.0;
 | 
						|
        if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
 | 
						|
            detected_double_format = ieee_big_endian_format;
 | 
						|
        else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
 | 
						|
            detected_double_format = ieee_little_endian_format;
 | 
						|
        else
 | 
						|
            detected_double_format = unknown_format;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    detected_double_format = unknown_format;
 | 
						|
#endif
 | 
						|
 | 
						|
#if SIZEOF_FLOAT == 4
 | 
						|
    {
 | 
						|
        float y = 16711938.0;
 | 
						|
        if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
 | 
						|
            detected_float_format = ieee_big_endian_format;
 | 
						|
        else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
 | 
						|
            detected_float_format = ieee_little_endian_format;
 | 
						|
        else
 | 
						|
            detected_float_format = unknown_format;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    detected_float_format = unknown_format;
 | 
						|
#endif
 | 
						|
 | 
						|
    double_format = detected_double_format;
 | 
						|
    float_format = detected_float_format;
 | 
						|
}
 | 
						|
 | 
						|
PyStatus
 | 
						|
_PyFloat_InitTypes(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
    if (!_Py_IsMainInterpreter(interp)) {
 | 
						|
        return _PyStatus_OK();
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyType_Ready(&PyFloat_Type) < 0) {
 | 
						|
        return _PyStatus_ERR("Can't initialize float type");
 | 
						|
    }
 | 
						|
 | 
						|
    /* Init float info */
 | 
						|
    if (FloatInfoType.tp_name == NULL) {
 | 
						|
        if (_PyStructSequence_InitBuiltin(&FloatInfoType,
 | 
						|
                                          &floatinfo_desc) < 0) {
 | 
						|
            return _PyStatus_ERR("can't init float info type");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return _PyStatus_OK();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyFloat_ClearFreeList(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
#if PyFloat_MAXFREELIST > 0
 | 
						|
    struct _Py_float_state *state = &interp->float_state;
 | 
						|
    PyFloatObject *f = state->free_list;
 | 
						|
    while (f != NULL) {
 | 
						|
        PyFloatObject *next = (PyFloatObject*) Py_TYPE(f);
 | 
						|
        PyObject_Free(f);
 | 
						|
        f = next;
 | 
						|
    }
 | 
						|
    state->free_list = NULL;
 | 
						|
    state->numfree = 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyFloat_Fini(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
    _PyFloat_ClearFreeList(interp);
 | 
						|
#if defined(Py_DEBUG) && PyFloat_MAXFREELIST > 0
 | 
						|
    struct _Py_float_state *state = &interp->float_state;
 | 
						|
    state->numfree = -1;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
_PyFloat_FiniType(PyInterpreterState *interp)
 | 
						|
{
 | 
						|
    if (_Py_IsMainInterpreter(interp)) {
 | 
						|
        _PyStructSequence_FiniType(&FloatInfoType);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Print summary info about the state of the optimized allocator */
 | 
						|
void
 | 
						|
_PyFloat_DebugMallocStats(FILE *out)
 | 
						|
{
 | 
						|
#if PyFloat_MAXFREELIST > 0
 | 
						|
    struct _Py_float_state *state = get_float_state();
 | 
						|
    _PyDebugAllocatorStats(out,
 | 
						|
                           "free PyFloatObject",
 | 
						|
                           state->numfree, sizeof(PyFloatObject));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
 * PyFloat_{Pack,Unpack}{2,4,8}.  See floatobject.h.
 | 
						|
 * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
 | 
						|
 * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
 | 
						|
 * We use:
 | 
						|
 *       bits = (unsigned short)f;    Note the truncation
 | 
						|
 *       if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
 | 
						|
 *           bits++;
 | 
						|
 *       }
 | 
						|
 */
 | 
						|
 | 
						|
int
 | 
						|
PyFloat_Pack2(double x, char *data, int le)
 | 
						|
{
 | 
						|
    unsigned char *p = (unsigned char *)data;
 | 
						|
    unsigned char sign;
 | 
						|
    int e;
 | 
						|
    double f;
 | 
						|
    unsigned short bits;
 | 
						|
    int incr = 1;
 | 
						|
 | 
						|
    if (x == 0.0) {
 | 
						|
        sign = (copysign(1.0, x) == -1.0);
 | 
						|
        e = 0;
 | 
						|
        bits = 0;
 | 
						|
    }
 | 
						|
    else if (Py_IS_INFINITY(x)) {
 | 
						|
        sign = (x < 0.0);
 | 
						|
        e = 0x1f;
 | 
						|
        bits = 0;
 | 
						|
    }
 | 
						|
    else if (Py_IS_NAN(x)) {
 | 
						|
        /* There are 2046 distinct half-precision NaNs (1022 signaling and
 | 
						|
           1024 quiet), but there are only two quiet NaNs that don't arise by
 | 
						|
           quieting a signaling NaN; we get those by setting the topmost bit
 | 
						|
           of the fraction field and clearing all other fraction bits. We
 | 
						|
           choose the one with the appropriate sign. */
 | 
						|
        sign = (copysign(1.0, x) == -1.0);
 | 
						|
        e = 0x1f;
 | 
						|
        bits = 512;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        sign = (x < 0.0);
 | 
						|
        if (sign) {
 | 
						|
            x = -x;
 | 
						|
        }
 | 
						|
 | 
						|
        f = frexp(x, &e);
 | 
						|
        if (f < 0.5 || f >= 1.0) {
 | 
						|
            PyErr_SetString(PyExc_SystemError,
 | 
						|
                            "frexp() result out of range");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Normalize f to be in the range [1.0, 2.0) */
 | 
						|
        f *= 2.0;
 | 
						|
        e--;
 | 
						|
 | 
						|
        if (e >= 16) {
 | 
						|
            goto Overflow;
 | 
						|
        }
 | 
						|
        else if (e < -25) {
 | 
						|
            /* |x| < 2**-25. Underflow to zero. */
 | 
						|
            f = 0.0;
 | 
						|
            e = 0;
 | 
						|
        }
 | 
						|
        else if (e < -14) {
 | 
						|
            /* |x| < 2**-14. Gradual underflow */
 | 
						|
            f = ldexp(f, 14 + e);
 | 
						|
            e = 0;
 | 
						|
        }
 | 
						|
        else /* if (!(e == 0 && f == 0.0)) */ {
 | 
						|
            e += 15;
 | 
						|
            f -= 1.0; /* Get rid of leading 1 */
 | 
						|
        }
 | 
						|
 | 
						|
        f *= 1024.0; /* 2**10 */
 | 
						|
        /* Round to even */
 | 
						|
        bits = (unsigned short)f; /* Note the truncation */
 | 
						|
        assert(bits < 1024);
 | 
						|
        assert(e < 31);
 | 
						|
        if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
 | 
						|
            ++bits;
 | 
						|
            if (bits == 1024) {
 | 
						|
                /* The carry propagated out of a string of 10 1 bits. */
 | 
						|
                bits = 0;
 | 
						|
                ++e;
 | 
						|
                if (e == 31)
 | 
						|
                    goto Overflow;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    bits |= (e << 10) | (sign << 15);
 | 
						|
 | 
						|
    /* Write out result. */
 | 
						|
    if (le) {
 | 
						|
        p += 1;
 | 
						|
        incr = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* First byte */
 | 
						|
    *p = (unsigned char)((bits >> 8) & 0xFF);
 | 
						|
    p += incr;
 | 
						|
 | 
						|
    /* Second byte */
 | 
						|
    *p = (unsigned char)(bits & 0xFF);
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
  Overflow:
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "float too large to pack with e format");
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyFloat_Pack4(double x, char *data, int le)
 | 
						|
{
 | 
						|
    unsigned char *p = (unsigned char *)data;
 | 
						|
    if (float_format == unknown_format) {
 | 
						|
        unsigned char sign;
 | 
						|
        int e;
 | 
						|
        double f;
 | 
						|
        unsigned int fbits;
 | 
						|
        int incr = 1;
 | 
						|
 | 
						|
        if (le) {
 | 
						|
            p += 3;
 | 
						|
            incr = -1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (x < 0) {
 | 
						|
            sign = 1;
 | 
						|
            x = -x;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            sign = 0;
 | 
						|
 | 
						|
        f = frexp(x, &e);
 | 
						|
 | 
						|
        /* Normalize f to be in the range [1.0, 2.0) */
 | 
						|
        if (0.5 <= f && f < 1.0) {
 | 
						|
            f *= 2.0;
 | 
						|
            e--;
 | 
						|
        }
 | 
						|
        else if (f == 0.0)
 | 
						|
            e = 0;
 | 
						|
        else {
 | 
						|
            PyErr_SetString(PyExc_SystemError,
 | 
						|
                            "frexp() result out of range");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (e >= 128)
 | 
						|
            goto Overflow;
 | 
						|
        else if (e < -126) {
 | 
						|
            /* Gradual underflow */
 | 
						|
            f = ldexp(f, 126 + e);
 | 
						|
            e = 0;
 | 
						|
        }
 | 
						|
        else if (!(e == 0 && f == 0.0)) {
 | 
						|
            e += 127;
 | 
						|
            f -= 1.0; /* Get rid of leading 1 */
 | 
						|
        }
 | 
						|
 | 
						|
        f *= 8388608.0; /* 2**23 */
 | 
						|
        fbits = (unsigned int)(f + 0.5); /* Round */
 | 
						|
        assert(fbits <= 8388608);
 | 
						|
        if (fbits >> 23) {
 | 
						|
            /* The carry propagated out of a string of 23 1 bits. */
 | 
						|
            fbits = 0;
 | 
						|
            ++e;
 | 
						|
            if (e >= 255)
 | 
						|
                goto Overflow;
 | 
						|
        }
 | 
						|
 | 
						|
        /* First byte */
 | 
						|
        *p = (sign << 7) | (e >> 1);
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Second byte */
 | 
						|
        *p = (char) (((e & 1) << 7) | (fbits >> 16));
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Third byte */
 | 
						|
        *p = (fbits >> 8) & 0xFF;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Fourth byte */
 | 
						|
        *p = fbits & 0xFF;
 | 
						|
 | 
						|
        /* Done */
 | 
						|
        return 0;
 | 
						|
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        float y = (float)x;
 | 
						|
        int i, incr = 1;
 | 
						|
 | 
						|
        if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
 | 
						|
            goto Overflow;
 | 
						|
 | 
						|
        unsigned char s[sizeof(float)];
 | 
						|
        memcpy(s, &y, sizeof(float));
 | 
						|
 | 
						|
        if ((float_format == ieee_little_endian_format && !le)
 | 
						|
            || (float_format == ieee_big_endian_format && le)) {
 | 
						|
            p += 3;
 | 
						|
            incr = -1;
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < 4; i++) {
 | 
						|
            *p = s[i];
 | 
						|
            p += incr;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
  Overflow:
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "float too large to pack with f format");
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyFloat_Pack8(double x, char *data, int le)
 | 
						|
{
 | 
						|
    unsigned char *p = (unsigned char *)data;
 | 
						|
    if (double_format == unknown_format) {
 | 
						|
        unsigned char sign;
 | 
						|
        int e;
 | 
						|
        double f;
 | 
						|
        unsigned int fhi, flo;
 | 
						|
        int incr = 1;
 | 
						|
 | 
						|
        if (le) {
 | 
						|
            p += 7;
 | 
						|
            incr = -1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (x < 0) {
 | 
						|
            sign = 1;
 | 
						|
            x = -x;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            sign = 0;
 | 
						|
 | 
						|
        f = frexp(x, &e);
 | 
						|
 | 
						|
        /* Normalize f to be in the range [1.0, 2.0) */
 | 
						|
        if (0.5 <= f && f < 1.0) {
 | 
						|
            f *= 2.0;
 | 
						|
            e--;
 | 
						|
        }
 | 
						|
        else if (f == 0.0)
 | 
						|
            e = 0;
 | 
						|
        else {
 | 
						|
            PyErr_SetString(PyExc_SystemError,
 | 
						|
                            "frexp() result out of range");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (e >= 1024)
 | 
						|
            goto Overflow;
 | 
						|
        else if (e < -1022) {
 | 
						|
            /* Gradual underflow */
 | 
						|
            f = ldexp(f, 1022 + e);
 | 
						|
            e = 0;
 | 
						|
        }
 | 
						|
        else if (!(e == 0 && f == 0.0)) {
 | 
						|
            e += 1023;
 | 
						|
            f -= 1.0; /* Get rid of leading 1 */
 | 
						|
        }
 | 
						|
 | 
						|
        /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
 | 
						|
        f *= 268435456.0; /* 2**28 */
 | 
						|
        fhi = (unsigned int)f; /* Truncate */
 | 
						|
        assert(fhi < 268435456);
 | 
						|
 | 
						|
        f -= (double)fhi;
 | 
						|
        f *= 16777216.0; /* 2**24 */
 | 
						|
        flo = (unsigned int)(f + 0.5); /* Round */
 | 
						|
        assert(flo <= 16777216);
 | 
						|
        if (flo >> 24) {
 | 
						|
            /* The carry propagated out of a string of 24 1 bits. */
 | 
						|
            flo = 0;
 | 
						|
            ++fhi;
 | 
						|
            if (fhi >> 28) {
 | 
						|
                /* And it also propagated out of the next 28 bits. */
 | 
						|
                fhi = 0;
 | 
						|
                ++e;
 | 
						|
                if (e >= 2047)
 | 
						|
                    goto Overflow;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* First byte */
 | 
						|
        *p = (sign << 7) | (e >> 4);
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Second byte */
 | 
						|
        *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Third byte */
 | 
						|
        *p = (fhi >> 16) & 0xFF;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Fourth byte */
 | 
						|
        *p = (fhi >> 8) & 0xFF;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Fifth byte */
 | 
						|
        *p = fhi & 0xFF;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Sixth byte */
 | 
						|
        *p = (flo >> 16) & 0xFF;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Seventh byte */
 | 
						|
        *p = (flo >> 8) & 0xFF;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Eighth byte */
 | 
						|
        *p = flo & 0xFF;
 | 
						|
        /* p += incr; */
 | 
						|
 | 
						|
        /* Done */
 | 
						|
        return 0;
 | 
						|
 | 
						|
      Overflow:
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "float too large to pack with d format");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        const unsigned char *s = (unsigned char*)&x;
 | 
						|
        int i, incr = 1;
 | 
						|
 | 
						|
        if ((double_format == ieee_little_endian_format && !le)
 | 
						|
            || (double_format == ieee_big_endian_format && le)) {
 | 
						|
            p += 7;
 | 
						|
            incr = -1;
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < 8; i++) {
 | 
						|
            *p = *s++;
 | 
						|
            p += incr;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_Unpack2(const char *data, int le)
 | 
						|
{
 | 
						|
    unsigned char *p = (unsigned char *)data;
 | 
						|
    unsigned char sign;
 | 
						|
    int e;
 | 
						|
    unsigned int f;
 | 
						|
    double x;
 | 
						|
    int incr = 1;
 | 
						|
 | 
						|
    if (le) {
 | 
						|
        p += 1;
 | 
						|
        incr = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* First byte */
 | 
						|
    sign = (*p >> 7) & 1;
 | 
						|
    e = (*p & 0x7C) >> 2;
 | 
						|
    f = (*p & 0x03) << 8;
 | 
						|
    p += incr;
 | 
						|
 | 
						|
    /* Second byte */
 | 
						|
    f |= *p;
 | 
						|
 | 
						|
    if (e == 0x1f) {
 | 
						|
#if _PY_SHORT_FLOAT_REPR == 0
 | 
						|
        if (f == 0) {
 | 
						|
            /* Infinity */
 | 
						|
            return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* NaN */
 | 
						|
            return sign ? -Py_NAN : Py_NAN;
 | 
						|
        }
 | 
						|
#else  // _PY_SHORT_FLOAT_REPR == 1
 | 
						|
        if (f == 0) {
 | 
						|
            /* Infinity */
 | 
						|
            return _Py_dg_infinity(sign);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* NaN */
 | 
						|
            return _Py_dg_stdnan(sign);
 | 
						|
        }
 | 
						|
#endif  // _PY_SHORT_FLOAT_REPR == 1
 | 
						|
    }
 | 
						|
 | 
						|
    x = (double)f / 1024.0;
 | 
						|
 | 
						|
    if (e == 0) {
 | 
						|
        e = -14;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        x += 1.0;
 | 
						|
        e -= 15;
 | 
						|
    }
 | 
						|
    x = ldexp(x, e);
 | 
						|
 | 
						|
    if (sign)
 | 
						|
        x = -x;
 | 
						|
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_Unpack4(const char *data, int le)
 | 
						|
{
 | 
						|
    unsigned char *p = (unsigned char *)data;
 | 
						|
    if (float_format == unknown_format) {
 | 
						|
        unsigned char sign;
 | 
						|
        int e;
 | 
						|
        unsigned int f;
 | 
						|
        double x;
 | 
						|
        int incr = 1;
 | 
						|
 | 
						|
        if (le) {
 | 
						|
            p += 3;
 | 
						|
            incr = -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* First byte */
 | 
						|
        sign = (*p >> 7) & 1;
 | 
						|
        e = (*p & 0x7F) << 1;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Second byte */
 | 
						|
        e |= (*p >> 7) & 1;
 | 
						|
        f = (*p & 0x7F) << 16;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        if (e == 255) {
 | 
						|
            PyErr_SetString(
 | 
						|
                PyExc_ValueError,
 | 
						|
                "can't unpack IEEE 754 special value "
 | 
						|
                "on non-IEEE platform");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Third byte */
 | 
						|
        f |= *p << 8;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Fourth byte */
 | 
						|
        f |= *p;
 | 
						|
 | 
						|
        x = (double)f / 8388608.0;
 | 
						|
 | 
						|
        /* XXX This sadly ignores Inf/NaN issues */
 | 
						|
        if (e == 0)
 | 
						|
            e = -126;
 | 
						|
        else {
 | 
						|
            x += 1.0;
 | 
						|
            e -= 127;
 | 
						|
        }
 | 
						|
        x = ldexp(x, e);
 | 
						|
 | 
						|
        if (sign)
 | 
						|
            x = -x;
 | 
						|
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        float x;
 | 
						|
 | 
						|
        if ((float_format == ieee_little_endian_format && !le)
 | 
						|
            || (float_format == ieee_big_endian_format && le)) {
 | 
						|
            char buf[4];
 | 
						|
            char *d = &buf[3];
 | 
						|
            int i;
 | 
						|
 | 
						|
            for (i = 0; i < 4; i++) {
 | 
						|
                *d-- = *p++;
 | 
						|
            }
 | 
						|
            memcpy(&x, buf, 4);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            memcpy(&x, p, 4);
 | 
						|
        }
 | 
						|
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_Unpack8(const char *data, int le)
 | 
						|
{
 | 
						|
    unsigned char *p = (unsigned char *)data;
 | 
						|
    if (double_format == unknown_format) {
 | 
						|
        unsigned char sign;
 | 
						|
        int e;
 | 
						|
        unsigned int fhi, flo;
 | 
						|
        double x;
 | 
						|
        int incr = 1;
 | 
						|
 | 
						|
        if (le) {
 | 
						|
            p += 7;
 | 
						|
            incr = -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* First byte */
 | 
						|
        sign = (*p >> 7) & 1;
 | 
						|
        e = (*p & 0x7F) << 4;
 | 
						|
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Second byte */
 | 
						|
        e |= (*p >> 4) & 0xF;
 | 
						|
        fhi = (*p & 0xF) << 24;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        if (e == 2047) {
 | 
						|
            PyErr_SetString(
 | 
						|
                PyExc_ValueError,
 | 
						|
                "can't unpack IEEE 754 special value "
 | 
						|
                "on non-IEEE platform");
 | 
						|
            return -1.0;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Third byte */
 | 
						|
        fhi |= *p << 16;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Fourth byte */
 | 
						|
        fhi |= *p  << 8;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Fifth byte */
 | 
						|
        fhi |= *p;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Sixth byte */
 | 
						|
        flo = *p << 16;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Seventh byte */
 | 
						|
        flo |= *p << 8;
 | 
						|
        p += incr;
 | 
						|
 | 
						|
        /* Eighth byte */
 | 
						|
        flo |= *p;
 | 
						|
 | 
						|
        x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
 | 
						|
        x /= 268435456.0; /* 2**28 */
 | 
						|
 | 
						|
        if (e == 0)
 | 
						|
            e = -1022;
 | 
						|
        else {
 | 
						|
            x += 1.0;
 | 
						|
            e -= 1023;
 | 
						|
        }
 | 
						|
        x = ldexp(x, e);
 | 
						|
 | 
						|
        if (sign)
 | 
						|
            x = -x;
 | 
						|
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        double x;
 | 
						|
 | 
						|
        if ((double_format == ieee_little_endian_format && !le)
 | 
						|
            || (double_format == ieee_big_endian_format && le)) {
 | 
						|
            char buf[8];
 | 
						|
            char *d = &buf[7];
 | 
						|
            int i;
 | 
						|
 | 
						|
            for (i = 0; i < 8; i++) {
 | 
						|
                *d-- = *p++;
 | 
						|
            }
 | 
						|
            memcpy(&x, buf, 8);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            memcpy(&x, p, 8);
 | 
						|
        }
 | 
						|
 | 
						|
        return x;
 | 
						|
    }
 | 
						|
}
 |