mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 02:15:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			6382 lines
		
	
	
	
		
			198 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6382 lines
		
	
	
	
		
			198 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Long (arbitrary precision) integer object implementation */
 | |
| 
 | |
| /* XXX The functional organization of this file is terrible */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "pycore_bitutils.h"      // _Py_popcount32()
 | |
| #include "pycore_initconfig.h"    // _PyStatus_OK()
 | |
| #include "pycore_long.h"          // _Py_SmallInts
 | |
| #include "pycore_object.h"        // _PyObject_Init()
 | |
| #include "pycore_runtime.h"       // _PY_NSMALLPOSINTS
 | |
| #include "pycore_structseq.h"     // _PyStructSequence_FiniBuiltin()
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <float.h>
 | |
| #include <stddef.h>
 | |
| #include <stdlib.h>               // abs()
 | |
| 
 | |
| #include "clinic/longobject.c.h"
 | |
| /*[clinic input]
 | |
| class int "PyObject *" "&PyLong_Type"
 | |
| [clinic start generated code]*/
 | |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
 | |
| 
 | |
| #define medium_value(x) ((stwodigits)_PyLong_CompactValue(x))
 | |
| 
 | |
| #define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS)
 | |
| #define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
 | |
| 
 | |
| #define _MAX_STR_DIGITS_ERROR_FMT_TO_INT "Exceeds the limit (%d digits) for integer string conversion: value has %zd digits; use sys.set_int_max_str_digits() to increase the limit"
 | |
| #define _MAX_STR_DIGITS_ERROR_FMT_TO_STR "Exceeds the limit (%d digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit"
 | |
| 
 | |
| /* If defined, use algorithms from the _pylong.py module */
 | |
| #define WITH_PYLONG_MODULE 1
 | |
| 
 | |
| static inline void
 | |
| _Py_DECREF_INT(PyLongObject *op)
 | |
| {
 | |
|     assert(PyLong_CheckExact(op));
 | |
|     _Py_DECREF_SPECIALIZED((PyObject *)op, (destructor)PyObject_Free);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| is_medium_int(stwodigits x)
 | |
| {
 | |
|     /* Take care that we are comparing unsigned values. */
 | |
|     twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK;
 | |
|     return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| get_small_int(sdigit ival)
 | |
| {
 | |
|     assert(IS_SMALL_INT(ival));
 | |
|     return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival];
 | |
| }
 | |
| 
 | |
| static PyLongObject *
 | |
| maybe_small_long(PyLongObject *v)
 | |
| {
 | |
|     if (v && _PyLong_IsCompact(v)) {
 | |
|         stwodigits ival = medium_value(v);
 | |
|         if (IS_SMALL_INT(ival)) {
 | |
|             _Py_DECREF_INT(v);
 | |
|             return (PyLongObject *)get_small_int((sdigit)ival);
 | |
|         }
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /* For int multiplication, use the O(N**2) school algorithm unless
 | |
|  * both operands contain more than KARATSUBA_CUTOFF digits (this
 | |
|  * being an internal Python int digit, in base BASE).
 | |
|  */
 | |
| #define KARATSUBA_CUTOFF 70
 | |
| #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
 | |
| 
 | |
| /* For exponentiation, use the binary left-to-right algorithm unless the
 | |
|  ^ exponent contains more than HUGE_EXP_CUTOFF bits.  In that case, do
 | |
|  * (no more than) EXP_WINDOW_SIZE bits at a time.  The potential drawback is
 | |
|  * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is
 | |
|  * precomputed.
 | |
|  */
 | |
| #define EXP_WINDOW_SIZE 5
 | |
| #define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1))
 | |
| /* Suppose the exponent has bit length e. All ways of doing this
 | |
|  * need e squarings. The binary method also needs a multiply for
 | |
|  * each bit set. In a k-ary method with window width w, a multiply
 | |
|  * for each non-zero window, so at worst (and likely!)
 | |
|  * ceiling(e/w). The k-ary sliding window method has the same
 | |
|  * worst case, but the window slides so it can sometimes skip
 | |
|  * over an all-zero window that the fixed-window method can't
 | |
|  * exploit. In addition, the windowing methods need multiplies
 | |
|  * to precompute a table of small powers.
 | |
|  *
 | |
|  * For the sliding window method with width 5, 16 precomputation
 | |
|  * multiplies are needed. Assuming about half the exponent bits
 | |
|  * are set, then, the binary method needs about e/2 extra mults
 | |
|  * and the window method about 16 + e/5.
 | |
|  *
 | |
|  * The latter is smaller for e > 53 1/3. We don't have direct
 | |
|  * access to the bit length, though, so call it 60, which is a
 | |
|  * multiple of a long digit's max bit length (15 or 30 so far).
 | |
|  */
 | |
| #define HUGE_EXP_CUTOFF 60
 | |
| 
 | |
| #define SIGCHECK(PyTryBlock)                    \
 | |
|     do {                                        \
 | |
|         if (PyErr_CheckSignals()) PyTryBlock    \
 | |
|     } while(0)
 | |
| 
 | |
| /* Normalize (remove leading zeros from) an int object.
 | |
|    Doesn't attempt to free the storage--in most cases, due to the nature
 | |
|    of the algorithms used, this could save at most be one word anyway. */
 | |
| 
 | |
| static PyLongObject *
 | |
| long_normalize(PyLongObject *v)
 | |
| {
 | |
|     Py_ssize_t j = _PyLong_DigitCount(v);
 | |
|     Py_ssize_t i = j;
 | |
| 
 | |
|     while (i > 0 && v->long_value.ob_digit[i-1] == 0)
 | |
|         --i;
 | |
|     if (i != j) {
 | |
|         if (i == 0) {
 | |
|             _PyLong_SetSignAndDigitCount(v, 0, 0);
 | |
|         }
 | |
|         else {
 | |
|             _PyLong_SetDigitCount(v, i);
 | |
|         }
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /* Allocate a new int object with size digits.
 | |
|    Return NULL and set exception if we run out of memory. */
 | |
| 
 | |
| #define MAX_LONG_DIGITS \
 | |
|     ((PY_SSIZE_T_MAX - offsetof(PyLongObject, long_value.ob_digit))/sizeof(digit))
 | |
| 
 | |
| PyLongObject *
 | |
| _PyLong_New(Py_ssize_t size)
 | |
| {
 | |
|     assert(size >= 0);
 | |
|     PyLongObject *result;
 | |
|     if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "too many digits in integer");
 | |
|         return NULL;
 | |
|     }
 | |
|     /* Fast operations for single digit integers (including zero)
 | |
|      * assume that there is always at least one digit present. */
 | |
|     Py_ssize_t ndigits = size ? size : 1;
 | |
|     /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
 | |
|        sizeof(digit)*size.  Previous incarnations of this code used
 | |
|        sizeof() instead of the offsetof, but this risks being
 | |
|        incorrect in the presence of padding between the header
 | |
|        and the digits. */
 | |
|     result = PyObject_Malloc(offsetof(PyLongObject, long_value.ob_digit) +
 | |
|                              ndigits*sizeof(digit));
 | |
|     if (!result) {
 | |
|         PyErr_NoMemory();
 | |
|         return NULL;
 | |
|     }
 | |
|     _PyLong_SetSignAndDigitCount(result, size != 0, size);
 | |
|     _PyObject_Init((PyObject*)result, &PyLong_Type);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| PyLongObject *
 | |
| _PyLong_FromDigits(int negative, Py_ssize_t digit_count, digit *digits)
 | |
| {
 | |
|     assert(digit_count >= 0);
 | |
|     if (digit_count == 0) {
 | |
|         return (PyLongObject *)Py_NewRef(_PyLong_GetZero());
 | |
|     }
 | |
|     PyLongObject *result = _PyLong_New(digit_count);
 | |
|     if (result == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         return NULL;
 | |
|     }
 | |
|     _PyLong_SetSignAndDigitCount(result, negative?-1:1, digit_count);
 | |
|     memcpy(result->long_value.ob_digit, digits, digit_count * sizeof(digit));
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Copy(PyLongObject *src)
 | |
| {
 | |
|     assert(src != NULL);
 | |
| 
 | |
|     if (_PyLong_IsCompact(src)) {
 | |
|         stwodigits ival = medium_value(src);
 | |
|         if (IS_SMALL_INT(ival)) {
 | |
|             return get_small_int((sdigit)ival);
 | |
|         }
 | |
|     }
 | |
|     Py_ssize_t size = _PyLong_DigitCount(src);
 | |
|     return (PyObject *)_PyLong_FromDigits(_PyLong_IsNegative(src), size, src->long_value.ob_digit);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| _PyLong_FromMedium(sdigit x)
 | |
| {
 | |
|     assert(!IS_SMALL_INT(x));
 | |
|     assert(is_medium_int(x));
 | |
|     /* We could use a freelist here */
 | |
|     PyLongObject *v = PyObject_Malloc(sizeof(PyLongObject));
 | |
|     if (v == NULL) {
 | |
|         PyErr_NoMemory();
 | |
|         return NULL;
 | |
|     }
 | |
|     digit abs_x = x < 0 ? -x : x;
 | |
|     _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
 | |
|     _PyObject_Init((PyObject*)v, &PyLong_Type);
 | |
|     v->long_value.ob_digit[0] = abs_x;
 | |
|     return (PyObject*)v;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| _PyLong_FromLarge(stwodigits ival)
 | |
| {
 | |
|     twodigits abs_ival;
 | |
|     int sign;
 | |
|     assert(!is_medium_int(ival));
 | |
| 
 | |
|     if (ival < 0) {
 | |
|         /* negate: can't write this as abs_ival = -ival since that
 | |
|            invokes undefined behaviour when ival is LONG_MIN */
 | |
|         abs_ival = 0U-(twodigits)ival;
 | |
|         sign = -1;
 | |
|     }
 | |
|     else {
 | |
|         abs_ival = (twodigits)ival;
 | |
|         sign = 1;
 | |
|     }
 | |
|     /* Must be at least two digits */
 | |
|     assert(abs_ival >> PyLong_SHIFT != 0);
 | |
|     twodigits t = abs_ival >> (PyLong_SHIFT * 2);
 | |
|     Py_ssize_t ndigits = 2;
 | |
|     while (t) {
 | |
|         ++ndigits;
 | |
|         t >>= PyLong_SHIFT;
 | |
|     }
 | |
|     PyLongObject *v = _PyLong_New(ndigits);
 | |
|     if (v != NULL) {
 | |
|         digit *p = v->long_value.ob_digit;
 | |
|         _PyLong_SetSignAndDigitCount(v, sign, ndigits);
 | |
|         t = abs_ival;
 | |
|         while (t) {
 | |
|             *p++ = Py_SAFE_DOWNCAST(
 | |
|                 t & PyLong_MASK, twodigits, digit);
 | |
|             t >>= PyLong_SHIFT;
 | |
|         }
 | |
|     }
 | |
|     return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new int object from a C word-sized int */
 | |
| static inline PyObject *
 | |
| _PyLong_FromSTwoDigits(stwodigits x)
 | |
| {
 | |
|     if (IS_SMALL_INT(x)) {
 | |
|         return get_small_int((sdigit)x);
 | |
|     }
 | |
|     assert(x != 0);
 | |
|     if (is_medium_int(x)) {
 | |
|         return _PyLong_FromMedium((sdigit)x);
 | |
|     }
 | |
|     return _PyLong_FromLarge(x);
 | |
| }
 | |
| 
 | |
| /* If a freshly-allocated int is already shared, it must
 | |
|    be a small integer, so negating it must go to PyLong_FromLong */
 | |
| Py_LOCAL_INLINE(void)
 | |
| _PyLong_Negate(PyLongObject **x_p)
 | |
| {
 | |
|     PyLongObject *x;
 | |
| 
 | |
|     x = (PyLongObject *)*x_p;
 | |
|     if (Py_REFCNT(x) == 1) {
 | |
|          _PyLong_FlipSign(x);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     *x_p = (PyLongObject *)_PyLong_FromSTwoDigits(-medium_value(x));
 | |
|     Py_DECREF(x);
 | |
| }
 | |
| 
 | |
| /* Create a new int object from a C long int */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromLong(long ival)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     unsigned long abs_ival, t;
 | |
|     int ndigits;
 | |
| 
 | |
|     /* Handle small and medium cases. */
 | |
|     if (IS_SMALL_INT(ival)) {
 | |
|         return get_small_int((sdigit)ival);
 | |
|     }
 | |
|     if (-(long)PyLong_MASK <= ival && ival <= (long)PyLong_MASK) {
 | |
|         return _PyLong_FromMedium((sdigit)ival);
 | |
|     }
 | |
| 
 | |
|     /* Count digits (at least two - smaller cases were handled above). */
 | |
|     abs_ival = ival < 0 ? 0U-(unsigned long)ival : (unsigned long)ival;
 | |
|     /* Do shift in two steps to avoid possible undefined behavior. */
 | |
|     t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
 | |
|     ndigits = 2;
 | |
|     while (t) {
 | |
|         ++ndigits;
 | |
|         t >>= PyLong_SHIFT;
 | |
|     }
 | |
| 
 | |
|     /* Construct output value. */
 | |
|     v = _PyLong_New(ndigits);
 | |
|     if (v != NULL) {
 | |
|         digit *p = v->long_value.ob_digit;
 | |
|         _PyLong_SetSignAndDigitCount(v, ival < 0 ? -1 : 1, ndigits);
 | |
|         t = abs_ival;
 | |
|         while (t) {
 | |
|             *p++ = (digit)(t & PyLong_MASK);
 | |
|             t >>= PyLong_SHIFT;
 | |
|         }
 | |
|     }
 | |
|     return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| #define PYLONG_FROM_UINT(INT_TYPE, ival) \
 | |
|     do { \
 | |
|         if (IS_SMALL_UINT(ival)) { \
 | |
|             return get_small_int((sdigit)(ival)); \
 | |
|         } \
 | |
|         /* Count the number of Python digits. */ \
 | |
|         Py_ssize_t ndigits = 0; \
 | |
|         INT_TYPE t = (ival); \
 | |
|         while (t) { \
 | |
|             ++ndigits; \
 | |
|             t >>= PyLong_SHIFT; \
 | |
|         } \
 | |
|         PyLongObject *v = _PyLong_New(ndigits); \
 | |
|         if (v == NULL) { \
 | |
|             return NULL; \
 | |
|         } \
 | |
|         digit *p = v->long_value.ob_digit; \
 | |
|         while ((ival)) { \
 | |
|             *p++ = (digit)((ival) & PyLong_MASK); \
 | |
|             (ival) >>= PyLong_SHIFT; \
 | |
|         } \
 | |
|         return (PyObject *)v; \
 | |
|     } while(0)
 | |
| 
 | |
| /* Create a new int object from a C unsigned long int */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnsignedLong(unsigned long ival)
 | |
| {
 | |
|     PYLONG_FROM_UINT(unsigned long, ival);
 | |
| }
 | |
| 
 | |
| /* Create a new int object from a C unsigned long long int. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnsignedLongLong(unsigned long long ival)
 | |
| {
 | |
|     PYLONG_FROM_UINT(unsigned long long, ival);
 | |
| }
 | |
| 
 | |
| /* Create a new int object from a C size_t. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromSize_t(size_t ival)
 | |
| {
 | |
|     PYLONG_FROM_UINT(size_t, ival);
 | |
| }
 | |
| 
 | |
| /* Create a new int object from a C double */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromDouble(double dval)
 | |
| {
 | |
|     /* Try to get out cheap if this fits in a long. When a finite value of real
 | |
|      * floating type is converted to an integer type, the value is truncated
 | |
|      * toward zero. If the value of the integral part cannot be represented by
 | |
|      * the integer type, the behavior is undefined. Thus, we must check that
 | |
|      * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
 | |
|      * of precision than a double, casting LONG_MIN - 1 to double may yield an
 | |
|      * approximation, but LONG_MAX + 1 is a power of two and can be represented
 | |
|      * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
 | |
|      * check against [-(LONG_MAX + 1), LONG_MAX + 1).
 | |
|      */
 | |
|     const double int_max = (unsigned long)LONG_MAX + 1;
 | |
|     if (-int_max < dval && dval < int_max) {
 | |
|         return PyLong_FromLong((long)dval);
 | |
|     }
 | |
| 
 | |
|     PyLongObject *v;
 | |
|     double frac;
 | |
|     int i, ndig, expo, neg;
 | |
|     neg = 0;
 | |
|     if (Py_IS_INFINITY(dval)) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "cannot convert float infinity to integer");
 | |
|         return NULL;
 | |
|     }
 | |
|     if (Py_IS_NAN(dval)) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "cannot convert float NaN to integer");
 | |
|         return NULL;
 | |
|     }
 | |
|     if (dval < 0.0) {
 | |
|         neg = 1;
 | |
|         dval = -dval;
 | |
|     }
 | |
|     frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
 | |
|     assert(expo > 0);
 | |
|     ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
 | |
|     v = _PyLong_New(ndig);
 | |
|     if (v == NULL)
 | |
|         return NULL;
 | |
|     frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
 | |
|     for (i = ndig; --i >= 0; ) {
 | |
|         digit bits = (digit)frac;
 | |
|         v->long_value.ob_digit[i] = bits;
 | |
|         frac = frac - (double)bits;
 | |
|         frac = ldexp(frac, PyLong_SHIFT);
 | |
|     }
 | |
|     if (neg) {
 | |
|         _PyLong_FlipSign(v);
 | |
|     }
 | |
|     return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
 | |
|  * anything about what happens when a signed integer operation overflows,
 | |
|  * and some compilers think they're doing you a favor by being "clever"
 | |
|  * then.  The bit pattern for the largest positive signed long is
 | |
|  * (unsigned long)LONG_MAX, and for the smallest negative signed long
 | |
|  * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
 | |
|  * However, some other compilers warn about applying unary minus to an
 | |
|  * unsigned operand.  Hence the weird "0-".
 | |
|  */
 | |
| #define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN)
 | |
| #define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN)
 | |
| 
 | |
| /* Get a C long int from an int object or any object that has an __index__
 | |
|    method.
 | |
| 
 | |
|    On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
 | |
|    the result.  Otherwise *overflow is 0.
 | |
| 
 | |
|    For other errors (e.g., TypeError), return -1 and set an error condition.
 | |
|    In this case *overflow will be 0.
 | |
| */
 | |
| 
 | |
| long
 | |
| PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
 | |
| {
 | |
|     /* This version by Tim Peters */
 | |
|     PyLongObject *v;
 | |
|     unsigned long x, prev;
 | |
|     long res;
 | |
|     Py_ssize_t i;
 | |
|     int sign;
 | |
|     int do_decref = 0; /* if PyNumber_Index was called */
 | |
| 
 | |
|     *overflow = 0;
 | |
|     if (vv == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (PyLong_Check(vv)) {
 | |
|         v = (PyLongObject *)vv;
 | |
|     }
 | |
|     else {
 | |
|         v = (PyLongObject *)_PyNumber_Index(vv);
 | |
|         if (v == NULL)
 | |
|             return -1;
 | |
|         do_decref = 1;
 | |
|     }
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
| #if SIZEOF_LONG < SIZEOF_VOID_P
 | |
|         intptr_t tmp = _PyLong_CompactValue(v);
 | |
|         res = (long)tmp;
 | |
|         if (res != tmp) {
 | |
|             *overflow = tmp < 0 ? -1 : 1;
 | |
|         }
 | |
| #else
 | |
|         res = _PyLong_CompactValue(v);
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
|         res = -1;
 | |
|         i = _PyLong_DigitCount(v);
 | |
|         sign = _PyLong_NonCompactSign(v);
 | |
|         x = 0;
 | |
|         while (--i >= 0) {
 | |
|             prev = x;
 | |
|             x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
 | |
|             if ((x >> PyLong_SHIFT) != prev) {
 | |
|                 *overflow = sign;
 | |
|                 goto exit;
 | |
|             }
 | |
|         }
 | |
|         /* Haven't lost any bits, but casting to long requires extra
 | |
|         * care (see comment above).
 | |
|         */
 | |
|         if (x <= (unsigned long)LONG_MAX) {
 | |
|             res = (long)x * sign;
 | |
|         }
 | |
|         else if (sign < 0 && x == PY_ABS_LONG_MIN) {
 | |
|             res = LONG_MIN;
 | |
|         }
 | |
|         else {
 | |
|             *overflow = sign;
 | |
|             /* res is already set to -1 */
 | |
|         }
 | |
|     }
 | |
|   exit:
 | |
|     if (do_decref) {
 | |
|         Py_DECREF(v);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Get a C long int from an int object or any object that has an __index__
 | |
|    method.  Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| long
 | |
| PyLong_AsLong(PyObject *obj)
 | |
| {
 | |
|     int overflow;
 | |
|     long result = PyLong_AsLongAndOverflow(obj, &overflow);
 | |
|     if (overflow) {
 | |
|         /* XXX: could be cute and give a different
 | |
|            message for overflow == -1 */
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "Python int too large to convert to C long");
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Get a C int from an int object or any object that has an __index__
 | |
|    method.  Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| int
 | |
| _PyLong_AsInt(PyObject *obj)
 | |
| {
 | |
|     int overflow;
 | |
|     long result = PyLong_AsLongAndOverflow(obj, &overflow);
 | |
|     if (overflow || result > INT_MAX || result < INT_MIN) {
 | |
|         /* XXX: could be cute and give a different
 | |
|            message for overflow == -1 */
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "Python int too large to convert to C int");
 | |
|         return -1;
 | |
|     }
 | |
|     return (int)result;
 | |
| }
 | |
| 
 | |
| /* Get a Py_ssize_t from an int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| Py_ssize_t
 | |
| PyLong_AsSsize_t(PyObject *vv) {
 | |
|     PyLongObject *v;
 | |
|     size_t x, prev;
 | |
|     Py_ssize_t i;
 | |
|     int sign;
 | |
| 
 | |
|     if (vv == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return -1;
 | |
|     }
 | |
|     if (!PyLong_Check(vv)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     v = (PyLongObject *)vv;
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
|         return _PyLong_CompactValue(v);
 | |
|     }
 | |
|     i = _PyLong_DigitCount(v);
 | |
|     sign = _PyLong_NonCompactSign(v);
 | |
|     x = 0;
 | |
|     while (--i >= 0) {
 | |
|         prev = x;
 | |
|         x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
 | |
|         if ((x >> PyLong_SHIFT) != prev)
 | |
|             goto overflow;
 | |
|     }
 | |
|     /* Haven't lost any bits, but casting to a signed type requires
 | |
|      * extra care (see comment above).
 | |
|      */
 | |
|     if (x <= (size_t)PY_SSIZE_T_MAX) {
 | |
|         return (Py_ssize_t)x * sign;
 | |
|     }
 | |
|     else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
 | |
|         return PY_SSIZE_T_MIN;
 | |
|     }
 | |
|     /* else overflow */
 | |
| 
 | |
|   overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "Python int too large to convert to C ssize_t");
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from an int object.
 | |
|    Returns -1 and sets an error condition if overflow occurs. */
 | |
| 
 | |
| unsigned long
 | |
| PyLong_AsUnsignedLong(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     unsigned long x, prev;
 | |
|     Py_ssize_t i;
 | |
| 
 | |
|     if (vv == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return (unsigned long)-1;
 | |
|     }
 | |
|     if (!PyLong_Check(vv)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
|         return (unsigned long)-1;
 | |
|     }
 | |
| 
 | |
|     v = (PyLongObject *)vv;
 | |
|     if (_PyLong_IsNonNegativeCompact(v)) {
 | |
| #if SIZEOF_LONG < SIZEOF_VOID_P
 | |
|         intptr_t tmp = _PyLong_CompactValue(v);
 | |
|         unsigned long res = (unsigned long)tmp;
 | |
|         if (res != tmp) {
 | |
|             goto overflow;
 | |
|         }
 | |
| #else
 | |
|         return _PyLong_CompactValue(v);
 | |
| #endif
 | |
|     }
 | |
|     if (_PyLong_IsNegative(v)) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "can't convert negative value to unsigned int");
 | |
|         return (unsigned long) -1;
 | |
|     }
 | |
|     i = _PyLong_DigitCount(v);
 | |
|     x = 0;
 | |
|     while (--i >= 0) {
 | |
|         prev = x;
 | |
|         x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
 | |
|         if ((x >> PyLong_SHIFT) != prev) {
 | |
|             goto overflow;
 | |
|         }
 | |
|     }
 | |
|     return x;
 | |
| overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "Python int too large to convert "
 | |
|                     "to C unsigned long");
 | |
|     return (unsigned long) -1;
 | |
| }
 | |
| 
 | |
| /* Get a C size_t from an int object. Returns (size_t)-1 and sets
 | |
|    an error condition if overflow occurs. */
 | |
| 
 | |
| size_t
 | |
| PyLong_AsSize_t(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     size_t x, prev;
 | |
|     Py_ssize_t i;
 | |
| 
 | |
|     if (vv == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return (size_t) -1;
 | |
|     }
 | |
|     if (!PyLong_Check(vv)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
|         return (size_t)-1;
 | |
|     }
 | |
| 
 | |
|     v = (PyLongObject *)vv;
 | |
|     if (_PyLong_IsNonNegativeCompact(v)) {
 | |
|         return _PyLong_CompactValue(v);
 | |
|     }
 | |
|     if (_PyLong_IsNegative(v)) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                    "can't convert negative value to size_t");
 | |
|         return (size_t) -1;
 | |
|     }
 | |
|     i = _PyLong_DigitCount(v);
 | |
|     x = 0;
 | |
|     while (--i >= 0) {
 | |
|         prev = x;
 | |
|         x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
 | |
|         if ((x >> PyLong_SHIFT) != prev) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                 "Python int too large to convert to C size_t");
 | |
|             return (size_t) -1;
 | |
|         }
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from an int object, ignoring the high bits.
 | |
|    Returns -1 and sets an error condition if an error occurs. */
 | |
| 
 | |
| static unsigned long
 | |
| _PyLong_AsUnsignedLongMask(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     unsigned long x;
 | |
|     Py_ssize_t i;
 | |
| 
 | |
|     if (vv == NULL || !PyLong_Check(vv)) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return (unsigned long) -1;
 | |
|     }
 | |
|     v = (PyLongObject *)vv;
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
|         return (unsigned long)_PyLong_CompactValue(v);
 | |
|     }
 | |
|     i = _PyLong_DigitCount(v);
 | |
|     int sign = _PyLong_NonCompactSign(v);
 | |
|     x = 0;
 | |
|     while (--i >= 0) {
 | |
|         x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
 | |
|     }
 | |
|     return x * sign;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| PyLong_AsUnsignedLongMask(PyObject *op)
 | |
| {
 | |
|     PyLongObject *lo;
 | |
|     unsigned long val;
 | |
| 
 | |
|     if (op == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return (unsigned long)-1;
 | |
|     }
 | |
| 
 | |
|     if (PyLong_Check(op)) {
 | |
|         return _PyLong_AsUnsignedLongMask(op);
 | |
|     }
 | |
| 
 | |
|     lo = (PyLongObject *)_PyNumber_Index(op);
 | |
|     if (lo == NULL)
 | |
|         return (unsigned long)-1;
 | |
| 
 | |
|     val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
 | |
|     Py_DECREF(lo);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_Sign(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v = (PyLongObject *)vv;
 | |
| 
 | |
|     assert(v != NULL);
 | |
|     assert(PyLong_Check(v));
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
|         return _PyLong_CompactSign(v);
 | |
|     }
 | |
|     return _PyLong_NonCompactSign(v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bit_length_digit(digit x)
 | |
| {
 | |
|     // digit can be larger than unsigned long, but only PyLong_SHIFT bits
 | |
|     // of it will be ever used.
 | |
|     static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8,
 | |
|                   "digit is larger than unsigned long");
 | |
|     return _Py_bit_length((unsigned long)x);
 | |
| }
 | |
| 
 | |
| size_t
 | |
| _PyLong_NumBits(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v = (PyLongObject *)vv;
 | |
|     size_t result = 0;
 | |
|     Py_ssize_t ndigits;
 | |
|     int msd_bits;
 | |
| 
 | |
|     assert(v != NULL);
 | |
|     assert(PyLong_Check(v));
 | |
|     ndigits = _PyLong_DigitCount(v);
 | |
|     assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
 | |
|     if (ndigits > 0) {
 | |
|         digit msd = v->long_value.ob_digit[ndigits - 1];
 | |
|         if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
 | |
|             goto Overflow;
 | |
|         result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
 | |
|         msd_bits = bit_length_digit(msd);
 | |
|         if (SIZE_MAX - msd_bits < result)
 | |
|             goto Overflow;
 | |
|         result += msd_bits;
 | |
|     }
 | |
|     return result;
 | |
| 
 | |
|   Overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError, "int has too many bits "
 | |
|                     "to express in a platform size_t");
 | |
|     return (size_t)-1;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
 | |
|                       int little_endian, int is_signed)
 | |
| {
 | |
|     const unsigned char* pstartbyte;    /* LSB of bytes */
 | |
|     int incr;                           /* direction to move pstartbyte */
 | |
|     const unsigned char* pendbyte;      /* MSB of bytes */
 | |
|     size_t numsignificantbytes;         /* number of bytes that matter */
 | |
|     Py_ssize_t ndigits;                 /* number of Python int digits */
 | |
|     PyLongObject* v;                    /* result */
 | |
|     Py_ssize_t idigit = 0;              /* next free index in v->long_value.ob_digit */
 | |
| 
 | |
|     if (n == 0)
 | |
|         return PyLong_FromLong(0L);
 | |
| 
 | |
|     if (little_endian) {
 | |
|         pstartbyte = bytes;
 | |
|         pendbyte = bytes + n - 1;
 | |
|         incr = 1;
 | |
|     }
 | |
|     else {
 | |
|         pstartbyte = bytes + n - 1;
 | |
|         pendbyte = bytes;
 | |
|         incr = -1;
 | |
|     }
 | |
| 
 | |
|     if (is_signed)
 | |
|         is_signed = *pendbyte >= 0x80;
 | |
| 
 | |
|     /* Compute numsignificantbytes.  This consists of finding the most
 | |
|        significant byte.  Leading 0 bytes are insignificant if the number
 | |
|        is positive, and leading 0xff bytes if negative. */
 | |
|     {
 | |
|         size_t i;
 | |
|         const unsigned char* p = pendbyte;
 | |
|         const int pincr = -incr;  /* search MSB to LSB */
 | |
|         const unsigned char insignificant = is_signed ? 0xff : 0x00;
 | |
| 
 | |
|         for (i = 0; i < n; ++i, p += pincr) {
 | |
|             if (*p != insignificant)
 | |
|                 break;
 | |
|         }
 | |
|         numsignificantbytes = n - i;
 | |
|         /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
 | |
|            actually has 2 significant bytes.  OTOH, 0xff0001 ==
 | |
|            -0x00ffff, so we wouldn't *need* to bump it there; but we
 | |
|            do for 0xffff = -0x0001.  To be safe without bothering to
 | |
|            check every case, bump it regardless. */
 | |
|         if (is_signed && numsignificantbytes < n)
 | |
|             ++numsignificantbytes;
 | |
|     }
 | |
| 
 | |
|     /* How many Python int digits do we need?  We have
 | |
|        8*numsignificantbytes bits, and each Python int digit has
 | |
|        PyLong_SHIFT bits, so it's the ceiling of the quotient. */
 | |
|     /* catch overflow before it happens */
 | |
|     if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "byte array too long to convert to int");
 | |
|         return NULL;
 | |
|     }
 | |
|     ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
 | |
|     v = _PyLong_New(ndigits);
 | |
|     if (v == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     /* Copy the bits over.  The tricky parts are computing 2's-comp on
 | |
|        the fly for signed numbers, and dealing with the mismatch between
 | |
|        8-bit bytes and (probably) 15-bit Python digits.*/
 | |
|     {
 | |
|         size_t i;
 | |
|         twodigits carry = 1;                    /* for 2's-comp calculation */
 | |
|         twodigits accum = 0;                    /* sliding register */
 | |
|         unsigned int accumbits = 0;             /* number of bits in accum */
 | |
|         const unsigned char* p = pstartbyte;
 | |
| 
 | |
|         for (i = 0; i < numsignificantbytes; ++i, p += incr) {
 | |
|             twodigits thisbyte = *p;
 | |
|             /* Compute correction for 2's comp, if needed. */
 | |
|             if (is_signed) {
 | |
|                 thisbyte = (0xff ^ thisbyte) + carry;
 | |
|                 carry = thisbyte >> 8;
 | |
|                 thisbyte &= 0xff;
 | |
|             }
 | |
|             /* Because we're going LSB to MSB, thisbyte is
 | |
|                more significant than what's already in accum,
 | |
|                so needs to be prepended to accum. */
 | |
|             accum |= thisbyte << accumbits;
 | |
|             accumbits += 8;
 | |
|             if (accumbits >= PyLong_SHIFT) {
 | |
|                 /* There's enough to fill a Python digit. */
 | |
|                 assert(idigit < ndigits);
 | |
|                 v->long_value.ob_digit[idigit] = (digit)(accum & PyLong_MASK);
 | |
|                 ++idigit;
 | |
|                 accum >>= PyLong_SHIFT;
 | |
|                 accumbits -= PyLong_SHIFT;
 | |
|                 assert(accumbits < PyLong_SHIFT);
 | |
|             }
 | |
|         }
 | |
|         assert(accumbits < PyLong_SHIFT);
 | |
|         if (accumbits) {
 | |
|             assert(idigit < ndigits);
 | |
|             v->long_value.ob_digit[idigit] = (digit)accum;
 | |
|             ++idigit;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int sign = is_signed ? -1: 1;
 | |
|     if (idigit == 0) {
 | |
|         sign = 0;
 | |
|     }
 | |
|     _PyLong_SetSignAndDigitCount(v, sign, idigit);
 | |
|     return (PyObject *)maybe_small_long(long_normalize(v));
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_AsByteArray(PyLongObject* v,
 | |
|                     unsigned char* bytes, size_t n,
 | |
|                     int little_endian, int is_signed)
 | |
| {
 | |
|     Py_ssize_t i;               /* index into v->long_value.ob_digit */
 | |
|     Py_ssize_t ndigits;         /* number of digits */
 | |
|     twodigits accum;            /* sliding register */
 | |
|     unsigned int accumbits;     /* # bits in accum */
 | |
|     int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */
 | |
|     digit carry;                /* for computing 2's-comp */
 | |
|     size_t j;                   /* # bytes filled */
 | |
|     unsigned char* p;           /* pointer to next byte in bytes */
 | |
|     int pincr;                  /* direction to move p */
 | |
| 
 | |
|     assert(v != NULL && PyLong_Check(v));
 | |
| 
 | |
|     ndigits = _PyLong_DigitCount(v);
 | |
|     if (_PyLong_IsNegative(v)) {
 | |
|         if (!is_signed) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "can't convert negative int to unsigned");
 | |
|             return -1;
 | |
|         }
 | |
|         do_twos_comp = 1;
 | |
|     }
 | |
|     else {
 | |
|         do_twos_comp = 0;
 | |
|     }
 | |
| 
 | |
|     if (little_endian) {
 | |
|         p = bytes;
 | |
|         pincr = 1;
 | |
|     }
 | |
|     else {
 | |
|         p = bytes + n - 1;
 | |
|         pincr = -1;
 | |
|     }
 | |
| 
 | |
|     /* Copy over all the Python digits.
 | |
|        It's crucial that every Python digit except for the MSD contribute
 | |
|        exactly PyLong_SHIFT bits to the total, so first assert that the int is
 | |
|        normalized. */
 | |
|     assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
 | |
|     j = 0;
 | |
|     accum = 0;
 | |
|     accumbits = 0;
 | |
|     carry = do_twos_comp ? 1 : 0;
 | |
|     for (i = 0; i < ndigits; ++i) {
 | |
|         digit thisdigit = v->long_value.ob_digit[i];
 | |
|         if (do_twos_comp) {
 | |
|             thisdigit = (thisdigit ^ PyLong_MASK) + carry;
 | |
|             carry = thisdigit >> PyLong_SHIFT;
 | |
|             thisdigit &= PyLong_MASK;
 | |
|         }
 | |
|         /* Because we're going LSB to MSB, thisdigit is more
 | |
|            significant than what's already in accum, so needs to be
 | |
|            prepended to accum. */
 | |
|         accum |= (twodigits)thisdigit << accumbits;
 | |
| 
 | |
|         /* The most-significant digit may be (probably is) at least
 | |
|            partly empty. */
 | |
|         if (i == ndigits - 1) {
 | |
|             /* Count # of sign bits -- they needn't be stored,
 | |
|              * although for signed conversion we need later to
 | |
|              * make sure at least one sign bit gets stored. */
 | |
|             digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
 | |
|             while (s != 0) {
 | |
|                 s >>= 1;
 | |
|                 accumbits++;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|             accumbits += PyLong_SHIFT;
 | |
| 
 | |
|         /* Store as many bytes as possible. */
 | |
|         while (accumbits >= 8) {
 | |
|             if (j >= n)
 | |
|                 goto Overflow;
 | |
|             ++j;
 | |
|             *p = (unsigned char)(accum & 0xff);
 | |
|             p += pincr;
 | |
|             accumbits -= 8;
 | |
|             accum >>= 8;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Store the straggler (if any). */
 | |
|     assert(accumbits < 8);
 | |
|     assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
 | |
|     if (accumbits > 0) {
 | |
|         if (j >= n)
 | |
|             goto Overflow;
 | |
|         ++j;
 | |
|         if (do_twos_comp) {
 | |
|             /* Fill leading bits of the byte with sign bits
 | |
|                (appropriately pretending that the int had an
 | |
|                infinite supply of sign bits). */
 | |
|             accum |= (~(twodigits)0) << accumbits;
 | |
|         }
 | |
|         *p = (unsigned char)(accum & 0xff);
 | |
|         p += pincr;
 | |
|     }
 | |
|     else if (j == n && n > 0 && is_signed) {
 | |
|         /* The main loop filled the byte array exactly, so the code
 | |
|            just above didn't get to ensure there's a sign bit, and the
 | |
|            loop below wouldn't add one either.  Make sure a sign bit
 | |
|            exists. */
 | |
|         unsigned char msb = *(p - pincr);
 | |
|         int sign_bit_set = msb >= 0x80;
 | |
|         assert(accumbits == 0);
 | |
|         if (sign_bit_set == do_twos_comp)
 | |
|             return 0;
 | |
|         else
 | |
|             goto Overflow;
 | |
|     }
 | |
| 
 | |
|     /* Fill remaining bytes with copies of the sign bit. */
 | |
|     {
 | |
|         unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
 | |
|         for ( ; j < n; ++j, p += pincr)
 | |
|             *p = signbyte;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
|   Overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError, "int too big to convert");
 | |
|     return -1;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Create a new int object from a C pointer */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromVoidPtr(void *p)
 | |
| {
 | |
| #if SIZEOF_VOID_P <= SIZEOF_LONG
 | |
|     return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
 | |
| #else
 | |
| 
 | |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | |
| #   error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
 | |
| #endif
 | |
|     return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
 | |
| #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Get a C pointer from an int object. */
 | |
| 
 | |
| void *
 | |
| PyLong_AsVoidPtr(PyObject *vv)
 | |
| {
 | |
| #if SIZEOF_VOID_P <= SIZEOF_LONG
 | |
|     long x;
 | |
| 
 | |
|     if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
 | |
|         x = PyLong_AsLong(vv);
 | |
|     }
 | |
|     else {
 | |
|         x = PyLong_AsUnsignedLong(vv);
 | |
|     }
 | |
| #else
 | |
| 
 | |
| #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | |
| #   error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
 | |
| #endif
 | |
|     long long x;
 | |
| 
 | |
|     if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
 | |
|         x = PyLong_AsLongLong(vv);
 | |
|     }
 | |
|     else {
 | |
|         x = PyLong_AsUnsignedLongLong(vv);
 | |
|     }
 | |
| 
 | |
| #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | |
| 
 | |
|     if (x == -1 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     return (void *)x;
 | |
| }
 | |
| 
 | |
| /* Initial long long support by Chris Herborth (chrish@qnx.com), later
 | |
|  * rewritten to use the newer PyLong_{As,From}ByteArray API.
 | |
|  */
 | |
| 
 | |
| #define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
 | |
| 
 | |
| /* Create a new int object from a C long long int. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromLongLong(long long ival)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     unsigned long long abs_ival, t;
 | |
|     int ndigits;
 | |
| 
 | |
|     /* Handle small and medium cases. */
 | |
|     if (IS_SMALL_INT(ival)) {
 | |
|         return get_small_int((sdigit)ival);
 | |
|     }
 | |
|     if (-(long long)PyLong_MASK <= ival && ival <= (long long)PyLong_MASK) {
 | |
|         return _PyLong_FromMedium((sdigit)ival);
 | |
|     }
 | |
| 
 | |
|     /* Count digits (at least two - smaller cases were handled above). */
 | |
|     abs_ival = ival < 0 ? 0U-(unsigned long long)ival : (unsigned long long)ival;
 | |
|     /* Do shift in two steps to avoid possible undefined behavior. */
 | |
|     t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
 | |
|     ndigits = 2;
 | |
|     while (t) {
 | |
|         ++ndigits;
 | |
|         t >>= PyLong_SHIFT;
 | |
|     }
 | |
| 
 | |
|     /* Construct output value. */
 | |
|     v = _PyLong_New(ndigits);
 | |
|     if (v != NULL) {
 | |
|         digit *p = v->long_value.ob_digit;
 | |
|         _PyLong_SetSignAndDigitCount(v, ival < 0 ? -1 : 1, ndigits);
 | |
|         t = abs_ival;
 | |
|         while (t) {
 | |
|             *p++ = (digit)(t & PyLong_MASK);
 | |
|             t >>= PyLong_SHIFT;
 | |
|         }
 | |
|     }
 | |
|     return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Create a new int object from a C Py_ssize_t. */
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromSsize_t(Py_ssize_t ival)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     size_t abs_ival;
 | |
|     size_t t;  /* unsigned so >> doesn't propagate sign bit */
 | |
|     int ndigits = 0;
 | |
|     int negative = 0;
 | |
| 
 | |
|     if (IS_SMALL_INT(ival)) {
 | |
|         return get_small_int((sdigit)ival);
 | |
|     }
 | |
| 
 | |
|     if (ival < 0) {
 | |
|         /* avoid signed overflow when ival = SIZE_T_MIN */
 | |
|         abs_ival = (size_t)(-1-ival)+1;
 | |
|         negative = 1;
 | |
|     }
 | |
|     else {
 | |
|         abs_ival = (size_t)ival;
 | |
|     }
 | |
| 
 | |
|     /* Count the number of Python digits. */
 | |
|     t = abs_ival;
 | |
|     while (t) {
 | |
|         ++ndigits;
 | |
|         t >>= PyLong_SHIFT;
 | |
|     }
 | |
|     v = _PyLong_New(ndigits);
 | |
|     if (v != NULL) {
 | |
|         digit *p = v->long_value.ob_digit;
 | |
|         _PyLong_SetSignAndDigitCount(v, negative ? -1 : 1, ndigits);
 | |
|         t = abs_ival;
 | |
|         while (t) {
 | |
|             *p++ = (digit)(t & PyLong_MASK);
 | |
|             t >>= PyLong_SHIFT;
 | |
|         }
 | |
|     }
 | |
|     return (PyObject *)v;
 | |
| }
 | |
| 
 | |
| /* Get a C long long int from an int object or any object that has an
 | |
|    __index__ method.  Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| long long
 | |
| PyLong_AsLongLong(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     long long bytes;
 | |
|     int res;
 | |
|     int do_decref = 0; /* if PyNumber_Index was called */
 | |
| 
 | |
|     if (vv == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (PyLong_Check(vv)) {
 | |
|         v = (PyLongObject *)vv;
 | |
|     }
 | |
|     else {
 | |
|         v = (PyLongObject *)_PyNumber_Index(vv);
 | |
|         if (v == NULL)
 | |
|             return -1;
 | |
|         do_decref = 1;
 | |
|     }
 | |
| 
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
|         res = 0;
 | |
|         bytes = _PyLong_CompactValue(v);
 | |
|     }
 | |
|     else {
 | |
|         res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
 | |
|                                   SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
 | |
|     }
 | |
|     if (do_decref) {
 | |
|         Py_DECREF(v);
 | |
|     }
 | |
| 
 | |
|     /* Plan 9 can't handle long long in ? : expressions */
 | |
|     if (res < 0)
 | |
|         return (long long)-1;
 | |
|     else
 | |
|         return bytes;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long long int from an int object.
 | |
|    Return -1 and set an error if overflow occurs. */
 | |
| 
 | |
| unsigned long long
 | |
| PyLong_AsUnsignedLongLong(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     unsigned long long bytes;
 | |
|     int res;
 | |
| 
 | |
|     if (vv == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return (unsigned long long)-1;
 | |
|     }
 | |
|     if (!PyLong_Check(vv)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
|         return (unsigned long long)-1;
 | |
|     }
 | |
| 
 | |
|     v = (PyLongObject*)vv;
 | |
|     if (_PyLong_IsNonNegativeCompact(v)) {
 | |
|         res = 0;
 | |
|         bytes = _PyLong_CompactValue(v);
 | |
|     }
 | |
|     else {
 | |
|         res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
 | |
|                               SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
 | |
|     }
 | |
| 
 | |
|     /* Plan 9 can't handle long long in ? : expressions */
 | |
|     if (res < 0)
 | |
|         return (unsigned long long)res;
 | |
|     else
 | |
|         return bytes;
 | |
| }
 | |
| 
 | |
| /* Get a C unsigned long int from an int object, ignoring the high bits.
 | |
|    Returns -1 and sets an error condition if an error occurs. */
 | |
| 
 | |
| static unsigned long long
 | |
| _PyLong_AsUnsignedLongLongMask(PyObject *vv)
 | |
| {
 | |
|     PyLongObject *v;
 | |
|     unsigned long long x;
 | |
|     Py_ssize_t i;
 | |
|     int sign;
 | |
| 
 | |
|     if (vv == NULL || !PyLong_Check(vv)) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return (unsigned long long) -1;
 | |
|     }
 | |
|     v = (PyLongObject *)vv;
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
|         return (unsigned long long)(signed long long)_PyLong_CompactValue(v);
 | |
|     }
 | |
|     i = _PyLong_DigitCount(v);
 | |
|     sign = _PyLong_NonCompactSign(v);
 | |
|     x = 0;
 | |
|     while (--i >= 0) {
 | |
|         x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
 | |
|     }
 | |
|     return x * sign;
 | |
| }
 | |
| 
 | |
| unsigned long long
 | |
| PyLong_AsUnsignedLongLongMask(PyObject *op)
 | |
| {
 | |
|     PyLongObject *lo;
 | |
|     unsigned long long val;
 | |
| 
 | |
|     if (op == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return (unsigned long long)-1;
 | |
|     }
 | |
| 
 | |
|     if (PyLong_Check(op)) {
 | |
|         return _PyLong_AsUnsignedLongLongMask(op);
 | |
|     }
 | |
| 
 | |
|     lo = (PyLongObject *)_PyNumber_Index(op);
 | |
|     if (lo == NULL)
 | |
|         return (unsigned long long)-1;
 | |
| 
 | |
|     val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
 | |
|     Py_DECREF(lo);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Get a C long long int from an int object or any object that has an
 | |
|    __index__ method.
 | |
| 
 | |
|    On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
 | |
|    the result.  Otherwise *overflow is 0.
 | |
| 
 | |
|    For other errors (e.g., TypeError), return -1 and set an error condition.
 | |
|    In this case *overflow will be 0.
 | |
| */
 | |
| 
 | |
| long long
 | |
| PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
 | |
| {
 | |
|     /* This version by Tim Peters */
 | |
|     PyLongObject *v;
 | |
|     unsigned long long x, prev;
 | |
|     long long res;
 | |
|     Py_ssize_t i;
 | |
|     int sign;
 | |
|     int do_decref = 0; /* if PyNumber_Index was called */
 | |
| 
 | |
|     *overflow = 0;
 | |
|     if (vv == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (PyLong_Check(vv)) {
 | |
|         v = (PyLongObject *)vv;
 | |
|     }
 | |
|     else {
 | |
|         v = (PyLongObject *)_PyNumber_Index(vv);
 | |
|         if (v == NULL)
 | |
|             return -1;
 | |
|         do_decref = 1;
 | |
|     }
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
|         res = _PyLong_CompactValue(v);
 | |
|     }
 | |
|     else {
 | |
|         i = _PyLong_DigitCount(v);
 | |
|         sign = _PyLong_NonCompactSign(v);
 | |
|         x = 0;
 | |
|         while (--i >= 0) {
 | |
|             prev = x;
 | |
|             x = (x << PyLong_SHIFT) + v->long_value.ob_digit[i];
 | |
|             if ((x >> PyLong_SHIFT) != prev) {
 | |
|                 *overflow = sign;
 | |
|                 res = -1;
 | |
|                 goto exit;
 | |
|             }
 | |
|         }
 | |
|         /* Haven't lost any bits, but casting to long requires extra
 | |
|          * care (see comment above).
 | |
|          */
 | |
|         if (x <= (unsigned long long)LLONG_MAX) {
 | |
|             res = (long long)x * sign;
 | |
|         }
 | |
|         else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
 | |
|             res = LLONG_MIN;
 | |
|         }
 | |
|         else {
 | |
|             *overflow = sign;
 | |
|             res = -1;
 | |
|         }
 | |
|     }
 | |
|   exit:
 | |
|     if (do_decref) {
 | |
|         Py_DECREF(v);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_UnsignedShort_Converter(PyObject *obj, void *ptr)
 | |
| {
 | |
|     unsigned long uval;
 | |
| 
 | |
|     if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
 | |
|         PyErr_SetString(PyExc_ValueError, "value must be positive");
 | |
|         return 0;
 | |
|     }
 | |
|     uval = PyLong_AsUnsignedLong(obj);
 | |
|     if (uval == (unsigned long)-1 && PyErr_Occurred())
 | |
|         return 0;
 | |
|     if (uval > USHRT_MAX) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "Python int too large for C unsigned short");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     *(unsigned short *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned short);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_UnsignedInt_Converter(PyObject *obj, void *ptr)
 | |
| {
 | |
|     unsigned long uval;
 | |
| 
 | |
|     if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
 | |
|         PyErr_SetString(PyExc_ValueError, "value must be positive");
 | |
|         return 0;
 | |
|     }
 | |
|     uval = PyLong_AsUnsignedLong(obj);
 | |
|     if (uval == (unsigned long)-1 && PyErr_Occurred())
 | |
|         return 0;
 | |
|     if (uval > UINT_MAX) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "Python int too large for C unsigned int");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     *(unsigned int *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned int);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_UnsignedLong_Converter(PyObject *obj, void *ptr)
 | |
| {
 | |
|     unsigned long uval;
 | |
| 
 | |
|     if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
 | |
|         PyErr_SetString(PyExc_ValueError, "value must be positive");
 | |
|         return 0;
 | |
|     }
 | |
|     uval = PyLong_AsUnsignedLong(obj);
 | |
|     if (uval == (unsigned long)-1 && PyErr_Occurred())
 | |
|         return 0;
 | |
| 
 | |
|     *(unsigned long *)ptr = uval;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_UnsignedLongLong_Converter(PyObject *obj, void *ptr)
 | |
| {
 | |
|     unsigned long long uval;
 | |
| 
 | |
|     if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
 | |
|         PyErr_SetString(PyExc_ValueError, "value must be positive");
 | |
|         return 0;
 | |
|     }
 | |
|     uval = PyLong_AsUnsignedLongLong(obj);
 | |
|     if (uval == (unsigned long long)-1 && PyErr_Occurred())
 | |
|         return 0;
 | |
| 
 | |
|     *(unsigned long long *)ptr = uval;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_Size_t_Converter(PyObject *obj, void *ptr)
 | |
| {
 | |
|     size_t uval;
 | |
| 
 | |
|     if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
 | |
|         PyErr_SetString(PyExc_ValueError, "value must be positive");
 | |
|         return 0;
 | |
|     }
 | |
|     uval = PyLong_AsSize_t(obj);
 | |
|     if (uval == (size_t)-1 && PyErr_Occurred())
 | |
|         return 0;
 | |
| 
 | |
|     *(size_t *)ptr = uval;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define CHECK_BINOP(v,w)                                \
 | |
|     do {                                                \
 | |
|         if (!PyLong_Check(v) || !PyLong_Check(w))       \
 | |
|             Py_RETURN_NOTIMPLEMENTED;                   \
 | |
|     } while(0)
 | |
| 
 | |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | |
|  * is modified in place, by adding y to it.  Carries are propagated as far as
 | |
|  * x[m-1], and the remaining carry (0 or 1) is returned.
 | |
|  */
 | |
| static digit
 | |
| v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | |
| {
 | |
|     Py_ssize_t i;
 | |
|     digit carry = 0;
 | |
| 
 | |
|     assert(m >= n);
 | |
|     for (i = 0; i < n; ++i) {
 | |
|         carry += x[i] + y[i];
 | |
|         x[i] = carry & PyLong_MASK;
 | |
|         carry >>= PyLong_SHIFT;
 | |
|         assert((carry & 1) == carry);
 | |
|     }
 | |
|     for (; carry && i < m; ++i) {
 | |
|         carry += x[i];
 | |
|         x[i] = carry & PyLong_MASK;
 | |
|         carry >>= PyLong_SHIFT;
 | |
|         assert((carry & 1) == carry);
 | |
|     }
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | |
|  * is modified in place, by subtracting y from it.  Borrows are propagated as
 | |
|  * far as x[m-1], and the remaining borrow (0 or 1) is returned.
 | |
|  */
 | |
| static digit
 | |
| v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | |
| {
 | |
|     Py_ssize_t i;
 | |
|     digit borrow = 0;
 | |
| 
 | |
|     assert(m >= n);
 | |
|     for (i = 0; i < n; ++i) {
 | |
|         borrow = x[i] - y[i] - borrow;
 | |
|         x[i] = borrow & PyLong_MASK;
 | |
|         borrow >>= PyLong_SHIFT;
 | |
|         borrow &= 1;            /* keep only 1 sign bit */
 | |
|     }
 | |
|     for (; borrow && i < m; ++i) {
 | |
|         borrow = x[i] - borrow;
 | |
|         x[i] = borrow & PyLong_MASK;
 | |
|         borrow >>= PyLong_SHIFT;
 | |
|         borrow &= 1;
 | |
|     }
 | |
|     return borrow;
 | |
| }
 | |
| 
 | |
| /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
 | |
|  * result in z[0:m], and return the d bits shifted out of the top.
 | |
|  */
 | |
| static digit
 | |
| v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
 | |
| {
 | |
|     Py_ssize_t i;
 | |
|     digit carry = 0;
 | |
| 
 | |
|     assert(0 <= d && d < PyLong_SHIFT);
 | |
|     for (i=0; i < m; i++) {
 | |
|         twodigits acc = (twodigits)a[i] << d | carry;
 | |
|         z[i] = (digit)acc & PyLong_MASK;
 | |
|         carry = (digit)(acc >> PyLong_SHIFT);
 | |
|     }
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
 | |
|  * result in z[0:m], and return the d bits shifted out of the bottom.
 | |
|  */
 | |
| static digit
 | |
| v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
 | |
| {
 | |
|     Py_ssize_t i;
 | |
|     digit carry = 0;
 | |
|     digit mask = ((digit)1 << d) - 1U;
 | |
| 
 | |
|     assert(0 <= d && d < PyLong_SHIFT);
 | |
|     for (i=m; i-- > 0;) {
 | |
|         twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
 | |
|         carry = (digit)acc & mask;
 | |
|         z[i] = (digit)(acc >> d);
 | |
|     }
 | |
|     return carry;
 | |
| }
 | |
| 
 | |
| /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
 | |
|    in pout, and returning the remainder.  pin and pout point at the LSD.
 | |
|    It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
 | |
|    _PyLong_Format, but that should be done with great care since ints are
 | |
|    immutable.
 | |
| 
 | |
|    This version of the code can be 20% faster than the pre-2022 version
 | |
|    on todays compilers on architectures like amd64.  It evolved from Mark
 | |
|    Dickinson observing that a 128:64 divide instruction was always being
 | |
|    generated by the compiler despite us working with 30-bit digit values.
 | |
|    See the thread for full context:
 | |
| 
 | |
|      https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5
 | |
| 
 | |
|    If you ever want to change this code, pay attention to performance using
 | |
|    different compilers, optimization levels, and cpu architectures. Beware of
 | |
|    PGO/FDO builds doing value specialization such as a fast path for //10. :)
 | |
| 
 | |
|    Verify that 17 isn't specialized and this works as a quick test:
 | |
|      python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17'
 | |
| */
 | |
| static digit
 | |
| inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
 | |
| {
 | |
|     digit remainder = 0;
 | |
| 
 | |
|     assert(n > 0 && n <= PyLong_MASK);
 | |
|     while (--size >= 0) {
 | |
|         twodigits dividend;
 | |
|         dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size];
 | |
|         digit quotient;
 | |
|         quotient = (digit)(dividend / n);
 | |
|         remainder = dividend % n;
 | |
|         pout[size] = quotient;
 | |
|     }
 | |
|     return remainder;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Divide an integer by a digit, returning both the quotient
 | |
|    (as function result) and the remainder (through *prem).
 | |
|    The sign of a is ignored; n should not be zero. */
 | |
| 
 | |
| static PyLongObject *
 | |
| divrem1(PyLongObject *a, digit n, digit *prem)
 | |
| {
 | |
|     const Py_ssize_t size = _PyLong_DigitCount(a);
 | |
|     PyLongObject *z;
 | |
| 
 | |
|     assert(n > 0 && n <= PyLong_MASK);
 | |
|     z = _PyLong_New(size);
 | |
|     if (z == NULL)
 | |
|         return NULL;
 | |
|     *prem = inplace_divrem1(z->long_value.ob_digit, a->long_value.ob_digit, size, n);
 | |
|     return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* Remainder of long pin, w/ size digits, by non-zero digit n,
 | |
|    returning the remainder. pin points at the LSD. */
 | |
| 
 | |
| static digit
 | |
| inplace_rem1(digit *pin, Py_ssize_t size, digit n)
 | |
| {
 | |
|     twodigits rem = 0;
 | |
| 
 | |
|     assert(n > 0 && n <= PyLong_MASK);
 | |
|     while (--size >= 0)
 | |
|         rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
 | |
|     return (digit)rem;
 | |
| }
 | |
| 
 | |
| /* Get the remainder of an integer divided by a digit, returning
 | |
|    the remainder as the result of the function. The sign of a is
 | |
|    ignored; n should not be zero. */
 | |
| 
 | |
| static PyLongObject *
 | |
| rem1(PyLongObject *a, digit n)
 | |
| {
 | |
|     const Py_ssize_t size = _PyLong_DigitCount(a);
 | |
| 
 | |
|     assert(n > 0 && n <= PyLong_MASK);
 | |
|     return (PyLongObject *)PyLong_FromLong(
 | |
|         (long)inplace_rem1(a->long_value.ob_digit, size, n)
 | |
|     );
 | |
| }
 | |
| 
 | |
| #ifdef WITH_PYLONG_MODULE
 | |
| /* asymptotically faster long_to_decimal_string, using _pylong.py */
 | |
| static int
 | |
| pylong_int_to_decimal_string(PyObject *aa,
 | |
|                              PyObject **p_output,
 | |
|                              _PyUnicodeWriter *writer,
 | |
|                              _PyBytesWriter *bytes_writer,
 | |
|                              char **bytes_str)
 | |
| {
 | |
|     PyObject *s = NULL;
 | |
|     PyObject *mod = PyImport_ImportModule("_pylong");
 | |
|     if (mod == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     s = PyObject_CallMethod(mod, "int_to_decimal_string", "O", aa);
 | |
|     if (s == NULL) {
 | |
|         goto error;
 | |
|     }
 | |
|     if (!PyUnicode_Check(s)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "_pylong.int_to_decimal_string did not return a str");
 | |
|         goto error;
 | |
|     }
 | |
|     if (writer) {
 | |
|         Py_ssize_t size = PyUnicode_GET_LENGTH(s);
 | |
|         if (_PyUnicodeWriter_Prepare(writer, size, '9') == -1) {
 | |
|             goto error;
 | |
|         }
 | |
|         if (_PyUnicodeWriter_WriteStr(writer, s) < 0) {
 | |
|             goto error;
 | |
|         }
 | |
|         goto success;
 | |
|     }
 | |
|     else if (bytes_writer) {
 | |
|         Py_ssize_t size = PyUnicode_GET_LENGTH(s);
 | |
|         const void *data = PyUnicode_DATA(s);
 | |
|         int kind = PyUnicode_KIND(s);
 | |
|         *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, size);
 | |
|         if (*bytes_str == NULL) {
 | |
|             goto error;
 | |
|         }
 | |
|         char *p = *bytes_str;
 | |
|         for (Py_ssize_t i=0; i < size; i++) {
 | |
|             Py_UCS4 ch = PyUnicode_READ(kind, data, i);
 | |
|             *p++ = (char) ch;
 | |
|         }
 | |
|         (*bytes_str) = p;
 | |
|         goto success;
 | |
|     }
 | |
|     else {
 | |
|         *p_output = Py_NewRef(s);
 | |
|         goto success;
 | |
|     }
 | |
| 
 | |
| error:
 | |
|         Py_DECREF(mod);
 | |
|         Py_XDECREF(s);
 | |
|         return -1;
 | |
| 
 | |
| success:
 | |
|         Py_DECREF(mod);
 | |
|         Py_DECREF(s);
 | |
|         return 0;
 | |
| }
 | |
| #endif /* WITH_PYLONG_MODULE */
 | |
| 
 | |
| /* Convert an integer to a base 10 string.  Returns a new non-shared
 | |
|    string.  (Return value is non-shared so that callers can modify the
 | |
|    returned value if necessary.) */
 | |
| 
 | |
| static int
 | |
| long_to_decimal_string_internal(PyObject *aa,
 | |
|                                 PyObject **p_output,
 | |
|                                 _PyUnicodeWriter *writer,
 | |
|                                 _PyBytesWriter *bytes_writer,
 | |
|                                 char **bytes_str)
 | |
| {
 | |
|     PyLongObject *scratch, *a;
 | |
|     PyObject *str = NULL;
 | |
|     Py_ssize_t size, strlen, size_a, i, j;
 | |
|     digit *pout, *pin, rem, tenpow;
 | |
|     int negative;
 | |
|     int d;
 | |
|     int kind;
 | |
| 
 | |
|     a = (PyLongObject *)aa;
 | |
|     if (a == NULL || !PyLong_Check(a)) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return -1;
 | |
|     }
 | |
|     size_a = _PyLong_DigitCount(a);
 | |
|     negative = _PyLong_IsNegative(a);
 | |
| 
 | |
|     /* quick and dirty pre-check for overflowing the decimal digit limit,
 | |
|        based on the inequality 10/3 >= log2(10)
 | |
| 
 | |
|        explanation in https://github.com/python/cpython/pull/96537
 | |
|     */
 | |
|     if (size_a >= 10 * _PY_LONG_MAX_STR_DIGITS_THRESHOLD
 | |
|                   / (3 * PyLong_SHIFT) + 2) {
 | |
|         PyInterpreterState *interp = _PyInterpreterState_GET();
 | |
|         int max_str_digits = interp->long_state.max_str_digits;
 | |
|         if ((max_str_digits > 0) &&
 | |
|             (max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10)) {
 | |
|             PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
 | |
|                          max_str_digits);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if WITH_PYLONG_MODULE
 | |
|     if (size_a > 1000) {
 | |
|         /* Switch to _pylong.int_to_decimal_string(). */
 | |
|         return pylong_int_to_decimal_string(aa,
 | |
|                                          p_output,
 | |
|                                          writer,
 | |
|                                          bytes_writer,
 | |
|                                          bytes_str);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* quick and dirty upper bound for the number of digits
 | |
|        required to express a in base _PyLong_DECIMAL_BASE:
 | |
| 
 | |
|          #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
 | |
| 
 | |
|        But log2(a) < size_a * PyLong_SHIFT, and
 | |
|        log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
 | |
|                                   > 3.3 * _PyLong_DECIMAL_SHIFT
 | |
| 
 | |
|          size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
 | |
|              size_a + size_a / d < size_a + size_a / floor(d),
 | |
|        where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
 | |
|                  (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
 | |
|     */
 | |
|     d = (33 * _PyLong_DECIMAL_SHIFT) /
 | |
|         (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
 | |
|     assert(size_a < PY_SSIZE_T_MAX/2);
 | |
|     size = 1 + size_a + size_a / d;
 | |
|     scratch = _PyLong_New(size);
 | |
|     if (scratch == NULL)
 | |
|         return -1;
 | |
| 
 | |
|     /* convert array of base _PyLong_BASE digits in pin to an array of
 | |
|        base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
 | |
|        Volume 2 (3rd edn), section 4.4, Method 1b). */
 | |
|     pin = a->long_value.ob_digit;
 | |
|     pout = scratch->long_value.ob_digit;
 | |
|     size = 0;
 | |
|     for (i = size_a; --i >= 0; ) {
 | |
|         digit hi = pin[i];
 | |
|         for (j = 0; j < size; j++) {
 | |
|             twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
 | |
|             hi = (digit)(z / _PyLong_DECIMAL_BASE);
 | |
|             pout[j] = (digit)(z - (twodigits)hi *
 | |
|                               _PyLong_DECIMAL_BASE);
 | |
|         }
 | |
|         while (hi) {
 | |
|             pout[size++] = hi % _PyLong_DECIMAL_BASE;
 | |
|             hi /= _PyLong_DECIMAL_BASE;
 | |
|         }
 | |
|         /* check for keyboard interrupt */
 | |
|         SIGCHECK({
 | |
|                 Py_DECREF(scratch);
 | |
|                 return -1;
 | |
|             });
 | |
|     }
 | |
|     /* pout should have at least one digit, so that the case when a = 0
 | |
|        works correctly */
 | |
|     if (size == 0)
 | |
|         pout[size++] = 0;
 | |
| 
 | |
|     /* calculate exact length of output string, and allocate */
 | |
|     strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
 | |
|     tenpow = 10;
 | |
|     rem = pout[size-1];
 | |
|     while (rem >= tenpow) {
 | |
|         tenpow *= 10;
 | |
|         strlen++;
 | |
|     }
 | |
|     if (strlen > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
 | |
|         PyInterpreterState *interp = _PyInterpreterState_GET();
 | |
|         int max_str_digits = interp->long_state.max_str_digits;
 | |
|         Py_ssize_t strlen_nosign = strlen - negative;
 | |
|         if ((max_str_digits > 0) && (strlen_nosign > max_str_digits)) {
 | |
|             Py_DECREF(scratch);
 | |
|             PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
 | |
|                          max_str_digits);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     if (writer) {
 | |
|         if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
 | |
|             Py_DECREF(scratch);
 | |
|             return -1;
 | |
|         }
 | |
|         kind = writer->kind;
 | |
|     }
 | |
|     else if (bytes_writer) {
 | |
|         *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen);
 | |
|         if (*bytes_str == NULL) {
 | |
|             Py_DECREF(scratch);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         str = PyUnicode_New(strlen, '9');
 | |
|         if (str == NULL) {
 | |
|             Py_DECREF(scratch);
 | |
|             return -1;
 | |
|         }
 | |
|         kind = PyUnicode_KIND(str);
 | |
|     }
 | |
| 
 | |
| #define WRITE_DIGITS(p)                                               \
 | |
|     do {                                                              \
 | |
|         /* pout[0] through pout[size-2] contribute exactly            \
 | |
|            _PyLong_DECIMAL_SHIFT digits each */                       \
 | |
|         for (i=0; i < size - 1; i++) {                                \
 | |
|             rem = pout[i];                                            \
 | |
|             for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {             \
 | |
|                 *--p = '0' + rem % 10;                                \
 | |
|                 rem /= 10;                                            \
 | |
|             }                                                         \
 | |
|         }                                                             \
 | |
|         /* pout[size-1]: always produce at least one decimal digit */ \
 | |
|         rem = pout[i];                                                \
 | |
|         do {                                                          \
 | |
|             *--p = '0' + rem % 10;                                    \
 | |
|             rem /= 10;                                                \
 | |
|         } while (rem != 0);                                           \
 | |
|                                                                       \
 | |
|         /* and sign */                                                \
 | |
|         if (negative)                                                 \
 | |
|             *--p = '-';                                               \
 | |
|     } while (0)
 | |
| 
 | |
| #define WRITE_UNICODE_DIGITS(TYPE)                                    \
 | |
|     do {                                                              \
 | |
|         if (writer)                                                   \
 | |
|             p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
 | |
|         else                                                          \
 | |
|             p = (TYPE*)PyUnicode_DATA(str) + strlen;                  \
 | |
|                                                                       \
 | |
|         WRITE_DIGITS(p);                                              \
 | |
|                                                                       \
 | |
|         /* check we've counted correctly */                           \
 | |
|         if (writer)                                                   \
 | |
|             assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
 | |
|         else                                                          \
 | |
|             assert(p == (TYPE*)PyUnicode_DATA(str));                  \
 | |
|     } while (0)
 | |
| 
 | |
|     /* fill the string right-to-left */
 | |
|     if (bytes_writer) {
 | |
|         char *p = *bytes_str + strlen;
 | |
|         WRITE_DIGITS(p);
 | |
|         assert(p == *bytes_str);
 | |
|     }
 | |
|     else if (kind == PyUnicode_1BYTE_KIND) {
 | |
|         Py_UCS1 *p;
 | |
|         WRITE_UNICODE_DIGITS(Py_UCS1);
 | |
|     }
 | |
|     else if (kind == PyUnicode_2BYTE_KIND) {
 | |
|         Py_UCS2 *p;
 | |
|         WRITE_UNICODE_DIGITS(Py_UCS2);
 | |
|     }
 | |
|     else {
 | |
|         Py_UCS4 *p;
 | |
|         assert (kind == PyUnicode_4BYTE_KIND);
 | |
|         WRITE_UNICODE_DIGITS(Py_UCS4);
 | |
|     }
 | |
| #undef WRITE_DIGITS
 | |
| #undef WRITE_UNICODE_DIGITS
 | |
| 
 | |
|     _Py_DECREF_INT(scratch);
 | |
|     if (writer) {
 | |
|         writer->pos += strlen;
 | |
|     }
 | |
|     else if (bytes_writer) {
 | |
|         (*bytes_str) += strlen;
 | |
|     }
 | |
|     else {
 | |
|         assert(_PyUnicode_CheckConsistency(str, 1));
 | |
|         *p_output = (PyObject *)str;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_to_decimal_string(PyObject *aa)
 | |
| {
 | |
|     PyObject *v;
 | |
|     if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
 | |
|         return NULL;
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /* Convert an int object to a string, using a given conversion base,
 | |
|    which should be one of 2, 8 or 16.  Return a string object.
 | |
|    If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
 | |
|    if alternate is nonzero. */
 | |
| 
 | |
| static int
 | |
| long_format_binary(PyObject *aa, int base, int alternate,
 | |
|                    PyObject **p_output, _PyUnicodeWriter *writer,
 | |
|                    _PyBytesWriter *bytes_writer, char **bytes_str)
 | |
| {
 | |
|     PyLongObject *a = (PyLongObject *)aa;
 | |
|     PyObject *v = NULL;
 | |
|     Py_ssize_t sz;
 | |
|     Py_ssize_t size_a;
 | |
|     int kind;
 | |
|     int negative;
 | |
|     int bits;
 | |
| 
 | |
|     assert(base == 2 || base == 8 || base == 16);
 | |
|     if (a == NULL || !PyLong_Check(a)) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return -1;
 | |
|     }
 | |
|     size_a = _PyLong_DigitCount(a);
 | |
|     negative = _PyLong_IsNegative(a);
 | |
| 
 | |
|     /* Compute a rough upper bound for the length of the string */
 | |
|     switch (base) {
 | |
|     case 16:
 | |
|         bits = 4;
 | |
|         break;
 | |
|     case 8:
 | |
|         bits = 3;
 | |
|         break;
 | |
|     case 2:
 | |
|         bits = 1;
 | |
|         break;
 | |
|     default:
 | |
|         Py_UNREACHABLE();
 | |
|     }
 | |
| 
 | |
|     /* Compute exact length 'sz' of output string. */
 | |
|     if (size_a == 0) {
 | |
|         sz = 1;
 | |
|     }
 | |
|     else {
 | |
|         Py_ssize_t size_a_in_bits;
 | |
|         /* Ensure overflow doesn't occur during computation of sz. */
 | |
|         if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "int too large to format");
 | |
|             return -1;
 | |
|         }
 | |
|         size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
 | |
|                          bit_length_digit(a->long_value.ob_digit[size_a - 1]);
 | |
|         /* Allow 1 character for a '-' sign. */
 | |
|         sz = negative + (size_a_in_bits + (bits - 1)) / bits;
 | |
|     }
 | |
|     if (alternate) {
 | |
|         /* 2 characters for prefix  */
 | |
|         sz += 2;
 | |
|     }
 | |
| 
 | |
|     if (writer) {
 | |
|         if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
 | |
|             return -1;
 | |
|         kind = writer->kind;
 | |
|     }
 | |
|     else if (bytes_writer) {
 | |
|         *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz);
 | |
|         if (*bytes_str == NULL)
 | |
|             return -1;
 | |
|     }
 | |
|     else {
 | |
|         v = PyUnicode_New(sz, 'x');
 | |
|         if (v == NULL)
 | |
|             return -1;
 | |
|         kind = PyUnicode_KIND(v);
 | |
|     }
 | |
| 
 | |
| #define WRITE_DIGITS(p)                                                 \
 | |
|     do {                                                                \
 | |
|         if (size_a == 0) {                                              \
 | |
|             *--p = '0';                                                 \
 | |
|         }                                                               \
 | |
|         else {                                                          \
 | |
|             /* JRH: special case for power-of-2 bases */                \
 | |
|             twodigits accum = 0;                                        \
 | |
|             int accumbits = 0;   /* # of bits in accum */               \
 | |
|             Py_ssize_t i;                                               \
 | |
|             for (i = 0; i < size_a; ++i) {                              \
 | |
|                 accum |= (twodigits)a->long_value.ob_digit[i] << accumbits;        \
 | |
|                 accumbits += PyLong_SHIFT;                              \
 | |
|                 assert(accumbits >= bits);                              \
 | |
|                 do {                                                    \
 | |
|                     char cdigit;                                        \
 | |
|                     cdigit = (char)(accum & (base - 1));                \
 | |
|                     cdigit += (cdigit < 10) ? '0' : 'a'-10;             \
 | |
|                     *--p = cdigit;                                      \
 | |
|                     accumbits -= bits;                                  \
 | |
|                     accum >>= bits;                                     \
 | |
|                 } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|                                                                         \
 | |
|         if (alternate) {                                                \
 | |
|             if (base == 16)                                             \
 | |
|                 *--p = 'x';                                             \
 | |
|             else if (base == 8)                                         \
 | |
|                 *--p = 'o';                                             \
 | |
|             else /* (base == 2) */                                      \
 | |
|                 *--p = 'b';                                             \
 | |
|             *--p = '0';                                                 \
 | |
|         }                                                               \
 | |
|         if (negative)                                                   \
 | |
|             *--p = '-';                                                 \
 | |
|     } while (0)
 | |
| 
 | |
| #define WRITE_UNICODE_DIGITS(TYPE)                                      \
 | |
|     do {                                                                \
 | |
|         if (writer)                                                     \
 | |
|             p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
 | |
|         else                                                            \
 | |
|             p = (TYPE*)PyUnicode_DATA(v) + sz;                          \
 | |
|                                                                         \
 | |
|         WRITE_DIGITS(p);                                                \
 | |
|                                                                         \
 | |
|         if (writer)                                                     \
 | |
|             assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
 | |
|         else                                                            \
 | |
|             assert(p == (TYPE*)PyUnicode_DATA(v));                      \
 | |
|     } while (0)
 | |
| 
 | |
|     if (bytes_writer) {
 | |
|         char *p = *bytes_str + sz;
 | |
|         WRITE_DIGITS(p);
 | |
|         assert(p == *bytes_str);
 | |
|     }
 | |
|     else if (kind == PyUnicode_1BYTE_KIND) {
 | |
|         Py_UCS1 *p;
 | |
|         WRITE_UNICODE_DIGITS(Py_UCS1);
 | |
|     }
 | |
|     else if (kind == PyUnicode_2BYTE_KIND) {
 | |
|         Py_UCS2 *p;
 | |
|         WRITE_UNICODE_DIGITS(Py_UCS2);
 | |
|     }
 | |
|     else {
 | |
|         Py_UCS4 *p;
 | |
|         assert (kind == PyUnicode_4BYTE_KIND);
 | |
|         WRITE_UNICODE_DIGITS(Py_UCS4);
 | |
|     }
 | |
| #undef WRITE_DIGITS
 | |
| #undef WRITE_UNICODE_DIGITS
 | |
| 
 | |
|     if (writer) {
 | |
|         writer->pos += sz;
 | |
|     }
 | |
|     else if (bytes_writer) {
 | |
|         (*bytes_str) += sz;
 | |
|     }
 | |
|     else {
 | |
|         assert(_PyUnicode_CheckConsistency(v, 1));
 | |
|         *p_output = v;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Format(PyObject *obj, int base)
 | |
| {
 | |
|     PyObject *str;
 | |
|     int err;
 | |
|     if (base == 10)
 | |
|         err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
 | |
|     else
 | |
|         err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
 | |
|     if (err == -1)
 | |
|         return NULL;
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| int
 | |
| _PyLong_FormatWriter(_PyUnicodeWriter *writer,
 | |
|                      PyObject *obj,
 | |
|                      int base, int alternate)
 | |
| {
 | |
|     if (base == 10)
 | |
|         return long_to_decimal_string_internal(obj, NULL, writer,
 | |
|                                                NULL, NULL);
 | |
|     else
 | |
|         return long_format_binary(obj, base, alternate, NULL, writer,
 | |
|                                   NULL, NULL);
 | |
| }
 | |
| 
 | |
| char*
 | |
| _PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str,
 | |
|                           PyObject *obj,
 | |
|                           int base, int alternate)
 | |
| {
 | |
|     char *str2;
 | |
|     int res;
 | |
|     str2 = str;
 | |
|     if (base == 10)
 | |
|         res = long_to_decimal_string_internal(obj, NULL, NULL,
 | |
|                                               writer, &str2);
 | |
|     else
 | |
|         res = long_format_binary(obj, base, alternate, NULL, NULL,
 | |
|                                  writer, &str2);
 | |
|     if (res < 0)
 | |
|         return NULL;
 | |
|     assert(str2 != NULL);
 | |
|     return str2;
 | |
| }
 | |
| 
 | |
| /* Table of digit values for 8-bit string -> integer conversion.
 | |
|  * '0' maps to 0, ..., '9' maps to 9.
 | |
|  * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
 | |
|  * All other indices map to 37.
 | |
|  * Note that when converting a base B string, a char c is a legitimate
 | |
|  * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
 | |
|  */
 | |
| unsigned char _PyLong_DigitValue[256] = {
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
 | |
|     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | |
|     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | |
|     37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | |
|     25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
|     37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | |
| };
 | |
| 
 | |
| /* `start` and `end` point to the start and end of a string of base `base`
 | |
|  * digits.  base is a power of 2 (2, 4, 8, 16, or 32). An unnormalized int is
 | |
|  * returned in *res. The string should be already validated by the caller and
 | |
|  * consists only of valid digit characters and underscores. `digits` gives the
 | |
|  * number of digit characters.
 | |
|  *
 | |
|  * The point to this routine is that it takes time linear in the
 | |
|  * number of string characters.
 | |
|  *
 | |
|  * Return values:
 | |
|  *   -1 on syntax error (exception needs to be set, *res is untouched)
 | |
|  *   0 else (exception may be set, in that case *res is set to NULL)
 | |
|  */
 | |
| static int
 | |
| long_from_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
 | |
| {
 | |
|     const char *p;
 | |
|     int bits_per_char;
 | |
|     Py_ssize_t n;
 | |
|     PyLongObject *z;
 | |
|     twodigits accum;
 | |
|     int bits_in_accum;
 | |
|     digit *pdigit;
 | |
| 
 | |
|     assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
 | |
|     n = base;
 | |
|     for (bits_per_char = -1; n; ++bits_per_char) {
 | |
|         n >>= 1;
 | |
|     }
 | |
| 
 | |
|     /* n <- the number of Python digits needed,
 | |
|             = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
 | |
|     if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "int string too large to convert");
 | |
|         *res = NULL;
 | |
|         return 0;
 | |
|     }
 | |
|     n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
 | |
|     z = _PyLong_New(n);
 | |
|     if (z == NULL) {
 | |
|         *res = NULL;
 | |
|         return 0;
 | |
|     }
 | |
|     /* Read string from right, and fill in int from left; i.e.,
 | |
|      * from least to most significant in both.
 | |
|      */
 | |
|     accum = 0;
 | |
|     bits_in_accum = 0;
 | |
|     pdigit = z->long_value.ob_digit;
 | |
|     p = end;
 | |
|     while (--p >= start) {
 | |
|         int k;
 | |
|         if (*p == '_') {
 | |
|             continue;
 | |
|         }
 | |
|         k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
 | |
|         assert(k >= 0 && k < base);
 | |
|         accum |= (twodigits)k << bits_in_accum;
 | |
|         bits_in_accum += bits_per_char;
 | |
|         if (bits_in_accum >= PyLong_SHIFT) {
 | |
|             *pdigit++ = (digit)(accum & PyLong_MASK);
 | |
|             assert(pdigit - z->long_value.ob_digit <= n);
 | |
|             accum >>= PyLong_SHIFT;
 | |
|             bits_in_accum -= PyLong_SHIFT;
 | |
|             assert(bits_in_accum < PyLong_SHIFT);
 | |
|         }
 | |
|     }
 | |
|     if (bits_in_accum) {
 | |
|         assert(bits_in_accum <= PyLong_SHIFT);
 | |
|         *pdigit++ = (digit)accum;
 | |
|         assert(pdigit - z->long_value.ob_digit <= n);
 | |
|     }
 | |
|     while (pdigit - z->long_value.ob_digit < n)
 | |
|         *pdigit++ = 0;
 | |
|     *res = z;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *long_neg(PyLongObject *v);
 | |
| 
 | |
| #ifdef WITH_PYLONG_MODULE
 | |
| /* asymptotically faster str-to-long conversion for base 10, using _pylong.py */
 | |
| static int
 | |
| pylong_int_from_string(const char *start, const char *end, PyLongObject **res)
 | |
| {
 | |
|     PyObject *mod = PyImport_ImportModule("_pylong");
 | |
|     if (mod == NULL) {
 | |
|         goto error;
 | |
|     }
 | |
|     PyObject *s = PyUnicode_FromStringAndSize(start, end-start);
 | |
|     if (s == NULL) {
 | |
|         Py_DECREF(mod);
 | |
|         goto error;
 | |
|     }
 | |
|     PyObject *result = PyObject_CallMethod(mod, "int_from_string", "O", s);
 | |
|     Py_DECREF(s);
 | |
|     Py_DECREF(mod);
 | |
|     if (result == NULL) {
 | |
|         goto error;
 | |
|     }
 | |
|     if (!PyLong_Check(result)) {
 | |
|         Py_DECREF(result);
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "_pylong.int_from_string did not return an int");
 | |
|         goto error;
 | |
|     }
 | |
|     *res = (PyLongObject *)result;
 | |
|     return 0;
 | |
| error:
 | |
|     *res = NULL;
 | |
|     return 0;  // See the long_from_string_base() API comment.
 | |
| }
 | |
| #endif /* WITH_PYLONG_MODULE */
 | |
| 
 | |
| /***
 | |
| long_from_non_binary_base: parameters and return values are the same as
 | |
| long_from_binary_base.
 | |
| 
 | |
| Binary bases can be converted in time linear in the number of digits, because
 | |
| Python's representation base is binary.  Other bases (including decimal!) use
 | |
| the simple quadratic-time algorithm below, complicated by some speed tricks.
 | |
| 
 | |
| First some math:  the largest integer that can be expressed in N base-B digits
 | |
| is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
 | |
| case number of Python digits needed to hold it is the smallest integer n s.t.
 | |
| 
 | |
|     BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
 | |
|     BASE**n >= B**N      [taking logs to base BASE]
 | |
|     n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
 | |
| 
 | |
| The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
 | |
| this quickly.  A Python int with that much space is reserved near the start,
 | |
| and the result is computed into it.
 | |
| 
 | |
| The input string is actually treated as being in base base**i (i.e., i digits
 | |
| are processed at a time), where two more static arrays hold:
 | |
| 
 | |
|     convwidth_base[base] = the largest integer i such that base**i <= BASE
 | |
|     convmultmax_base[base] = base ** convwidth_base[base]
 | |
| 
 | |
| The first of these is the largest i such that i consecutive input digits
 | |
| must fit in a single Python digit.  The second is effectively the input
 | |
| base we're really using.
 | |
| 
 | |
| Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
 | |
| convmultmax_base[base], the result is "simply"
 | |
| 
 | |
|    (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
 | |
| 
 | |
| where B = convmultmax_base[base].
 | |
| 
 | |
| Error analysis:  as above, the number of Python digits `n` needed is worst-
 | |
| case
 | |
| 
 | |
|     n >= N * log(B)/log(BASE)
 | |
| 
 | |
| where `N` is the number of input digits in base `B`.  This is computed via
 | |
| 
 | |
|     size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
 | |
| 
 | |
| below.  Two numeric concerns are how much space this can waste, and whether
 | |
| the computed result can be too small.  To be concrete, assume BASE = 2**15,
 | |
| which is the default (and it's unlikely anyone changes that).
 | |
| 
 | |
| Waste isn't a problem:  provided the first input digit isn't 0, the difference
 | |
| between the worst-case input with N digits and the smallest input with N
 | |
| digits is about a factor of B, but B is small compared to BASE so at most
 | |
| one allocated Python digit can remain unused on that count.  If
 | |
| N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
 | |
| and adding 1 returns a result 1 larger than necessary.  However, that can't
 | |
| happen:  whenever B is a power of 2, long_from_binary_base() is called
 | |
| instead, and it's impossible for B**i to be an integer power of 2**15 when
 | |
| B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
 | |
| an exact integer when B is not a power of 2, since B**i has a prime factor
 | |
| other than 2 in that case, but (2**15)**j's only prime factor is 2).
 | |
| 
 | |
| The computed result can be too small if the true value of N*log(B)/log(BASE)
 | |
| is a little bit larger than an exact integer, but due to roundoff errors (in
 | |
| computing log(B), log(BASE), their quotient, and/or multiplying that by N)
 | |
| yields a numeric result a little less than that integer.  Unfortunately, "how
 | |
| close can a transcendental function get to an integer over some range?"
 | |
| questions are generally theoretically intractable.  Computer analysis via
 | |
| continued fractions is practical:  expand log(B)/log(BASE) via continued
 | |
| fractions, giving a sequence i/j of "the best" rational approximations.  Then
 | |
| j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
 | |
| we can get very close to being in trouble, but very rarely.  For example,
 | |
| 76573 is a denominator in one of the continued-fraction approximations to
 | |
| log(10)/log(2**15), and indeed:
 | |
| 
 | |
|     >>> log(10)/log(2**15)*76573
 | |
|     16958.000000654003
 | |
| 
 | |
| is very close to an integer.  If we were working with IEEE single-precision,
 | |
| rounding errors could kill us.  Finding worst cases in IEEE double-precision
 | |
| requires better-than-double-precision log() functions, and Tim didn't bother.
 | |
| Instead the code checks to see whether the allocated space is enough as each
 | |
| new Python digit is added, and copies the whole thing to a larger int if not.
 | |
| This should happen extremely rarely, and in fact I don't have a test case
 | |
| that triggers it(!).  Instead the code was tested by artificially allocating
 | |
| just 1 digit at the start, so that the copying code was exercised for every
 | |
| digit beyond the first.
 | |
| ***/
 | |
| static int
 | |
| long_from_non_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
 | |
| {
 | |
|     twodigits c;           /* current input character */
 | |
|     Py_ssize_t size_z;
 | |
|     int i;
 | |
|     int convwidth;
 | |
|     twodigits convmultmax, convmult;
 | |
|     digit *pz, *pzstop;
 | |
|     PyLongObject *z;
 | |
|     const char *p;
 | |
| 
 | |
|     static double log_base_BASE[37] = {0.0e0,};
 | |
|     static int convwidth_base[37] = {0,};
 | |
|     static twodigits convmultmax_base[37] = {0,};
 | |
| 
 | |
|     if (log_base_BASE[base] == 0.0) {
 | |
|         twodigits convmax = base;
 | |
|         int i = 1;
 | |
| 
 | |
|         log_base_BASE[base] = (log((double)base) /
 | |
|                                log((double)PyLong_BASE));
 | |
|         for (;;) {
 | |
|             twodigits next = convmax * base;
 | |
|             if (next > PyLong_BASE) {
 | |
|                 break;
 | |
|             }
 | |
|             convmax = next;
 | |
|             ++i;
 | |
|         }
 | |
|         convmultmax_base[base] = convmax;
 | |
|         assert(i > 0);
 | |
|         convwidth_base[base] = i;
 | |
|     }
 | |
| 
 | |
|     /* Create an int object that can contain the largest possible
 | |
|      * integer with this base and length.  Note that there's no
 | |
|      * need to initialize z->long_value.ob_digit -- no slot is read up before
 | |
|      * being stored into.
 | |
|      */
 | |
|     double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
 | |
|     if (fsize_z > (double)MAX_LONG_DIGITS) {
 | |
|         /* The same exception as in _PyLong_New(). */
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "too many digits in integer");
 | |
|         *res = NULL;
 | |
|         return 0;
 | |
|     }
 | |
|     size_z = (Py_ssize_t)fsize_z;
 | |
|     /* Uncomment next line to test exceedingly rare copy code */
 | |
|     /* size_z = 1; */
 | |
|     assert(size_z > 0);
 | |
|     z = _PyLong_New(size_z);
 | |
|     if (z == NULL) {
 | |
|         *res = NULL;
 | |
|         return 0;
 | |
|     }
 | |
|     _PyLong_SetSignAndDigitCount(z, 0, 0);
 | |
| 
 | |
|     /* `convwidth` consecutive input digits are treated as a single
 | |
|      * digit in base `convmultmax`.
 | |
|      */
 | |
|     convwidth = convwidth_base[base];
 | |
|     convmultmax = convmultmax_base[base];
 | |
| 
 | |
|     /* Work ;-) */
 | |
|     p = start;
 | |
|     while (p < end) {
 | |
|         if (*p == '_') {
 | |
|             p++;
 | |
|             continue;
 | |
|         }
 | |
|         /* grab up to convwidth digits from the input string */
 | |
|         c = (digit)_PyLong_DigitValue[Py_CHARMASK(*p++)];
 | |
|         for (i = 1; i < convwidth && p != end; ++p) {
 | |
|             if (*p == '_') {
 | |
|                 continue;
 | |
|             }
 | |
|             i++;
 | |
|             c = (twodigits)(c *  base +
 | |
|                             (int)_PyLong_DigitValue[Py_CHARMASK(*p)]);
 | |
|             assert(c < PyLong_BASE);
 | |
|         }
 | |
| 
 | |
|         convmult = convmultmax;
 | |
|         /* Calculate the shift only if we couldn't get
 | |
|          * convwidth digits.
 | |
|          */
 | |
|         if (i != convwidth) {
 | |
|             convmult = base;
 | |
|             for ( ; i > 1; --i) {
 | |
|                 convmult *= base;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Multiply z by convmult, and add c. */
 | |
|         pz = z->long_value.ob_digit;
 | |
|         pzstop = pz + _PyLong_DigitCount(z);
 | |
|         for (; pz < pzstop; ++pz) {
 | |
|             c += (twodigits)*pz * convmult;
 | |
|             *pz = (digit)(c & PyLong_MASK);
 | |
|             c >>= PyLong_SHIFT;
 | |
|         }
 | |
|         /* carry off the current end? */
 | |
|         if (c) {
 | |
|             assert(c < PyLong_BASE);
 | |
|             if (_PyLong_DigitCount(z) < size_z) {
 | |
|                 *pz = (digit)c;
 | |
|                 assert(!_PyLong_IsNegative(z));
 | |
|                 _PyLong_SetSignAndDigitCount(z, 1, _PyLong_DigitCount(z) + 1);
 | |
|             }
 | |
|             else {
 | |
|                 PyLongObject *tmp;
 | |
|                 /* Extremely rare.  Get more space. */
 | |
|                 assert(_PyLong_DigitCount(z) == size_z);
 | |
|                 tmp = _PyLong_New(size_z + 1);
 | |
|                 if (tmp == NULL) {
 | |
|                     Py_DECREF(z);
 | |
|                     *res = NULL;
 | |
|                     return 0;
 | |
|                 }
 | |
|                 memcpy(tmp->long_value.ob_digit,
 | |
|                        z->long_value.ob_digit,
 | |
|                        sizeof(digit) * size_z);
 | |
|                 Py_SETREF(z, tmp);
 | |
|                 z->long_value.ob_digit[size_z] = (digit)c;
 | |
|                 ++size_z;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     *res = z;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* *str points to the first digit in a string of base `base` digits. base is an
 | |
|  * integer from 2 to 36 inclusive. Here we don't need to worry about prefixes
 | |
|  * like 0x or leading +- signs. The string should be null terminated consisting
 | |
|  * of ASCII digits and separating underscores possibly with trailing whitespace
 | |
|  * but we have to validate all of those points here.
 | |
|  *
 | |
|  * If base is a power of 2 then the complexity is linear in the number of
 | |
|  * characters in the string. Otherwise a quadratic algorithm is used for
 | |
|  * non-binary bases.
 | |
|  *
 | |
|  * Return values:
 | |
|  *
 | |
|  *   - Returns -1 on syntax error (exception needs to be set, *res is untouched)
 | |
|  *   - Returns 0 and sets *res to NULL for MemoryError, OverflowError, or
 | |
|  *     _pylong.int_from_string() errors.
 | |
|  *   - Returns 0 and sets *res to an unsigned, unnormalized PyLong (success!).
 | |
|  *
 | |
|  * Afterwards *str is set to point to the first non-digit (which may be *str!).
 | |
|  */
 | |
| static int
 | |
| long_from_string_base(const char **str, int base, PyLongObject **res)
 | |
| {
 | |
|     const char *start, *end, *p;
 | |
|     char prev = 0;
 | |
|     Py_ssize_t digits = 0;
 | |
|     int is_binary_base = (base & (base - 1)) == 0;
 | |
| 
 | |
|     /* Here we do four things:
 | |
|      *
 | |
|      * - Find the `end` of the string.
 | |
|      * - Validate the string.
 | |
|      * - Count the number of `digits` (rather than underscores)
 | |
|      * - Point *str to the end-of-string or first invalid character.
 | |
|      */
 | |
|     start = p = *str;
 | |
|     /* Leading underscore not allowed. */
 | |
|     if (*start == '_') {
 | |
|         return -1;
 | |
|     }
 | |
|     /* Verify all characters are digits and underscores. */
 | |
|     while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
 | |
|         if (*p == '_') {
 | |
|             /* Double underscore not allowed. */
 | |
|             if (prev == '_') {
 | |
|                 *str = p - 1;
 | |
|                 return -1;
 | |
|             }
 | |
|         } else {
 | |
|             ++digits;
 | |
|         }
 | |
|         prev = *p;
 | |
|         ++p;
 | |
|     }
 | |
|     /* Trailing underscore not allowed. */
 | |
|     if (prev == '_') {
 | |
|         *str = p - 1;
 | |
|         return -1;
 | |
|     }
 | |
|     *str = end = p;
 | |
|     /* Reject empty strings */
 | |
|     if (start == end) {
 | |
|         return -1;
 | |
|     }
 | |
|     /* Allow only trailing whitespace after `end` */
 | |
|     while (*p && Py_ISSPACE(*p)) {
 | |
|         p++;
 | |
|     }
 | |
|     *str = p;
 | |
|     if (*p != '\0') {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Pass a validated string consisting of only valid digits and underscores
 | |
|      * to long_from_xxx_base.
 | |
|      */
 | |
|     if (is_binary_base) {
 | |
|         /* Use the linear algorithm for binary bases. */
 | |
|         return long_from_binary_base(start, end, digits, base, res);
 | |
|     }
 | |
|     else {
 | |
|         /* Limit the size to avoid excessive computation attacks exploiting the
 | |
|          * quadratic algorithm. */
 | |
|         if (digits > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
 | |
|             PyInterpreterState *interp = _PyInterpreterState_GET();
 | |
|             int max_str_digits = interp->long_state.max_str_digits;
 | |
|             if ((max_str_digits > 0) && (digits > max_str_digits)) {
 | |
|                 PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_INT,
 | |
|                              max_str_digits, digits);
 | |
|                 *res = NULL;
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
| #if WITH_PYLONG_MODULE
 | |
|         if (digits > 6000 && base == 10) {
 | |
|             /* Switch to _pylong.int_from_string() */
 | |
|             return pylong_int_from_string(start, end, res);
 | |
|         }
 | |
| #endif
 | |
|         /* Use the quadratic algorithm for non binary bases. */
 | |
|         return long_from_non_binary_base(start, end, digits, base, res);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Parses an int from a bytestring. Leading and trailing whitespace will be
 | |
|  * ignored.
 | |
|  *
 | |
|  * If successful, a PyLong object will be returned and 'pend' will be pointing
 | |
|  * to the first unused byte unless it's NULL.
 | |
|  *
 | |
|  * If unsuccessful, NULL will be returned.
 | |
|  */
 | |
| PyObject *
 | |
| PyLong_FromString(const char *str, char **pend, int base)
 | |
| {
 | |
|     int sign = 1, error_if_nonzero = 0;
 | |
|     const char *orig_str = str;
 | |
|     PyLongObject *z = NULL;
 | |
|     PyObject *strobj;
 | |
|     Py_ssize_t slen;
 | |
| 
 | |
|     if ((base != 0 && base < 2) || base > 36) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "int() arg 2 must be >= 2 and <= 36");
 | |
|         return NULL;
 | |
|     }
 | |
|     while (*str != '\0' && Py_ISSPACE(*str)) {
 | |
|         ++str;
 | |
|     }
 | |
|     if (*str == '+') {
 | |
|         ++str;
 | |
|     }
 | |
|     else if (*str == '-') {
 | |
|         ++str;
 | |
|         sign = -1;
 | |
|     }
 | |
|     if (base == 0) {
 | |
|         if (str[0] != '0') {
 | |
|             base = 10;
 | |
|         }
 | |
|         else if (str[1] == 'x' || str[1] == 'X') {
 | |
|             base = 16;
 | |
|         }
 | |
|         else if (str[1] == 'o' || str[1] == 'O') {
 | |
|             base = 8;
 | |
|         }
 | |
|         else if (str[1] == 'b' || str[1] == 'B') {
 | |
|             base = 2;
 | |
|         }
 | |
|         else {
 | |
|             /* "old" (C-style) octal literal, now invalid.
 | |
|                it might still be zero though */
 | |
|             error_if_nonzero = 1;
 | |
|             base = 10;
 | |
|         }
 | |
|     }
 | |
|     if (str[0] == '0' &&
 | |
|         ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
 | |
|          (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
 | |
|          (base == 2  && (str[1] == 'b' || str[1] == 'B')))) {
 | |
|         str += 2;
 | |
|         /* One underscore allowed here. */
 | |
|         if (*str == '_') {
 | |
|             ++str;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* long_from_string_base is the main workhorse here. */
 | |
|     int ret = long_from_string_base(&str, base, &z);
 | |
|     if (ret == -1) {
 | |
|         /* Syntax error. */
 | |
|         goto onError;
 | |
|     }
 | |
|     if (z == NULL) {
 | |
|         /* Error. exception already set. */
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (error_if_nonzero) {
 | |
|         /* reset the base to 0, else the exception message
 | |
|            doesn't make too much sense */
 | |
|         base = 0;
 | |
|         if (!_PyLong_IsZero(z)) {
 | |
|             goto onError;
 | |
|         }
 | |
|         /* there might still be other problems, therefore base
 | |
|            remains zero here for the same reason */
 | |
|     }
 | |
| 
 | |
|     /* Set sign and normalize */
 | |
|     if (sign < 0) {
 | |
|         _PyLong_FlipSign(z);
 | |
|     }
 | |
|     long_normalize(z);
 | |
|     z = maybe_small_long(z);
 | |
| 
 | |
|     if (pend != NULL) {
 | |
|         *pend = (char *)str;
 | |
|     }
 | |
|     return (PyObject *) z;
 | |
| 
 | |
|   onError:
 | |
|     if (pend != NULL) {
 | |
|         *pend = (char *)str;
 | |
|     }
 | |
|     Py_XDECREF(z);
 | |
|     slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
 | |
|     strobj = PyUnicode_FromStringAndSize(orig_str, slen);
 | |
|     if (strobj == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "invalid literal for int() with base %d: %.200R",
 | |
|                  base, strobj);
 | |
|     Py_DECREF(strobj);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Since PyLong_FromString doesn't have a length parameter,
 | |
|  * check here for possible NULs in the string.
 | |
|  *
 | |
|  * Reports an invalid literal as a bytes object.
 | |
|  */
 | |
| PyObject *
 | |
| _PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
 | |
| {
 | |
|     PyObject *result, *strobj;
 | |
|     char *end = NULL;
 | |
| 
 | |
|     result = PyLong_FromString(s, &end, base);
 | |
|     if (end == NULL || (result != NULL && end == s + len))
 | |
|         return result;
 | |
|     Py_XDECREF(result);
 | |
|     strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
 | |
|     if (strobj != NULL) {
 | |
|         PyErr_Format(PyExc_ValueError,
 | |
|                      "invalid literal for int() with base %d: %.200R",
 | |
|                      base, strobj);
 | |
|         Py_DECREF(strobj);
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyLong_FromUnicodeObject(PyObject *u, int base)
 | |
| {
 | |
|     PyObject *result, *asciidig;
 | |
|     const char *buffer;
 | |
|     char *end = NULL;
 | |
|     Py_ssize_t buflen;
 | |
| 
 | |
|     asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
 | |
|     if (asciidig == NULL)
 | |
|         return NULL;
 | |
|     assert(PyUnicode_IS_ASCII(asciidig));
 | |
|     /* Simply get a pointer to existing ASCII characters. */
 | |
|     buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
 | |
|     assert(buffer != NULL);
 | |
| 
 | |
|     result = PyLong_FromString(buffer, &end, base);
 | |
|     if (end == NULL || (result != NULL && end == buffer + buflen)) {
 | |
|         Py_DECREF(asciidig);
 | |
|         return result;
 | |
|     }
 | |
|     Py_DECREF(asciidig);
 | |
|     Py_XDECREF(result);
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "invalid literal for int() with base %d: %.200R",
 | |
|                  base, u);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* forward */
 | |
| static PyLongObject *x_divrem
 | |
|     (PyLongObject *, PyLongObject *, PyLongObject **);
 | |
| static PyObject *long_long(PyObject *v);
 | |
| 
 | |
| /* Int division with remainder, top-level routine */
 | |
| 
 | |
| static int
 | |
| long_divrem(PyLongObject *a, PyLongObject *b,
 | |
|             PyLongObject **pdiv, PyLongObject **prem)
 | |
| {
 | |
|     Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
 | |
|     PyLongObject *z;
 | |
| 
 | |
|     if (size_b == 0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "integer division or modulo by zero");
 | |
|         return -1;
 | |
|     }
 | |
|     if (size_a < size_b ||
 | |
|         (size_a == size_b &&
 | |
|          a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
 | |
|         /* |a| < |b|. */
 | |
|         *prem = (PyLongObject *)long_long((PyObject *)a);
 | |
|         if (*prem == NULL) {
 | |
|             return -1;
 | |
|         }
 | |
|         PyObject *zero = _PyLong_GetZero();
 | |
|         *pdiv = (PyLongObject*)Py_NewRef(zero);
 | |
|         return 0;
 | |
|     }
 | |
|     if (size_b == 1) {
 | |
|         digit rem = 0;
 | |
|         z = divrem1(a, b->long_value.ob_digit[0], &rem);
 | |
|         if (z == NULL)
 | |
|             return -1;
 | |
|         *prem = (PyLongObject *) PyLong_FromLong((long)rem);
 | |
|         if (*prem == NULL) {
 | |
|             Py_DECREF(z);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         z = x_divrem(a, b, prem);
 | |
|         *prem = maybe_small_long(*prem);
 | |
|         if (z == NULL)
 | |
|             return -1;
 | |
|     }
 | |
|     /* Set the signs.
 | |
|        The quotient z has the sign of a*b;
 | |
|        the remainder r has the sign of a,
 | |
|        so a = b*z + r. */
 | |
|     if ((_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b))) {
 | |
|         _PyLong_Negate(&z);
 | |
|         if (z == NULL) {
 | |
|             Py_CLEAR(*prem);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
 | |
|         _PyLong_Negate(prem);
 | |
|         if (*prem == NULL) {
 | |
|             Py_DECREF(z);
 | |
|             Py_CLEAR(*prem);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     *pdiv = maybe_small_long(z);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Int remainder, top-level routine */
 | |
| 
 | |
| static int
 | |
| long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
 | |
| {
 | |
|     Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
 | |
| 
 | |
|     if (size_b == 0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "integer modulo by zero");
 | |
|         return -1;
 | |
|     }
 | |
|     if (size_a < size_b ||
 | |
|         (size_a == size_b &&
 | |
|          a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
 | |
|         /* |a| < |b|. */
 | |
|         *prem = (PyLongObject *)long_long((PyObject *)a);
 | |
|         return -(*prem == NULL);
 | |
|     }
 | |
|     if (size_b == 1) {
 | |
|         *prem = rem1(a, b->long_value.ob_digit[0]);
 | |
|         if (*prem == NULL)
 | |
|             return -1;
 | |
|     }
 | |
|     else {
 | |
|         /* Slow path using divrem. */
 | |
|         Py_XDECREF(x_divrem(a, b, prem));
 | |
|         *prem = maybe_small_long(*prem);
 | |
|         if (*prem == NULL)
 | |
|             return -1;
 | |
|     }
 | |
|     /* Set the sign. */
 | |
|     if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
 | |
|         _PyLong_Negate(prem);
 | |
|         if (*prem == NULL) {
 | |
|             Py_CLEAR(*prem);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Unsigned int division with remainder -- the algorithm.  The arguments v1
 | |
|    and w1 should satisfy 2 <= _PyLong_DigitCount(w1) <= _PyLong_DigitCount(v1). */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
 | |
| {
 | |
|     PyLongObject *v, *w, *a;
 | |
|     Py_ssize_t i, k, size_v, size_w;
 | |
|     int d;
 | |
|     digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
 | |
|     twodigits vv;
 | |
|     sdigit zhi;
 | |
|     stwodigits z;
 | |
| 
 | |
|     /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
 | |
|        edn.), section 4.3.1, Algorithm D], except that we don't explicitly
 | |
|        handle the special case when the initial estimate q for a quotient
 | |
|        digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
 | |
|        that won't overflow a digit. */
 | |
| 
 | |
|     /* allocate space; w will also be used to hold the final remainder */
 | |
|     size_v = _PyLong_DigitCount(v1);
 | |
|     size_w = _PyLong_DigitCount(w1);
 | |
|     assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
 | |
|     v = _PyLong_New(size_v+1);
 | |
|     if (v == NULL) {
 | |
|         *prem = NULL;
 | |
|         return NULL;
 | |
|     }
 | |
|     w = _PyLong_New(size_w);
 | |
|     if (w == NULL) {
 | |
|         Py_DECREF(v);
 | |
|         *prem = NULL;
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
 | |
|        shift v1 left by the same amount.  Results go into w and v. */
 | |
|     d = PyLong_SHIFT - bit_length_digit(w1->long_value.ob_digit[size_w-1]);
 | |
|     carry = v_lshift(w->long_value.ob_digit, w1->long_value.ob_digit, size_w, d);
 | |
|     assert(carry == 0);
 | |
|     carry = v_lshift(v->long_value.ob_digit, v1->long_value.ob_digit, size_v, d);
 | |
|     if (carry != 0 || v->long_value.ob_digit[size_v-1] >= w->long_value.ob_digit[size_w-1]) {
 | |
|         v->long_value.ob_digit[size_v] = carry;
 | |
|         size_v++;
 | |
|     }
 | |
| 
 | |
|     /* Now v->long_value.ob_digit[size_v-1] < w->long_value.ob_digit[size_w-1], so quotient has
 | |
|        at most (and usually exactly) k = size_v - size_w digits. */
 | |
|     k = size_v - size_w;
 | |
|     assert(k >= 0);
 | |
|     a = _PyLong_New(k);
 | |
|     if (a == NULL) {
 | |
|         Py_DECREF(w);
 | |
|         Py_DECREF(v);
 | |
|         *prem = NULL;
 | |
|         return NULL;
 | |
|     }
 | |
|     v0 = v->long_value.ob_digit;
 | |
|     w0 = w->long_value.ob_digit;
 | |
|     wm1 = w0[size_w-1];
 | |
|     wm2 = w0[size_w-2];
 | |
|     for (vk = v0+k, ak = a->long_value.ob_digit + k; vk-- > v0;) {
 | |
|         /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
 | |
|            single-digit quotient q, remainder in vk[0:size_w]. */
 | |
| 
 | |
|         SIGCHECK({
 | |
|                 Py_DECREF(a);
 | |
|                 Py_DECREF(w);
 | |
|                 Py_DECREF(v);
 | |
|                 *prem = NULL;
 | |
|                 return NULL;
 | |
|             });
 | |
| 
 | |
|         /* estimate quotient digit q; may overestimate by 1 (rare) */
 | |
|         vtop = vk[size_w];
 | |
|         assert(vtop <= wm1);
 | |
|         vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
 | |
|         /* The code used to compute the remainder via
 | |
|          *     r = (digit)(vv - (twodigits)wm1 * q);
 | |
|          * and compilers generally generated code to do the * and -.
 | |
|          * But modern processors generally compute q and r with a single
 | |
|          * instruction, and modern optimizing compilers exploit that if we
 | |
|          * _don't_ try to optimize it.
 | |
|          */
 | |
|         q = (digit)(vv / wm1);
 | |
|         r = (digit)(vv % wm1);
 | |
|         while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
 | |
|                                      | vk[size_w-2])) {
 | |
|             --q;
 | |
|             r += wm1;
 | |
|             if (r >= PyLong_BASE)
 | |
|                 break;
 | |
|         }
 | |
|         assert(q <= PyLong_BASE);
 | |
| 
 | |
|         /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
 | |
|         zhi = 0;
 | |
|         for (i = 0; i < size_w; ++i) {
 | |
|             /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
 | |
|                -PyLong_BASE * q <= z < PyLong_BASE */
 | |
|             z = (sdigit)vk[i] + zhi -
 | |
|                 (stwodigits)q * (stwodigits)w0[i];
 | |
|             vk[i] = (digit)z & PyLong_MASK;
 | |
|             zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
 | |
|                                                     z, PyLong_SHIFT);
 | |
|         }
 | |
| 
 | |
|         /* add w back if q was too large (this branch taken rarely) */
 | |
|         assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
 | |
|         if ((sdigit)vtop + zhi < 0) {
 | |
|             carry = 0;
 | |
|             for (i = 0; i < size_w; ++i) {
 | |
|                 carry += vk[i] + w0[i];
 | |
|                 vk[i] = carry & PyLong_MASK;
 | |
|                 carry >>= PyLong_SHIFT;
 | |
|             }
 | |
|             --q;
 | |
|         }
 | |
| 
 | |
|         /* store quotient digit */
 | |
|         assert(q < PyLong_BASE);
 | |
|         *--ak = q;
 | |
|     }
 | |
| 
 | |
|     /* unshift remainder; we reuse w to store the result */
 | |
|     carry = v_rshift(w0, v0, size_w, d);
 | |
|     assert(carry==0);
 | |
|     Py_DECREF(v);
 | |
| 
 | |
|     *prem = long_normalize(w);
 | |
|     return long_normalize(a);
 | |
| }
 | |
| 
 | |
| /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
 | |
|    abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
 | |
|    rounded to DBL_MANT_DIG significant bits using round-half-to-even.
 | |
|    If a == 0, return 0.0 and set *e = 0.  If the resulting exponent
 | |
|    e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
 | |
|    -1.0. */
 | |
| 
 | |
| /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
 | |
| #if DBL_MANT_DIG == 53
 | |
| #define EXP2_DBL_MANT_DIG 9007199254740992.0
 | |
| #else
 | |
| #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
 | |
| #endif
 | |
| 
 | |
| double
 | |
| _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
 | |
| {
 | |
|     Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
 | |
|     /* See below for why x_digits is always large enough. */
 | |
|     digit rem;
 | |
|     digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
 | |
|     double dx;
 | |
|     /* Correction term for round-half-to-even rounding.  For a digit x,
 | |
|        "x + half_even_correction[x & 7]" gives x rounded to the nearest
 | |
|        multiple of 4, rounding ties to a multiple of 8. */
 | |
|     static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
 | |
| 
 | |
|     a_size = _PyLong_DigitCount(a);
 | |
|     if (a_size == 0) {
 | |
|         /* Special case for 0: significand 0.0, exponent 0. */
 | |
|         *e = 0;
 | |
|         return 0.0;
 | |
|     }
 | |
|     a_bits = bit_length_digit(a->long_value.ob_digit[a_size-1]);
 | |
|     /* The following is an overflow-free version of the check
 | |
|        "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
 | |
|     if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
 | |
|         (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
 | |
|          a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
 | |
|         goto overflow;
 | |
|     a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
 | |
| 
 | |
|     /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
 | |
|        (shifting left if a_bits <= DBL_MANT_DIG + 2).
 | |
| 
 | |
|        Number of digits needed for result: write // for floor division.
 | |
|        Then if shifting left, we end up using
 | |
| 
 | |
|          1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
 | |
| 
 | |
|        digits.  If shifting right, we use
 | |
| 
 | |
|          a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
 | |
| 
 | |
|        digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
 | |
|        the inequalities
 | |
| 
 | |
|          m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
 | |
|          m // PyLong_SHIFT - n // PyLong_SHIFT <=
 | |
|                                           1 + (m - n - 1) // PyLong_SHIFT,
 | |
| 
 | |
|        valid for any integers m and n, we find that x_size satisfies
 | |
| 
 | |
|          x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
 | |
| 
 | |
|        in both cases.
 | |
|     */
 | |
|     if (a_bits <= DBL_MANT_DIG + 2) {
 | |
|         shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
 | |
|         shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
 | |
|         x_size = shift_digits;
 | |
|         rem = v_lshift(x_digits + x_size, a->long_value.ob_digit, a_size,
 | |
|                        (int)shift_bits);
 | |
|         x_size += a_size;
 | |
|         x_digits[x_size++] = rem;
 | |
|     }
 | |
|     else {
 | |
|         shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
 | |
|         shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
 | |
|         rem = v_rshift(x_digits, a->long_value.ob_digit + shift_digits,
 | |
|                        a_size - shift_digits, (int)shift_bits);
 | |
|         x_size = a_size - shift_digits;
 | |
|         /* For correct rounding below, we need the least significant
 | |
|            bit of x to be 'sticky' for this shift: if any of the bits
 | |
|            shifted out was nonzero, we set the least significant bit
 | |
|            of x. */
 | |
|         if (rem)
 | |
|             x_digits[0] |= 1;
 | |
|         else
 | |
|             while (shift_digits > 0)
 | |
|                 if (a->long_value.ob_digit[--shift_digits]) {
 | |
|                     x_digits[0] |= 1;
 | |
|                     break;
 | |
|                 }
 | |
|     }
 | |
|     assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
 | |
| 
 | |
|     /* Round, and convert to double. */
 | |
|     x_digits[0] += half_even_correction[x_digits[0] & 7];
 | |
|     dx = x_digits[--x_size];
 | |
|     while (x_size > 0)
 | |
|         dx = dx * PyLong_BASE + x_digits[--x_size];
 | |
| 
 | |
|     /* Rescale;  make correction if result is 1.0. */
 | |
|     dx /= 4.0 * EXP2_DBL_MANT_DIG;
 | |
|     if (dx == 1.0) {
 | |
|         if (a_bits == PY_SSIZE_T_MAX)
 | |
|             goto overflow;
 | |
|         dx = 0.5;
 | |
|         a_bits += 1;
 | |
|     }
 | |
| 
 | |
|     *e = a_bits;
 | |
|     return _PyLong_IsNegative(a) ? -dx : dx;
 | |
| 
 | |
|   overflow:
 | |
|     /* exponent > PY_SSIZE_T_MAX */
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "huge integer: number of bits overflows a Py_ssize_t");
 | |
|     *e = 0;
 | |
|     return -1.0;
 | |
| }
 | |
| 
 | |
| /* Get a C double from an int object.  Rounds to the nearest double,
 | |
|    using the round-half-to-even rule in the case of a tie. */
 | |
| 
 | |
| double
 | |
| PyLong_AsDouble(PyObject *v)
 | |
| {
 | |
|     Py_ssize_t exponent;
 | |
|     double x;
 | |
| 
 | |
|     if (v == NULL) {
 | |
|         PyErr_BadInternalCall();
 | |
|         return -1.0;
 | |
|     }
 | |
|     if (!PyLong_Check(v)) {
 | |
|         PyErr_SetString(PyExc_TypeError, "an integer is required");
 | |
|         return -1.0;
 | |
|     }
 | |
|     if (_PyLong_IsCompact((PyLongObject *)v)) {
 | |
|         /* Fast path; single digit long (31 bits) will cast safely
 | |
|            to double.  This improves performance of FP/long operations
 | |
|            by 20%.
 | |
|         */
 | |
|         return (double)medium_value((PyLongObject *)v);
 | |
|     }
 | |
|     x = _PyLong_Frexp((PyLongObject *)v, &exponent);
 | |
|     if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
 | |
|         PyErr_SetString(PyExc_OverflowError,
 | |
|                         "int too large to convert to float");
 | |
|         return -1.0;
 | |
|     }
 | |
|     return ldexp(x, (int)exponent);
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| /* if a < b, return a negative number
 | |
|    if a == b, return 0
 | |
|    if a > b, return a positive number */
 | |
| 
 | |
| static Py_ssize_t
 | |
| long_compare(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     if (_PyLong_BothAreCompact(a, b)) {
 | |
|         return _PyLong_CompactValue(a) - _PyLong_CompactValue(b);
 | |
|     }
 | |
|     Py_ssize_t sign = _PyLong_SignedDigitCount(a) - _PyLong_SignedDigitCount(b);
 | |
|     if (sign == 0) {
 | |
|         Py_ssize_t i = _PyLong_DigitCount(a);
 | |
|         sdigit diff = 0;
 | |
|         while (--i >= 0) {
 | |
|             diff = (sdigit) a->long_value.ob_digit[i] - (sdigit) b->long_value.ob_digit[i];
 | |
|             if (diff) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         sign = _PyLong_IsNegative(a) ? -diff : diff;
 | |
|     }
 | |
|     return sign;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_richcompare(PyObject *self, PyObject *other, int op)
 | |
| {
 | |
|     Py_ssize_t result;
 | |
|     CHECK_BINOP(self, other);
 | |
|     if (self == other)
 | |
|         result = 0;
 | |
|     else
 | |
|         result = long_compare((PyLongObject*)self, (PyLongObject*)other);
 | |
|     Py_RETURN_RICHCOMPARE(result, 0, op);
 | |
| }
 | |
| 
 | |
| static void
 | |
| long_dealloc(PyObject *self)
 | |
| {
 | |
|     /* This should never get called, but we also don't want to SEGV if
 | |
|      * we accidentally decref small Ints out of existence. Instead,
 | |
|      * since small Ints are immortal, re-set the reference count.
 | |
|      */
 | |
|     PyLongObject *pylong = (PyLongObject*)self;
 | |
|     if (pylong && _PyLong_IsCompact(pylong)) {
 | |
|         stwodigits ival = medium_value(pylong);
 | |
|         if (IS_SMALL_INT(ival)) {
 | |
|             PyLongObject *small_pylong = (PyLongObject *)get_small_int((sdigit)ival);
 | |
|             if (pylong == small_pylong) {
 | |
|                 _Py_SetImmortal(self);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     Py_TYPE(self)->tp_free(self);
 | |
| }
 | |
| 
 | |
| static Py_hash_t
 | |
| long_hash(PyLongObject *v)
 | |
| {
 | |
|     Py_uhash_t x;
 | |
|     Py_ssize_t i;
 | |
|     int sign;
 | |
| 
 | |
|     if (_PyLong_IsCompact(v)) {
 | |
|         x = _PyLong_CompactValue(v);
 | |
|         if (x == (Py_uhash_t)-1) {
 | |
|             x = (Py_uhash_t)-2;
 | |
|         }
 | |
|         return x;
 | |
|     }
 | |
|     i = _PyLong_DigitCount(v);
 | |
|     sign = _PyLong_NonCompactSign(v);
 | |
|     x = 0;
 | |
|     while (--i >= 0) {
 | |
|         /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
 | |
|            want to compute x * 2**PyLong_SHIFT + v->long_value.ob_digit[i] modulo
 | |
|            _PyHASH_MODULUS.
 | |
| 
 | |
|            The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
 | |
|            amounts to a rotation of the bits of x.  To see this, write
 | |
| 
 | |
|              x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
 | |
| 
 | |
|            where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
 | |
|            PyLong_SHIFT bits of x (those that are shifted out of the
 | |
|            original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
 | |
|            _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
 | |
|            bits of x, shifted up.  Then since 2**_PyHASH_BITS is
 | |
|            congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
 | |
|            congruent to y modulo _PyHASH_MODULUS.  So
 | |
| 
 | |
|              x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
 | |
| 
 | |
|            The right-hand side is just the result of rotating the
 | |
|            _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
 | |
|            not all _PyHASH_BITS bits of x are 1s, the same is true
 | |
|            after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
 | |
|            the reduction of x*2**PyLong_SHIFT modulo
 | |
|            _PyHASH_MODULUS. */
 | |
|         x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
 | |
|             (x >> (_PyHASH_BITS - PyLong_SHIFT));
 | |
|         x += v->long_value.ob_digit[i];
 | |
|         if (x >= _PyHASH_MODULUS)
 | |
|             x -= _PyHASH_MODULUS;
 | |
|     }
 | |
|     x = x * sign;
 | |
|     if (x == (Py_uhash_t)-1)
 | |
|         x = (Py_uhash_t)-2;
 | |
|     return (Py_hash_t)x;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Add the absolute values of two integers. */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_add(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
 | |
|     PyLongObject *z;
 | |
|     Py_ssize_t i;
 | |
|     digit carry = 0;
 | |
| 
 | |
|     /* Ensure a is the larger of the two: */
 | |
|     if (size_a < size_b) {
 | |
|         { PyLongObject *temp = a; a = b; b = temp; }
 | |
|         { Py_ssize_t size_temp = size_a;
 | |
|             size_a = size_b;
 | |
|             size_b = size_temp; }
 | |
|     }
 | |
|     z = _PyLong_New(size_a+1);
 | |
|     if (z == NULL)
 | |
|         return NULL;
 | |
|     for (i = 0; i < size_b; ++i) {
 | |
|         carry += a->long_value.ob_digit[i] + b->long_value.ob_digit[i];
 | |
|         z->long_value.ob_digit[i] = carry & PyLong_MASK;
 | |
|         carry >>= PyLong_SHIFT;
 | |
|     }
 | |
|     for (; i < size_a; ++i) {
 | |
|         carry += a->long_value.ob_digit[i];
 | |
|         z->long_value.ob_digit[i] = carry & PyLong_MASK;
 | |
|         carry >>= PyLong_SHIFT;
 | |
|     }
 | |
|     z->long_value.ob_digit[i] = carry;
 | |
|     return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* Subtract the absolute values of two integers. */
 | |
| 
 | |
| static PyLongObject *
 | |
| x_sub(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
 | |
|     PyLongObject *z;
 | |
|     Py_ssize_t i;
 | |
|     int sign = 1;
 | |
|     digit borrow = 0;
 | |
| 
 | |
|     /* Ensure a is the larger of the two: */
 | |
|     if (size_a < size_b) {
 | |
|         sign = -1;
 | |
|         { PyLongObject *temp = a; a = b; b = temp; }
 | |
|         { Py_ssize_t size_temp = size_a;
 | |
|             size_a = size_b;
 | |
|             size_b = size_temp; }
 | |
|     }
 | |
|     else if (size_a == size_b) {
 | |
|         /* Find highest digit where a and b differ: */
 | |
|         i = size_a;
 | |
|         while (--i >= 0 && a->long_value.ob_digit[i] == b->long_value.ob_digit[i])
 | |
|             ;
 | |
|         if (i < 0)
 | |
|             return (PyLongObject *)PyLong_FromLong(0);
 | |
|         if (a->long_value.ob_digit[i] < b->long_value.ob_digit[i]) {
 | |
|             sign = -1;
 | |
|             { PyLongObject *temp = a; a = b; b = temp; }
 | |
|         }
 | |
|         size_a = size_b = i+1;
 | |
|     }
 | |
|     z = _PyLong_New(size_a);
 | |
|     if (z == NULL)
 | |
|         return NULL;
 | |
|     for (i = 0; i < size_b; ++i) {
 | |
|         /* The following assumes unsigned arithmetic
 | |
|            works module 2**N for some N>PyLong_SHIFT. */
 | |
|         borrow = a->long_value.ob_digit[i] - b->long_value.ob_digit[i] - borrow;
 | |
|         z->long_value.ob_digit[i] = borrow & PyLong_MASK;
 | |
|         borrow >>= PyLong_SHIFT;
 | |
|         borrow &= 1; /* Keep only one sign bit */
 | |
|     }
 | |
|     for (; i < size_a; ++i) {
 | |
|         borrow = a->long_value.ob_digit[i] - borrow;
 | |
|         z->long_value.ob_digit[i] = borrow & PyLong_MASK;
 | |
|         borrow >>= PyLong_SHIFT;
 | |
|         borrow &= 1; /* Keep only one sign bit */
 | |
|     }
 | |
|     assert(borrow == 0);
 | |
|     if (sign < 0) {
 | |
|         _PyLong_FlipSign(z);
 | |
|     }
 | |
|     return maybe_small_long(long_normalize(z));
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Add(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     if (_PyLong_BothAreCompact(a, b)) {
 | |
|         return _PyLong_FromSTwoDigits(medium_value(a) + medium_value(b));
 | |
|     }
 | |
| 
 | |
|     PyLongObject *z;
 | |
|     if (_PyLong_IsNegative(a)) {
 | |
|         if (_PyLong_IsNegative(b)) {
 | |
|             z = x_add(a, b);
 | |
|             if (z != NULL) {
 | |
|                 /* x_add received at least one multiple-digit int,
 | |
|                    and thus z must be a multiple-digit int.
 | |
|                    That also means z is not an element of
 | |
|                    small_ints, so negating it in-place is safe. */
 | |
|                 assert(Py_REFCNT(z) == 1);
 | |
|                 _PyLong_FlipSign(z);
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|             z = x_sub(b, a);
 | |
|     }
 | |
|     else {
 | |
|         if (_PyLong_IsNegative(b))
 | |
|             z = x_sub(a, b);
 | |
|         else
 | |
|             z = x_add(a, b);
 | |
|     }
 | |
|     return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_add(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     CHECK_BINOP(a, b);
 | |
|     return _PyLong_Add(a, b);
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Subtract(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     PyLongObject *z;
 | |
| 
 | |
|     if (_PyLong_BothAreCompact(a, b)) {
 | |
|         return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b));
 | |
|     }
 | |
|     if (_PyLong_IsNegative(a)) {
 | |
|         if (_PyLong_IsNegative(b)) {
 | |
|             z = x_sub(b, a);
 | |
|         }
 | |
|         else {
 | |
|             z = x_add(a, b);
 | |
|             if (z != NULL) {
 | |
|                 assert(_PyLong_IsZero(z) || Py_REFCNT(z) == 1);
 | |
|                 _PyLong_FlipSign(z);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if (_PyLong_IsNegative(b))
 | |
|             z = x_add(a, b);
 | |
|         else
 | |
|             z = x_sub(a, b);
 | |
|     }
 | |
|     return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_sub(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     CHECK_BINOP(a, b);
 | |
|     return _PyLong_Subtract(a, b);
 | |
| }
 | |
| 
 | |
| /* Grade school multiplication, ignoring the signs.
 | |
|  * Returns the absolute value of the product, or NULL if error.
 | |
|  */
 | |
| static PyLongObject *
 | |
| x_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     PyLongObject *z;
 | |
|     Py_ssize_t size_a = _PyLong_DigitCount(a);
 | |
|     Py_ssize_t size_b = _PyLong_DigitCount(b);
 | |
|     Py_ssize_t i;
 | |
| 
 | |
|     z = _PyLong_New(size_a + size_b);
 | |
|     if (z == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     memset(z->long_value.ob_digit, 0, _PyLong_DigitCount(z) * sizeof(digit));
 | |
|     if (a == b) {
 | |
|         /* Efficient squaring per HAC, Algorithm 14.16:
 | |
|          * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
 | |
|          * Gives slightly less than a 2x speedup when a == b,
 | |
|          * via exploiting that each entry in the multiplication
 | |
|          * pyramid appears twice (except for the size_a squares).
 | |
|          */
 | |
|         digit *paend = a->long_value.ob_digit + size_a;
 | |
|         for (i = 0; i < size_a; ++i) {
 | |
|             twodigits carry;
 | |
|             twodigits f = a->long_value.ob_digit[i];
 | |
|             digit *pz = z->long_value.ob_digit + (i << 1);
 | |
|             digit *pa = a->long_value.ob_digit + i + 1;
 | |
| 
 | |
|             SIGCHECK({
 | |
|                     Py_DECREF(z);
 | |
|                     return NULL;
 | |
|                 });
 | |
| 
 | |
|             carry = *pz + f * f;
 | |
|             *pz++ = (digit)(carry & PyLong_MASK);
 | |
|             carry >>= PyLong_SHIFT;
 | |
|             assert(carry <= PyLong_MASK);
 | |
| 
 | |
|             /* Now f is added in twice in each column of the
 | |
|              * pyramid it appears.  Same as adding f<<1 once.
 | |
|              */
 | |
|             f <<= 1;
 | |
|             while (pa < paend) {
 | |
|                 carry += *pz + *pa++ * f;
 | |
|                 *pz++ = (digit)(carry & PyLong_MASK);
 | |
|                 carry >>= PyLong_SHIFT;
 | |
|                 assert(carry <= (PyLong_MASK << 1));
 | |
|             }
 | |
|             if (carry) {
 | |
|                 /* See comment below. pz points at the highest possible
 | |
|                  * carry position from the last outer loop iteration, so
 | |
|                  * *pz is at most 1.
 | |
|                  */
 | |
|                 assert(*pz <= 1);
 | |
|                 carry += *pz;
 | |
|                 *pz = (digit)(carry & PyLong_MASK);
 | |
|                 carry >>= PyLong_SHIFT;
 | |
|                 if (carry) {
 | |
|                     /* If there's still a carry, it must be into a position
 | |
|                      * that still holds a 0. Where the base
 | |
|                      ^ B is 1 << PyLong_SHIFT, the last add was of a carry no
 | |
|                      * more than 2*B - 2 to a stored digit no more than 1.
 | |
|                      * So the sum was no more than 2*B - 1, so the current
 | |
|                      * carry no more than floor((2*B - 1)/B) = 1.
 | |
|                      */
 | |
|                     assert(carry == 1);
 | |
|                     assert(pz[1] == 0);
 | |
|                     pz[1] = (digit)carry;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else {      /* a is not the same as b -- gradeschool int mult */
 | |
|         for (i = 0; i < size_a; ++i) {
 | |
|             twodigits carry = 0;
 | |
|             twodigits f = a->long_value.ob_digit[i];
 | |
|             digit *pz = z->long_value.ob_digit + i;
 | |
|             digit *pb = b->long_value.ob_digit;
 | |
|             digit *pbend = b->long_value.ob_digit + size_b;
 | |
| 
 | |
|             SIGCHECK({
 | |
|                     Py_DECREF(z);
 | |
|                     return NULL;
 | |
|                 });
 | |
| 
 | |
|             while (pb < pbend) {
 | |
|                 carry += *pz + *pb++ * f;
 | |
|                 *pz++ = (digit)(carry & PyLong_MASK);
 | |
|                 carry >>= PyLong_SHIFT;
 | |
|                 assert(carry <= PyLong_MASK);
 | |
|             }
 | |
|             if (carry)
 | |
|                 *pz += (digit)(carry & PyLong_MASK);
 | |
|             assert((carry >> PyLong_SHIFT) == 0);
 | |
|         }
 | |
|     }
 | |
|     return long_normalize(z);
 | |
| }
 | |
| 
 | |
| /* A helper for Karatsuba multiplication (k_mul).
 | |
|    Takes an int "n" and an integer "size" representing the place to
 | |
|    split, and sets low and high such that abs(n) == (high << size) + low,
 | |
|    viewing the shift as being by digits.  The sign bit is ignored, and
 | |
|    the return values are >= 0.
 | |
|    Returns 0 on success, -1 on failure.
 | |
| */
 | |
| static int
 | |
| kmul_split(PyLongObject *n,
 | |
|            Py_ssize_t size,
 | |
|            PyLongObject **high,
 | |
|            PyLongObject **low)
 | |
| {
 | |
|     PyLongObject *hi, *lo;
 | |
|     Py_ssize_t size_lo, size_hi;
 | |
|     const Py_ssize_t size_n = _PyLong_DigitCount(n);
 | |
| 
 | |
|     size_lo = Py_MIN(size_n, size);
 | |
|     size_hi = size_n - size_lo;
 | |
| 
 | |
|     if ((hi = _PyLong_New(size_hi)) == NULL)
 | |
|         return -1;
 | |
|     if ((lo = _PyLong_New(size_lo)) == NULL) {
 | |
|         Py_DECREF(hi);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     memcpy(lo->long_value.ob_digit, n->long_value.ob_digit, size_lo * sizeof(digit));
 | |
|     memcpy(hi->long_value.ob_digit, n->long_value.ob_digit + size_lo, size_hi * sizeof(digit));
 | |
| 
 | |
|     *high = long_normalize(hi);
 | |
|     *low = long_normalize(lo);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
 | |
| 
 | |
| /* Karatsuba multiplication.  Ignores the input signs, and returns the
 | |
|  * absolute value of the product (or NULL if error).
 | |
|  * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
 | |
|  */
 | |
| static PyLongObject *
 | |
| k_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     Py_ssize_t asize = _PyLong_DigitCount(a);
 | |
|     Py_ssize_t bsize = _PyLong_DigitCount(b);
 | |
|     PyLongObject *ah = NULL;
 | |
|     PyLongObject *al = NULL;
 | |
|     PyLongObject *bh = NULL;
 | |
|     PyLongObject *bl = NULL;
 | |
|     PyLongObject *ret = NULL;
 | |
|     PyLongObject *t1, *t2, *t3;
 | |
|     Py_ssize_t shift;           /* the number of digits we split off */
 | |
|     Py_ssize_t i;
 | |
| 
 | |
|     /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
 | |
|      * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
 | |
|      * Then the original product is
 | |
|      *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
 | |
|      * By picking X to be a power of 2, "*X" is just shifting, and it's
 | |
|      * been reduced to 3 multiplies on numbers half the size.
 | |
|      */
 | |
| 
 | |
|     /* We want to split based on the larger number; fiddle so that b
 | |
|      * is largest.
 | |
|      */
 | |
|     if (asize > bsize) {
 | |
|         t1 = a;
 | |
|         a = b;
 | |
|         b = t1;
 | |
| 
 | |
|         i = asize;
 | |
|         asize = bsize;
 | |
|         bsize = i;
 | |
|     }
 | |
| 
 | |
|     /* Use gradeschool math when either number is too small. */
 | |
|     i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
 | |
|     if (asize <= i) {
 | |
|         if (asize == 0)
 | |
|             return (PyLongObject *)PyLong_FromLong(0);
 | |
|         else
 | |
|             return x_mul(a, b);
 | |
|     }
 | |
| 
 | |
|     /* If a is small compared to b, splitting on b gives a degenerate
 | |
|      * case with ah==0, and Karatsuba may be (even much) less efficient
 | |
|      * than "grade school" then.  However, we can still win, by viewing
 | |
|      * b as a string of "big digits", each of the same width as a. That
 | |
|      * leads to a sequence of balanced calls to k_mul.
 | |
|      */
 | |
|     if (2 * asize <= bsize)
 | |
|         return k_lopsided_mul(a, b);
 | |
| 
 | |
|     /* Split a & b into hi & lo pieces. */
 | |
|     shift = bsize >> 1;
 | |
|     if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
 | |
|     assert(_PyLong_IsPositive(ah));        /* the split isn't degenerate */
 | |
| 
 | |
|     if (a == b) {
 | |
|         bh = (PyLongObject*)Py_NewRef(ah);
 | |
|         bl = (PyLongObject*)Py_NewRef(al);
 | |
|     }
 | |
|     else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
 | |
| 
 | |
|     /* The plan:
 | |
|      * 1. Allocate result space (asize + bsize digits:  that's always
 | |
|      *    enough).
 | |
|      * 2. Compute ah*bh, and copy into result at 2*shift.
 | |
|      * 3. Compute al*bl, and copy into result at 0.  Note that this
 | |
|      *    can't overlap with #2.
 | |
|      * 4. Subtract al*bl from the result, starting at shift.  This may
 | |
|      *    underflow (borrow out of the high digit), but we don't care:
 | |
|      *    we're effectively doing unsigned arithmetic mod
 | |
|      *    BASE**(sizea + sizeb), and so long as the *final* result fits,
 | |
|      *    borrows and carries out of the high digit can be ignored.
 | |
|      * 5. Subtract ah*bh from the result, starting at shift.
 | |
|      * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
 | |
|      *    at shift.
 | |
|      */
 | |
| 
 | |
|     /* 1. Allocate result space. */
 | |
|     ret = _PyLong_New(asize + bsize);
 | |
|     if (ret == NULL) goto fail;
 | |
| #ifdef Py_DEBUG
 | |
|     /* Fill with trash, to catch reference to uninitialized digits. */
 | |
|     memset(ret->long_value.ob_digit, 0xDF, _PyLong_DigitCount(ret) * sizeof(digit));
 | |
| #endif
 | |
| 
 | |
|     /* 2. t1 <- ah*bh, and copy into high digits of result. */
 | |
|     if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
 | |
|     assert(!_PyLong_IsNegative(t1));
 | |
|     assert(2*shift + _PyLong_DigitCount(t1) <= _PyLong_DigitCount(ret));
 | |
|     memcpy(ret->long_value.ob_digit + 2*shift, t1->long_value.ob_digit,
 | |
|            _PyLong_DigitCount(t1) * sizeof(digit));
 | |
| 
 | |
|     /* Zero-out the digits higher than the ah*bh copy. */
 | |
|     i = _PyLong_DigitCount(ret) - 2*shift - _PyLong_DigitCount(t1);
 | |
|     if (i)
 | |
|         memset(ret->long_value.ob_digit + 2*shift + _PyLong_DigitCount(t1), 0,
 | |
|                i * sizeof(digit));
 | |
| 
 | |
|     /* 3. t2 <- al*bl, and copy into the low digits. */
 | |
|     if ((t2 = k_mul(al, bl)) == NULL) {
 | |
|         Py_DECREF(t1);
 | |
|         goto fail;
 | |
|     }
 | |
|     assert(!_PyLong_IsNegative(t2));
 | |
|     assert(_PyLong_DigitCount(t2) <= 2*shift); /* no overlap with high digits */
 | |
|     memcpy(ret->long_value.ob_digit, t2->long_value.ob_digit, _PyLong_DigitCount(t2) * sizeof(digit));
 | |
| 
 | |
|     /* Zero out remaining digits. */
 | |
|     i = 2*shift - _PyLong_DigitCount(t2);          /* number of uninitialized digits */
 | |
|     if (i)
 | |
|         memset(ret->long_value.ob_digit + _PyLong_DigitCount(t2), 0, i * sizeof(digit));
 | |
| 
 | |
|     /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
 | |
|      * because it's fresher in cache.
 | |
|      */
 | |
|     i = _PyLong_DigitCount(ret) - shift;  /* # digits after shift */
 | |
|     (void)v_isub(ret->long_value.ob_digit + shift, i, t2->long_value.ob_digit, _PyLong_DigitCount(t2));
 | |
|     _Py_DECREF_INT(t2);
 | |
| 
 | |
|     (void)v_isub(ret->long_value.ob_digit + shift, i, t1->long_value.ob_digit, _PyLong_DigitCount(t1));
 | |
|     _Py_DECREF_INT(t1);
 | |
| 
 | |
|     /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
 | |
|     if ((t1 = x_add(ah, al)) == NULL) goto fail;
 | |
|     _Py_DECREF_INT(ah);
 | |
|     _Py_DECREF_INT(al);
 | |
|     ah = al = NULL;
 | |
| 
 | |
|     if (a == b) {
 | |
|         t2 = (PyLongObject*)Py_NewRef(t1);
 | |
|     }
 | |
|     else if ((t2 = x_add(bh, bl)) == NULL) {
 | |
|         Py_DECREF(t1);
 | |
|         goto fail;
 | |
|     }
 | |
|     _Py_DECREF_INT(bh);
 | |
|     _Py_DECREF_INT(bl);
 | |
|     bh = bl = NULL;
 | |
| 
 | |
|     t3 = k_mul(t1, t2);
 | |
|     _Py_DECREF_INT(t1);
 | |
|     _Py_DECREF_INT(t2);
 | |
|     if (t3 == NULL) goto fail;
 | |
|     assert(!_PyLong_IsNegative(t3));
 | |
| 
 | |
|     /* Add t3.  It's not obvious why we can't run out of room here.
 | |
|      * See the (*) comment after this function.
 | |
|      */
 | |
|     (void)v_iadd(ret->long_value.ob_digit + shift, i, t3->long_value.ob_digit, _PyLong_DigitCount(t3));
 | |
|     _Py_DECREF_INT(t3);
 | |
| 
 | |
|     return long_normalize(ret);
 | |
| 
 | |
|   fail:
 | |
|     Py_XDECREF(ret);
 | |
|     Py_XDECREF(ah);
 | |
|     Py_XDECREF(al);
 | |
|     Py_XDECREF(bh);
 | |
|     Py_XDECREF(bl);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* (*) Why adding t3 can't "run out of room" above.
 | |
| 
 | |
| Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
 | |
| to start with:
 | |
| 
 | |
| 1. For any integer i, i = c(i/2) + f(i/2).  In particular,
 | |
|    bsize = c(bsize/2) + f(bsize/2).
 | |
| 2. shift = f(bsize/2)
 | |
| 3. asize <= bsize
 | |
| 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
 | |
|    routine, so asize > bsize/2 >= f(bsize/2) in this routine.
 | |
| 
 | |
| We allocated asize + bsize result digits, and add t3 into them at an offset
 | |
| of shift.  This leaves asize+bsize-shift allocated digit positions for t3
 | |
| to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
 | |
| asize + c(bsize/2) available digit positions.
 | |
| 
 | |
| bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
 | |
| at most c(bsize/2) digits + 1 bit.
 | |
| 
 | |
| If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
 | |
| digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
 | |
| most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
 | |
| 
 | |
| The product (ah+al)*(bh+bl) therefore has at most
 | |
| 
 | |
|     c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
 | |
| 
 | |
| and we have asize + c(bsize/2) available digit positions.  We need to show
 | |
| this is always enough.  An instance of c(bsize/2) cancels out in both, so
 | |
| the question reduces to whether asize digits is enough to hold
 | |
| (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
 | |
| then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
 | |
| asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
 | |
| digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
 | |
| asize == bsize, then we're asking whether bsize digits is enough to hold
 | |
| c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
 | |
| is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
 | |
| bsize >= KARATSUBA_CUTOFF >= 2.
 | |
| 
 | |
| Note that since there's always enough room for (ah+al)*(bh+bl), and that's
 | |
| clearly >= each of ah*bh and al*bl, there's always enough room to subtract
 | |
| ah*bh and al*bl too.
 | |
| */
 | |
| 
 | |
| /* b has at least twice the digits of a, and a is big enough that Karatsuba
 | |
|  * would pay off *if* the inputs had balanced sizes.  View b as a sequence
 | |
|  * of slices, each with the same number of digits as a, and multiply the
 | |
|  * slices by a, one at a time.  This gives k_mul balanced inputs to work with,
 | |
|  * and is also cache-friendly (we compute one double-width slice of the result
 | |
|  * at a time, then move on, never backtracking except for the helpful
 | |
|  * single-width slice overlap between successive partial sums).
 | |
|  */
 | |
| static PyLongObject *
 | |
| k_lopsided_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     const Py_ssize_t asize = _PyLong_DigitCount(a);
 | |
|     Py_ssize_t bsize = _PyLong_DigitCount(b);
 | |
|     Py_ssize_t nbdone;          /* # of b digits already multiplied */
 | |
|     PyLongObject *ret;
 | |
|     PyLongObject *bslice = NULL;
 | |
| 
 | |
|     assert(asize > KARATSUBA_CUTOFF);
 | |
|     assert(2 * asize <= bsize);
 | |
| 
 | |
|     /* Allocate result space, and zero it out. */
 | |
|     ret = _PyLong_New(asize + bsize);
 | |
|     if (ret == NULL)
 | |
|         return NULL;
 | |
|     memset(ret->long_value.ob_digit, 0, _PyLong_DigitCount(ret) * sizeof(digit));
 | |
| 
 | |
|     /* Successive slices of b are copied into bslice. */
 | |
|     bslice = _PyLong_New(asize);
 | |
|     if (bslice == NULL)
 | |
|         goto fail;
 | |
| 
 | |
|     nbdone = 0;
 | |
|     while (bsize > 0) {
 | |
|         PyLongObject *product;
 | |
|         const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
 | |
| 
 | |
|         /* Multiply the next slice of b by a. */
 | |
|         memcpy(bslice->long_value.ob_digit, b->long_value.ob_digit + nbdone,
 | |
|                nbtouse * sizeof(digit));
 | |
|         assert(nbtouse >= 0);
 | |
|         _PyLong_SetSignAndDigitCount(bslice, 1, nbtouse);
 | |
|         product = k_mul(a, bslice);
 | |
|         if (product == NULL)
 | |
|             goto fail;
 | |
| 
 | |
|         /* Add into result. */
 | |
|         (void)v_iadd(ret->long_value.ob_digit + nbdone, _PyLong_DigitCount(ret) - nbdone,
 | |
|                      product->long_value.ob_digit, _PyLong_DigitCount(product));
 | |
|         _Py_DECREF_INT(product);
 | |
| 
 | |
|         bsize -= nbtouse;
 | |
|         nbdone += nbtouse;
 | |
|     }
 | |
| 
 | |
|     _Py_DECREF_INT(bslice);
 | |
|     return long_normalize(ret);
 | |
| 
 | |
|   fail:
 | |
|     Py_DECREF(ret);
 | |
|     Py_XDECREF(bslice);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_Multiply(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     PyLongObject *z;
 | |
| 
 | |
|     /* fast path for single-digit multiplication */
 | |
|     if (_PyLong_BothAreCompact(a, b)) {
 | |
|         stwodigits v = medium_value(a) * medium_value(b);
 | |
|         return _PyLong_FromSTwoDigits(v);
 | |
|     }
 | |
| 
 | |
|     z = k_mul(a, b);
 | |
|     /* Negate if exactly one of the inputs is negative. */
 | |
|     if (!_PyLong_SameSign(a, b) && z) {
 | |
|         _PyLong_Negate(&z);
 | |
|         if (z == NULL)
 | |
|             return NULL;
 | |
|     }
 | |
|     return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_mul(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     CHECK_BINOP(a, b);
 | |
|     return _PyLong_Multiply(a, b);
 | |
| }
 | |
| 
 | |
| /* Fast modulo division for single-digit longs. */
 | |
| static PyObject *
 | |
| fast_mod(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     sdigit left = a->long_value.ob_digit[0];
 | |
|     sdigit right = b->long_value.ob_digit[0];
 | |
|     sdigit mod;
 | |
| 
 | |
|     assert(_PyLong_DigitCount(a) == 1);
 | |
|     assert(_PyLong_DigitCount(b) == 1);
 | |
|     sdigit sign = _PyLong_CompactSign(b);
 | |
|     if (_PyLong_SameSign(a, b)) {
 | |
|         mod = left % right;
 | |
|     }
 | |
|     else {
 | |
|         /* Either 'a' or 'b' is negative. */
 | |
|         mod = right - 1 - (left - 1) % right;
 | |
|     }
 | |
| 
 | |
|     return PyLong_FromLong(mod * sign);
 | |
| }
 | |
| 
 | |
| /* Fast floor division for single-digit longs. */
 | |
| static PyObject *
 | |
| fast_floor_div(PyLongObject *a, PyLongObject *b)
 | |
| {
 | |
|     sdigit left = a->long_value.ob_digit[0];
 | |
|     sdigit right = b->long_value.ob_digit[0];
 | |
|     sdigit div;
 | |
| 
 | |
|     assert(_PyLong_DigitCount(a) == 1);
 | |
|     assert(_PyLong_DigitCount(b) == 1);
 | |
| 
 | |
|     if (_PyLong_SameSign(a, b)) {
 | |
|         div = left / right;
 | |
|     }
 | |
|     else {
 | |
|         /* Either 'a' or 'b' is negative. */
 | |
|         div = -1 - (left - 1) / right;
 | |
|     }
 | |
| 
 | |
|     return PyLong_FromLong(div);
 | |
| }
 | |
| 
 | |
| #ifdef WITH_PYLONG_MODULE
 | |
| /* asymptotically faster divmod, using _pylong.py */
 | |
| static int
 | |
| pylong_int_divmod(PyLongObject *v, PyLongObject *w,
 | |
|                   PyLongObject **pdiv, PyLongObject **pmod)
 | |
| {
 | |
|     PyObject *mod = PyImport_ImportModule("_pylong");
 | |
|     if (mod == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     PyObject *result = PyObject_CallMethod(mod, "int_divmod", "OO", v, w);
 | |
|     Py_DECREF(mod);
 | |
|     if (result == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     if (!PyTuple_Check(result)) {
 | |
|         Py_DECREF(result);
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "tuple is required from int_divmod()");
 | |
|         return -1;
 | |
|     }
 | |
|     PyObject *q = PyTuple_GET_ITEM(result, 0);
 | |
|     PyObject *r = PyTuple_GET_ITEM(result, 1);
 | |
|     if (!PyLong_Check(q) || !PyLong_Check(r)) {
 | |
|         Py_DECREF(result);
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "tuple of int is required from int_divmod()");
 | |
|         return -1;
 | |
|     }
 | |
|     if (pdiv != NULL) {
 | |
|         *pdiv = (PyLongObject *)Py_NewRef(q);
 | |
|     }
 | |
|     if (pmod != NULL) {
 | |
|         *pmod = (PyLongObject *)Py_NewRef(r);
 | |
|     }
 | |
|     Py_DECREF(result);
 | |
|     return 0;
 | |
| }
 | |
| #endif /* WITH_PYLONG_MODULE */
 | |
| 
 | |
| /* The / and % operators are now defined in terms of divmod().
 | |
|    The expression a mod b has the value a - b*floor(a/b).
 | |
|    The long_divrem function gives the remainder after division of
 | |
|    |a| by |b|, with the sign of a.  This is also expressed
 | |
|    as a - b*trunc(a/b), if trunc truncates towards zero.
 | |
|    Some examples:
 | |
|      a           b      a rem b         a mod b
 | |
|      13          10      3               3
 | |
|     -13          10     -3               7
 | |
|      13         -10      3              -7
 | |
|     -13         -10     -3              -3
 | |
|    So, to get from rem to mod, we have to add b if a and b
 | |
|    have different signs.  We then subtract one from the 'div'
 | |
|    part of the outcome to keep the invariant intact. */
 | |
| 
 | |
| /* Compute
 | |
|  *     *pdiv, *pmod = divmod(v, w)
 | |
|  * NULL can be passed for pdiv or pmod, in which case that part of
 | |
|  * the result is simply thrown away.  The caller owns a reference to
 | |
|  * each of these it requests (does not pass NULL for).
 | |
|  */
 | |
| static int
 | |
| l_divmod(PyLongObject *v, PyLongObject *w,
 | |
|          PyLongObject **pdiv, PyLongObject **pmod)
 | |
| {
 | |
|     PyLongObject *div, *mod;
 | |
| 
 | |
|     if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
 | |
|         /* Fast path for single-digit longs */
 | |
|         div = NULL;
 | |
|         if (pdiv != NULL) {
 | |
|             div = (PyLongObject *)fast_floor_div(v, w);
 | |
|             if (div == NULL) {
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         if (pmod != NULL) {
 | |
|             mod = (PyLongObject *)fast_mod(v, w);
 | |
|             if (mod == NULL) {
 | |
|                 Py_XDECREF(div);
 | |
|                 return -1;
 | |
|             }
 | |
|             *pmod = mod;
 | |
|         }
 | |
|         if (pdiv != NULL) {
 | |
|             /* We only want to set `*pdiv` when `*pmod` is
 | |
|                set successfully. */
 | |
|             *pdiv = div;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| #if WITH_PYLONG_MODULE
 | |
|     Py_ssize_t size_v = _PyLong_DigitCount(v); /* digits in numerator */
 | |
|     Py_ssize_t size_w = _PyLong_DigitCount(w); /* digits in denominator */
 | |
|     if (size_w > 300 && (size_v - size_w) > 150) {
 | |
|         /* Switch to _pylong.int_divmod().  If the quotient is small then
 | |
|           "schoolbook" division is linear-time so don't use in that case.
 | |
|           These limits are empirically determined and should be slightly
 | |
|           conservative so that _pylong is used in cases it is likely
 | |
|           to be faster. See Tools/scripts/divmod_threshold.py. */
 | |
|         return pylong_int_divmod(v, w, pdiv, pmod);
 | |
|     }
 | |
| #endif
 | |
|     if (long_divrem(v, w, &div, &mod) < 0)
 | |
|         return -1;
 | |
|     if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
 | |
|         (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
 | |
|         PyLongObject *temp;
 | |
|         temp = (PyLongObject *) long_add(mod, w);
 | |
|         Py_SETREF(mod, temp);
 | |
|         if (mod == NULL) {
 | |
|             Py_DECREF(div);
 | |
|             return -1;
 | |
|         }
 | |
|         temp = (PyLongObject *) long_sub(div, (PyLongObject *)_PyLong_GetOne());
 | |
|         if (temp == NULL) {
 | |
|             Py_DECREF(mod);
 | |
|             Py_DECREF(div);
 | |
|             return -1;
 | |
|         }
 | |
|         Py_SETREF(div, temp);
 | |
|     }
 | |
|     if (pdiv != NULL)
 | |
|         *pdiv = div;
 | |
|     else
 | |
|         Py_DECREF(div);
 | |
| 
 | |
|     if (pmod != NULL)
 | |
|         *pmod = mod;
 | |
|     else
 | |
|         Py_DECREF(mod);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Compute
 | |
|  *     *pmod = v % w
 | |
|  * pmod cannot be NULL. The caller owns a reference to pmod.
 | |
|  */
 | |
| static int
 | |
| l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
 | |
| {
 | |
|     PyLongObject *mod;
 | |
| 
 | |
|     assert(pmod);
 | |
|     if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
 | |
|         /* Fast path for single-digit longs */
 | |
|         *pmod = (PyLongObject *)fast_mod(v, w);
 | |
|         return -(*pmod == NULL);
 | |
|     }
 | |
|     if (long_rem(v, w, &mod) < 0)
 | |
|         return -1;
 | |
|     if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
 | |
|         (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
 | |
|         PyLongObject *temp;
 | |
|         temp = (PyLongObject *) long_add(mod, w);
 | |
|         Py_SETREF(mod, temp);
 | |
|         if (mod == NULL)
 | |
|             return -1;
 | |
|     }
 | |
|     *pmod = mod;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_div(PyObject *a, PyObject *b)
 | |
| {
 | |
|     PyLongObject *div;
 | |
| 
 | |
|     CHECK_BINOP(a, b);
 | |
| 
 | |
|     if (_PyLong_DigitCount((PyLongObject*)a) == 1 && _PyLong_DigitCount((PyLongObject*)b) == 1) {
 | |
|         return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
 | |
|     }
 | |
| 
 | |
|     if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
 | |
|         div = NULL;
 | |
|     return (PyObject *)div;
 | |
| }
 | |
| 
 | |
| /* PyLong/PyLong -> float, with correctly rounded result. */
 | |
| 
 | |
| #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
 | |
| #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
 | |
| 
 | |
| static PyObject *
 | |
| long_true_divide(PyObject *v, PyObject *w)
 | |
| {
 | |
|     PyLongObject *a, *b, *x;
 | |
|     Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
 | |
|     digit mask, low;
 | |
|     int inexact, negate, a_is_small, b_is_small;
 | |
|     double dx, result;
 | |
| 
 | |
|     CHECK_BINOP(v, w);
 | |
|     a = (PyLongObject *)v;
 | |
|     b = (PyLongObject *)w;
 | |
| 
 | |
|     /*
 | |
|        Method in a nutshell:
 | |
| 
 | |
|          0. reduce to case a, b > 0; filter out obvious underflow/overflow
 | |
|          1. choose a suitable integer 'shift'
 | |
|          2. use integer arithmetic to compute x = floor(2**-shift*a/b)
 | |
|          3. adjust x for correct rounding
 | |
|          4. convert x to a double dx with the same value
 | |
|          5. return ldexp(dx, shift).
 | |
| 
 | |
|        In more detail:
 | |
| 
 | |
|        0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
 | |
|        returns either 0.0 or -0.0, depending on the sign of b.  For a and
 | |
|        b both nonzero, ignore signs of a and b, and add the sign back in
 | |
|        at the end.  Now write a_bits and b_bits for the bit lengths of a
 | |
|        and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
 | |
|        for b).  Then
 | |
| 
 | |
|           2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
 | |
| 
 | |
|        So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
 | |
|        so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
 | |
|        DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
 | |
|        the way, we can assume that
 | |
| 
 | |
|           DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
 | |
| 
 | |
|        1. The integer 'shift' is chosen so that x has the right number of
 | |
|        bits for a double, plus two or three extra bits that will be used
 | |
|        in the rounding decisions.  Writing a_bits and b_bits for the
 | |
|        number of significant bits in a and b respectively, a
 | |
|        straightforward formula for shift is:
 | |
| 
 | |
|           shift = a_bits - b_bits - DBL_MANT_DIG - 2
 | |
| 
 | |
|        This is fine in the usual case, but if a/b is smaller than the
 | |
|        smallest normal float then it can lead to double rounding on an
 | |
|        IEEE 754 platform, giving incorrectly rounded results.  So we
 | |
|        adjust the formula slightly.  The actual formula used is:
 | |
| 
 | |
|            shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
 | |
| 
 | |
|        2. The quantity x is computed by first shifting a (left -shift bits
 | |
|        if shift <= 0, right shift bits if shift > 0) and then dividing by
 | |
|        b.  For both the shift and the division, we keep track of whether
 | |
|        the result is inexact, in a flag 'inexact'; this information is
 | |
|        needed at the rounding stage.
 | |
| 
 | |
|        With the choice of shift above, together with our assumption that
 | |
|        a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
 | |
|        that x >= 1.
 | |
| 
 | |
|        3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
 | |
|        this with an exactly representable float of the form
 | |
| 
 | |
|           round(x/2**extra_bits) * 2**(extra_bits+shift).
 | |
| 
 | |
|        For float representability, we need x/2**extra_bits <
 | |
|        2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
 | |
|        DBL_MANT_DIG.  This translates to the condition:
 | |
| 
 | |
|           extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
 | |
| 
 | |
|        To round, we just modify the bottom digit of x in-place; this can
 | |
|        end up giving a digit with value > PyLONG_MASK, but that's not a
 | |
|        problem since digits can hold values up to 2*PyLONG_MASK+1.
 | |
| 
 | |
|        With the original choices for shift above, extra_bits will always
 | |
|        be 2 or 3.  Then rounding under the round-half-to-even rule, we
 | |
|        round up iff the most significant of the extra bits is 1, and
 | |
|        either: (a) the computation of x in step 2 had an inexact result,
 | |
|        or (b) at least one other of the extra bits is 1, or (c) the least
 | |
|        significant bit of x (above those to be rounded) is 1.
 | |
| 
 | |
|        4. Conversion to a double is straightforward; all floating-point
 | |
|        operations involved in the conversion are exact, so there's no
 | |
|        danger of rounding errors.
 | |
| 
 | |
|        5. Use ldexp(x, shift) to compute x*2**shift, the final result.
 | |
|        The result will always be exactly representable as a double, except
 | |
|        in the case that it overflows.  To avoid dependence on the exact
 | |
|        behaviour of ldexp on overflow, we check for overflow before
 | |
|        applying ldexp.  The result of ldexp is adjusted for sign before
 | |
|        returning.
 | |
|     */
 | |
| 
 | |
|     /* Reduce to case where a and b are both positive. */
 | |
|     a_size = _PyLong_DigitCount(a);
 | |
|     b_size = _PyLong_DigitCount(b);
 | |
|     negate = (_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b));
 | |
|     if (b_size == 0) {
 | |
|         PyErr_SetString(PyExc_ZeroDivisionError,
 | |
|                         "division by zero");
 | |
|         goto error;
 | |
|     }
 | |
|     if (a_size == 0)
 | |
|         goto underflow_or_zero;
 | |
| 
 | |
|     /* Fast path for a and b small (exactly representable in a double).
 | |
|        Relies on floating-point division being correctly rounded; results
 | |
|        may be subject to double rounding on x86 machines that operate with
 | |
|        the x87 FPU set to 64-bit precision. */
 | |
|     a_is_small = a_size <= MANT_DIG_DIGITS ||
 | |
|         (a_size == MANT_DIG_DIGITS+1 &&
 | |
|          a->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
 | |
|     b_is_small = b_size <= MANT_DIG_DIGITS ||
 | |
|         (b_size == MANT_DIG_DIGITS+1 &&
 | |
|          b->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
 | |
|     if (a_is_small && b_is_small) {
 | |
|         double da, db;
 | |
|         da = a->long_value.ob_digit[--a_size];
 | |
|         while (a_size > 0)
 | |
|             da = da * PyLong_BASE + a->long_value.ob_digit[--a_size];
 | |
|         db = b->long_value.ob_digit[--b_size];
 | |
|         while (b_size > 0)
 | |
|             db = db * PyLong_BASE + b->long_value.ob_digit[--b_size];
 | |
|         result = da / db;
 | |
|         goto success;
 | |
|     }
 | |
| 
 | |
|     /* Catch obvious cases of underflow and overflow */
 | |
|     diff = a_size - b_size;
 | |
|     if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
 | |
|         /* Extreme overflow */
 | |
|         goto overflow;
 | |
|     else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
 | |
|         /* Extreme underflow */
 | |
|         goto underflow_or_zero;
 | |
|     /* Next line is now safe from overflowing a Py_ssize_t */
 | |
|     diff = diff * PyLong_SHIFT + bit_length_digit(a->long_value.ob_digit[a_size - 1]) -
 | |
|         bit_length_digit(b->long_value.ob_digit[b_size - 1]);
 | |
|     /* Now diff = a_bits - b_bits. */
 | |
|     if (diff > DBL_MAX_EXP)
 | |
|         goto overflow;
 | |
|     else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
 | |
|         goto underflow_or_zero;
 | |
| 
 | |
|     /* Choose value for shift; see comments for step 1 above. */
 | |
|     shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
 | |
| 
 | |
|     inexact = 0;
 | |
| 
 | |
|     /* x = abs(a * 2**-shift) */
 | |
|     if (shift <= 0) {
 | |
|         Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
 | |
|         digit rem;
 | |
|         /* x = a << -shift */
 | |
|         if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
 | |
|             /* In practice, it's probably impossible to end up
 | |
|                here.  Both a and b would have to be enormous,
 | |
|                using close to SIZE_T_MAX bytes of memory each. */
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "intermediate overflow during division");
 | |
|             goto error;
 | |
|         }
 | |
|         x = _PyLong_New(a_size + shift_digits + 1);
 | |
|         if (x == NULL)
 | |
|             goto error;
 | |
|         for (i = 0; i < shift_digits; i++)
 | |
|             x->long_value.ob_digit[i] = 0;
 | |
|         rem = v_lshift(x->long_value.ob_digit + shift_digits, a->long_value.ob_digit,
 | |
|                        a_size, -shift % PyLong_SHIFT);
 | |
|         x->long_value.ob_digit[a_size + shift_digits] = rem;
 | |
|     }
 | |
|     else {
 | |
|         Py_ssize_t shift_digits = shift / PyLong_SHIFT;
 | |
|         digit rem;
 | |
|         /* x = a >> shift */
 | |
|         assert(a_size >= shift_digits);
 | |
|         x = _PyLong_New(a_size - shift_digits);
 | |
|         if (x == NULL)
 | |
|             goto error;
 | |
|         rem = v_rshift(x->long_value.ob_digit, a->long_value.ob_digit + shift_digits,
 | |
|                        a_size - shift_digits, shift % PyLong_SHIFT);
 | |
|         /* set inexact if any of the bits shifted out is nonzero */
 | |
|         if (rem)
 | |
|             inexact = 1;
 | |
|         while (!inexact && shift_digits > 0)
 | |
|             if (a->long_value.ob_digit[--shift_digits])
 | |
|                 inexact = 1;
 | |
|     }
 | |
|     long_normalize(x);
 | |
|     x_size = _PyLong_SignedDigitCount(x);
 | |
| 
 | |
|     /* x //= b. If the remainder is nonzero, set inexact.  We own the only
 | |
|        reference to x, so it's safe to modify it in-place. */
 | |
|     if (b_size == 1) {
 | |
|         digit rem = inplace_divrem1(x->long_value.ob_digit, x->long_value.ob_digit, x_size,
 | |
|                               b->long_value.ob_digit[0]);
 | |
|         long_normalize(x);
 | |
|         if (rem)
 | |
|             inexact = 1;
 | |
|     }
 | |
|     else {
 | |
|         PyLongObject *div, *rem;
 | |
|         div = x_divrem(x, b, &rem);
 | |
|         Py_SETREF(x, div);
 | |
|         if (x == NULL)
 | |
|             goto error;
 | |
|         if (!_PyLong_IsZero(rem))
 | |
|             inexact = 1;
 | |
|         Py_DECREF(rem);
 | |
|     }
 | |
|     x_size = _PyLong_DigitCount(x);
 | |
|     assert(x_size > 0); /* result of division is never zero */
 | |
|     x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->long_value.ob_digit[x_size-1]);
 | |
| 
 | |
|     /* The number of extra bits that have to be rounded away. */
 | |
|     extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
 | |
|     assert(extra_bits == 2 || extra_bits == 3);
 | |
| 
 | |
|     /* Round by directly modifying the low digit of x. */
 | |
|     mask = (digit)1 << (extra_bits - 1);
 | |
|     low = x->long_value.ob_digit[0] | inexact;
 | |
|     if ((low & mask) && (low & (3U*mask-1U)))
 | |
|         low += mask;
 | |
|     x->long_value.ob_digit[0] = low & ~(2U*mask-1U);
 | |
| 
 | |
|     /* Convert x to a double dx; the conversion is exact. */
 | |
|     dx = x->long_value.ob_digit[--x_size];
 | |
|     while (x_size > 0)
 | |
|         dx = dx * PyLong_BASE + x->long_value.ob_digit[--x_size];
 | |
|     Py_DECREF(x);
 | |
| 
 | |
|     /* Check whether ldexp result will overflow a double. */
 | |
|     if (shift + x_bits >= DBL_MAX_EXP &&
 | |
|         (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
 | |
|         goto overflow;
 | |
|     result = ldexp(dx, (int)shift);
 | |
| 
 | |
|   success:
 | |
|     return PyFloat_FromDouble(negate ? -result : result);
 | |
| 
 | |
|   underflow_or_zero:
 | |
|     return PyFloat_FromDouble(negate ? -0.0 : 0.0);
 | |
| 
 | |
|   overflow:
 | |
|     PyErr_SetString(PyExc_OverflowError,
 | |
|                     "integer division result too large for a float");
 | |
|   error:
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_mod(PyObject *a, PyObject *b)
 | |
| {
 | |
|     PyLongObject *mod;
 | |
| 
 | |
|     CHECK_BINOP(a, b);
 | |
| 
 | |
|     if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
 | |
|         mod = NULL;
 | |
|     return (PyObject *)mod;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_divmod(PyObject *a, PyObject *b)
 | |
| {
 | |
|     PyLongObject *div, *mod;
 | |
|     PyObject *z;
 | |
| 
 | |
|     CHECK_BINOP(a, b);
 | |
| 
 | |
|     if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
 | |
|         return NULL;
 | |
|     }
 | |
|     z = PyTuple_New(2);
 | |
|     if (z != NULL) {
 | |
|         PyTuple_SET_ITEM(z, 0, (PyObject *) div);
 | |
|         PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
 | |
|     }
 | |
|     else {
 | |
|         Py_DECREF(div);
 | |
|         Py_DECREF(mod);
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Compute an inverse to a modulo n, or raise ValueError if a is not
 | |
|    invertible modulo n. Assumes n is positive. The inverse returned
 | |
|    is whatever falls out of the extended Euclidean algorithm: it may
 | |
|    be either positive or negative, but will be smaller than n in
 | |
|    absolute value.
 | |
| 
 | |
|    Pure Python equivalent for long_invmod:
 | |
| 
 | |
|         def invmod(a, n):
 | |
|             b, c = 1, 0
 | |
|             while n:
 | |
|                 q, r = divmod(a, n)
 | |
|                 a, b, c, n = n, c, b - q*c, r
 | |
| 
 | |
|             # at this point a is the gcd of the original inputs
 | |
|             if a == 1:
 | |
|                 return b
 | |
|             raise ValueError("Not invertible")
 | |
| */
 | |
| 
 | |
| static PyLongObject *
 | |
| long_invmod(PyLongObject *a, PyLongObject *n)
 | |
| {
 | |
|     PyLongObject *b, *c;
 | |
| 
 | |
|     /* Should only ever be called for positive n */
 | |
|     assert(_PyLong_IsPositive(n));
 | |
| 
 | |
|     b = (PyLongObject *)PyLong_FromLong(1L);
 | |
|     if (b == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     c = (PyLongObject *)PyLong_FromLong(0L);
 | |
|     if (c == NULL) {
 | |
|         Py_DECREF(b);
 | |
|         return NULL;
 | |
|     }
 | |
|     Py_INCREF(a);
 | |
|     Py_INCREF(n);
 | |
| 
 | |
|     /* references now owned: a, b, c, n */
 | |
|     while (!_PyLong_IsZero(n)) {
 | |
|         PyLongObject *q, *r, *s, *t;
 | |
| 
 | |
|         if (l_divmod(a, n, &q, &r) == -1) {
 | |
|             goto Error;
 | |
|         }
 | |
|         Py_SETREF(a, n);
 | |
|         n = r;
 | |
|         t = (PyLongObject *)long_mul(q, c);
 | |
|         Py_DECREF(q);
 | |
|         if (t == NULL) {
 | |
|             goto Error;
 | |
|         }
 | |
|         s = (PyLongObject *)long_sub(b, t);
 | |
|         Py_DECREF(t);
 | |
|         if (s == NULL) {
 | |
|             goto Error;
 | |
|         }
 | |
|         Py_SETREF(b, c);
 | |
|         c = s;
 | |
|     }
 | |
|     /* references now owned: a, b, c, n */
 | |
| 
 | |
|     Py_DECREF(c);
 | |
|     Py_DECREF(n);
 | |
|     if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) {
 | |
|         /* a != 1; we don't have an inverse. */
 | |
|         Py_DECREF(a);
 | |
|         Py_DECREF(b);
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "base is not invertible for the given modulus");
 | |
|         return NULL;
 | |
|     }
 | |
|     else {
 | |
|         /* a == 1; b gives an inverse modulo n */
 | |
|         Py_DECREF(a);
 | |
|         return b;
 | |
|     }
 | |
| 
 | |
|   Error:
 | |
|     Py_DECREF(a);
 | |
|     Py_DECREF(b);
 | |
|     Py_DECREF(c);
 | |
|     Py_DECREF(n);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* pow(v, w, x) */
 | |
| static PyObject *
 | |
| long_pow(PyObject *v, PyObject *w, PyObject *x)
 | |
| {
 | |
|     PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
 | |
|     int negativeOutput = 0;  /* if x<0 return negative output */
 | |
| 
 | |
|     PyLongObject *z = NULL;  /* accumulated result */
 | |
|     Py_ssize_t i, j;             /* counters */
 | |
|     PyLongObject *temp = NULL;
 | |
|     PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */
 | |
| 
 | |
|     /* k-ary values.  If the exponent is large enough, table is
 | |
|      * precomputed so that table[i] == a**(2*i+1) % c for i in
 | |
|      * range(EXP_TABLE_LEN).
 | |
|      * Note: this is uninitialized stack trash: don't pay to set it to known
 | |
|      * values unless it's needed. Instead ensure that num_table_entries is
 | |
|      * set to the number of entries actually filled whenever a branch to the
 | |
|      * Error or Done labels is possible.
 | |
|      */
 | |
|     PyLongObject *table[EXP_TABLE_LEN];
 | |
|     Py_ssize_t num_table_entries = 0;
 | |
| 
 | |
|     /* a, b, c = v, w, x */
 | |
|     CHECK_BINOP(v, w);
 | |
|     a = (PyLongObject*)Py_NewRef(v);
 | |
|     b = (PyLongObject*)Py_NewRef(w);
 | |
|     if (PyLong_Check(x)) {
 | |
|         c = (PyLongObject *)Py_NewRef(x);
 | |
|     }
 | |
|     else if (x == Py_None)
 | |
|         c = NULL;
 | |
|     else {
 | |
|         Py_DECREF(a);
 | |
|         Py_DECREF(b);
 | |
|         Py_RETURN_NOTIMPLEMENTED;
 | |
|     }
 | |
| 
 | |
|     if (_PyLong_IsNegative(b) && c == NULL) {
 | |
|         /* if exponent is negative and there's no modulus:
 | |
|                return a float.  This works because we know
 | |
|                that this calls float_pow() which converts its
 | |
|                arguments to double. */
 | |
|         Py_DECREF(a);
 | |
|         Py_DECREF(b);
 | |
|         return PyFloat_Type.tp_as_number->nb_power(v, w, x);
 | |
|     }
 | |
| 
 | |
|     if (c) {
 | |
|         /* if modulus == 0:
 | |
|                raise ValueError() */
 | |
|         if (_PyLong_IsZero(c)) {
 | |
|             PyErr_SetString(PyExc_ValueError,
 | |
|                             "pow() 3rd argument cannot be 0");
 | |
|             goto Error;
 | |
|         }
 | |
| 
 | |
|         /* if modulus < 0:
 | |
|                negativeOutput = True
 | |
|                modulus = -modulus */
 | |
|         if (_PyLong_IsNegative(c)) {
 | |
|             negativeOutput = 1;
 | |
|             temp = (PyLongObject *)_PyLong_Copy(c);
 | |
|             if (temp == NULL)
 | |
|                 goto Error;
 | |
|             Py_SETREF(c, temp);
 | |
|             temp = NULL;
 | |
|             _PyLong_Negate(&c);
 | |
|             if (c == NULL)
 | |
|                 goto Error;
 | |
|         }
 | |
| 
 | |
|         /* if modulus == 1:
 | |
|                return 0 */
 | |
|         if (_PyLong_IsNonNegativeCompact(c) && (c->long_value.ob_digit[0] == 1)) {
 | |
|             z = (PyLongObject *)PyLong_FromLong(0L);
 | |
|             goto Done;
 | |
|         }
 | |
| 
 | |
|         /* if exponent is negative, negate the exponent and
 | |
|            replace the base with a modular inverse */
 | |
|         if (_PyLong_IsNegative(b)) {
 | |
|             temp = (PyLongObject *)_PyLong_Copy(b);
 | |
|             if (temp == NULL)
 | |
|                 goto Error;
 | |
|             Py_SETREF(b, temp);
 | |
|             temp = NULL;
 | |
|             _PyLong_Negate(&b);
 | |
|             if (b == NULL)
 | |
|                 goto Error;
 | |
| 
 | |
|             temp = long_invmod(a, c);
 | |
|             if (temp == NULL)
 | |
|                 goto Error;
 | |
|             Py_SETREF(a, temp);
 | |
|             temp = NULL;
 | |
|         }
 | |
| 
 | |
|         /* Reduce base by modulus in some cases:
 | |
|            1. If base < 0.  Forcing the base non-negative makes things easier.
 | |
|            2. If base is obviously larger than the modulus.  The "small
 | |
|               exponent" case later can multiply directly by base repeatedly,
 | |
|               while the "large exponent" case multiplies directly by base 31
 | |
|               times.  It can be unboundedly faster to multiply by
 | |
|               base % modulus instead.
 | |
|            We could _always_ do this reduction, but l_mod() isn't cheap,
 | |
|            so we only do it when it buys something. */
 | |
|         if (_PyLong_IsNegative(a) || _PyLong_DigitCount(a) > _PyLong_DigitCount(c)) {
 | |
|             if (l_mod(a, c, &temp) < 0)
 | |
|                 goto Error;
 | |
|             Py_SETREF(a, temp);
 | |
|             temp = NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* At this point a, b, and c are guaranteed non-negative UNLESS
 | |
|        c is NULL, in which case a may be negative. */
 | |
| 
 | |
|     z = (PyLongObject *)PyLong_FromLong(1L);
 | |
|     if (z == NULL)
 | |
|         goto Error;
 | |
| 
 | |
|     /* Perform a modular reduction, X = X % c, but leave X alone if c
 | |
|      * is NULL.
 | |
|      */
 | |
| #define REDUCE(X)                                       \
 | |
|     do {                                                \
 | |
|         if (c != NULL) {                                \
 | |
|             if (l_mod(X, c, &temp) < 0)                 \
 | |
|                 goto Error;                             \
 | |
|             Py_XDECREF(X);                              \
 | |
|             X = temp;                                   \
 | |
|             temp = NULL;                                \
 | |
|         }                                               \
 | |
|     } while(0)
 | |
| 
 | |
|     /* Multiply two values, then reduce the result:
 | |
|        result = X*Y % c.  If c is NULL, skip the mod. */
 | |
| #define MULT(X, Y, result)                      \
 | |
|     do {                                        \
 | |
|         temp = (PyLongObject *)long_mul(X, Y);  \
 | |
|         if (temp == NULL)                       \
 | |
|             goto Error;                         \
 | |
|         Py_XDECREF(result);                     \
 | |
|         result = temp;                          \
 | |
|         temp = NULL;                            \
 | |
|         REDUCE(result);                         \
 | |
|     } while(0)
 | |
| 
 | |
|     i = _PyLong_SignedDigitCount(b);
 | |
|     digit bi = i ? b->long_value.ob_digit[i-1] : 0;
 | |
|     digit bit;
 | |
|     if (i <= 1 && bi <= 3) {
 | |
|         /* aim for minimal overhead */
 | |
|         if (bi >= 2) {
 | |
|             MULT(a, a, z);
 | |
|             if (bi == 3) {
 | |
|                 MULT(z, a, z);
 | |
|             }
 | |
|         }
 | |
|         else if (bi == 1) {
 | |
|             /* Multiplying by 1 serves two purposes: if `a` is of an int
 | |
|              * subclass, makes the result an int (e.g., pow(False, 1) returns
 | |
|              * 0 instead of False), and potentially reduces `a` by the modulus.
 | |
|              */
 | |
|             MULT(a, z, z);
 | |
|         }
 | |
|         /* else bi is 0, and z==1 is correct */
 | |
|     }
 | |
|     else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) {
 | |
|         /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
 | |
|         /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */
 | |
| 
 | |
|         /* Find the first significant exponent bit. Search right to left
 | |
|          * because we're primarily trying to cut overhead for small powers.
 | |
|          */
 | |
|         assert(bi);  /* else there is no significant bit */
 | |
|         Py_SETREF(z, (PyLongObject*)Py_NewRef(a));
 | |
|         for (bit = 2; ; bit <<= 1) {
 | |
|             if (bit > bi) { /* found the first bit */
 | |
|                 assert((bi & bit) == 0);
 | |
|                 bit >>= 1;
 | |
|                 assert(bi & bit);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         for (--i, bit >>= 1;;) {
 | |
|             for (; bit != 0; bit >>= 1) {
 | |
|                 MULT(z, z, z);
 | |
|                 if (bi & bit) {
 | |
|                     MULT(z, a, z);
 | |
|                 }
 | |
|             }
 | |
|             if (--i < 0) {
 | |
|                 break;
 | |
|             }
 | |
|             bi = b->long_value.ob_digit[i];
 | |
|             bit = (digit)1 << (PyLong_SHIFT-1);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* Left-to-right k-ary sliding window exponentiation
 | |
|          * (Handbook of Applied Cryptography (HAC) Algorithm 14.85)
 | |
|          */
 | |
|         table[0] = (PyLongObject*)Py_NewRef(a);
 | |
|         num_table_entries = 1;
 | |
|         MULT(a, a, a2);
 | |
|         /* table[i] == a**(2*i + 1) % c */
 | |
|         for (i = 1; i < EXP_TABLE_LEN; ++i) {
 | |
|             table[i] = NULL; /* must set to known value for MULT */
 | |
|             MULT(table[i-1], a2, table[i]);
 | |
|             ++num_table_entries; /* incremented iff MULT succeeded */
 | |
|         }
 | |
|         Py_CLEAR(a2);
 | |
| 
 | |
|         /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits
 | |
|          * into `pending`, starting with the next 1 bit.  The current bit
 | |
|          * length of `pending` is `blen`.
 | |
|          */
 | |
|         int pending = 0, blen = 0;
 | |
| #define ABSORB_PENDING  do { \
 | |
|             int ntz = 0; /* number of trailing zeroes in `pending` */ \
 | |
|             assert(pending && blen); \
 | |
|             assert(pending >> (blen - 1)); \
 | |
|             assert(pending >> blen == 0); \
 | |
|             while ((pending & 1) == 0) { \
 | |
|                 ++ntz; \
 | |
|                 pending >>= 1; \
 | |
|             } \
 | |
|             assert(ntz < blen); \
 | |
|             blen -= ntz; \
 | |
|             do { \
 | |
|                 MULT(z, z, z); \
 | |
|             } while (--blen); \
 | |
|             MULT(z, table[pending >> 1], z); \
 | |
|             while (ntz-- > 0) \
 | |
|                 MULT(z, z, z); \
 | |
|             assert(blen == 0); \
 | |
|             pending = 0; \
 | |
|         } while(0)
 | |
| 
 | |
|         for (i = _PyLong_SignedDigitCount(b) - 1; i >= 0; --i) {
 | |
|             const digit bi = b->long_value.ob_digit[i];
 | |
|             for (j = PyLong_SHIFT - 1; j >= 0; --j) {
 | |
|                 const int bit = (bi >> j) & 1;
 | |
|                 pending = (pending << 1) | bit;
 | |
|                 if (pending) {
 | |
|                     ++blen;
 | |
|                     if (blen == EXP_WINDOW_SIZE)
 | |
|                         ABSORB_PENDING;
 | |
|                 }
 | |
|                 else /* absorb strings of 0 bits */
 | |
|                     MULT(z, z, z);
 | |
|             }
 | |
|         }
 | |
|         if (pending)
 | |
|             ABSORB_PENDING;
 | |
|     }
 | |
| 
 | |
|     if (negativeOutput && !_PyLong_IsZero(z)) {
 | |
|         temp = (PyLongObject *)long_sub(z, c);
 | |
|         if (temp == NULL)
 | |
|             goto Error;
 | |
|         Py_SETREF(z, temp);
 | |
|         temp = NULL;
 | |
|     }
 | |
|     goto Done;
 | |
| 
 | |
|   Error:
 | |
|     Py_CLEAR(z);
 | |
|     /* fall through */
 | |
|   Done:
 | |
|     for (i = 0; i < num_table_entries; ++i)
 | |
|         Py_DECREF(table[i]);
 | |
|     Py_DECREF(a);
 | |
|     Py_DECREF(b);
 | |
|     Py_XDECREF(c);
 | |
|     Py_XDECREF(a2);
 | |
|     Py_XDECREF(temp);
 | |
|     return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_invert(PyLongObject *v)
 | |
| {
 | |
|     /* Implement ~x as -(x+1) */
 | |
|     PyLongObject *x;
 | |
|     if (_PyLong_IsCompact(v))
 | |
|         return _PyLong_FromSTwoDigits(~medium_value(v));
 | |
|     x = (PyLongObject *) long_add(v, (PyLongObject *)_PyLong_GetOne());
 | |
|     if (x == NULL)
 | |
|         return NULL;
 | |
|     _PyLong_Negate(&x);
 | |
|     /* No need for maybe_small_long here, since any small longs
 | |
|        will have been caught in the _PyLong_IsCompact() fast path. */
 | |
|     return (PyObject *)x;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_neg(PyLongObject *v)
 | |
| {
 | |
|     PyLongObject *z;
 | |
|     if (_PyLong_IsCompact(v))
 | |
|         return _PyLong_FromSTwoDigits(-medium_value(v));
 | |
|     z = (PyLongObject *)_PyLong_Copy(v);
 | |
|     if (z != NULL)
 | |
|         _PyLong_FlipSign(z);
 | |
|     return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_abs(PyLongObject *v)
 | |
| {
 | |
|     if (_PyLong_IsNegative(v))
 | |
|         return long_neg(v);
 | |
|     else
 | |
|         return long_long((PyObject *)v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| long_bool(PyLongObject *v)
 | |
| {
 | |
|     return !_PyLong_IsZero(v);
 | |
| }
 | |
| 
 | |
| /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
 | |
| static int
 | |
| divmod_shift(PyObject *shiftby, Py_ssize_t *wordshift, digit *remshift)
 | |
| {
 | |
|     assert(PyLong_Check(shiftby));
 | |
|     assert(!_PyLong_IsNegative((PyLongObject *)shiftby));
 | |
|     Py_ssize_t lshiftby = PyLong_AsSsize_t((PyObject *)shiftby);
 | |
|     if (lshiftby >= 0) {
 | |
|         *wordshift = lshiftby / PyLong_SHIFT;
 | |
|         *remshift = lshiftby % PyLong_SHIFT;
 | |
|         return 0;
 | |
|     }
 | |
|     /* PyLong_Check(shiftby) is true and shiftby is not negative, so it must
 | |
|        be that PyLong_AsSsize_t raised an OverflowError. */
 | |
|     assert(PyErr_ExceptionMatches(PyExc_OverflowError));
 | |
|     PyErr_Clear();
 | |
|     PyLongObject *wordshift_obj = divrem1((PyLongObject *)shiftby, PyLong_SHIFT, remshift);
 | |
|     if (wordshift_obj == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
|     *wordshift = PyLong_AsSsize_t((PyObject *)wordshift_obj);
 | |
|     Py_DECREF(wordshift_obj);
 | |
|     if (*wordshift >= 0 && *wordshift < PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(digit)) {
 | |
|         return 0;
 | |
|     }
 | |
|     PyErr_Clear();
 | |
|     /* Clip the value.  With such large wordshift the right shift
 | |
|        returns 0 and the left shift raises an error in _PyLong_New(). */
 | |
|     *wordshift = PY_SSIZE_T_MAX / sizeof(digit);
 | |
|     *remshift = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Inner function for both long_rshift and _PyLong_Rshift, shifting an
 | |
|    integer right by PyLong_SHIFT*wordshift + remshift bits.
 | |
|    wordshift should be nonnegative. */
 | |
| 
 | |
| static PyObject *
 | |
| long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
 | |
| {
 | |
|     PyLongObject *z = NULL;
 | |
|     Py_ssize_t newsize, hishift, size_a;
 | |
|     twodigits accum;
 | |
|     int a_negative;
 | |
| 
 | |
|     /* Total number of bits shifted must be nonnegative. */
 | |
|     assert(wordshift >= 0);
 | |
|     assert(remshift < PyLong_SHIFT);
 | |
| 
 | |
|     /* Fast path for small a. */
 | |
|     if (_PyLong_IsCompact(a)) {
 | |
|         stwodigits m, x;
 | |
|         digit shift;
 | |
|         m = medium_value(a);
 | |
|         shift = wordshift == 0 ? remshift : PyLong_SHIFT;
 | |
|         x = m < 0 ? ~(~m >> shift) : m >> shift;
 | |
|         return _PyLong_FromSTwoDigits(x);
 | |
|     }
 | |
| 
 | |
|     a_negative = _PyLong_IsNegative(a);
 | |
|     size_a = _PyLong_DigitCount(a);
 | |
| 
 | |
|     if (a_negative) {
 | |
|         /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT,
 | |
|            while keeping PyLong_SHIFT*wordshift + remshift the same. This
 | |
|            ensures that 'newsize' is computed correctly below. */
 | |
|         if (remshift == 0) {
 | |
|             if (wordshift == 0) {
 | |
|                 /* Can only happen if the original shift was 0. */
 | |
|                 return long_long((PyObject *)a);
 | |
|             }
 | |
|             remshift = PyLong_SHIFT;
 | |
|             --wordshift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(wordshift >= 0);
 | |
|     newsize = size_a - wordshift;
 | |
|     if (newsize <= 0) {
 | |
|         /* Shifting all the bits of 'a' out gives either -1 or 0. */
 | |
|         return PyLong_FromLong(-a_negative);
 | |
|     }
 | |
|     z = _PyLong_New(newsize);
 | |
|     if (z == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     hishift = PyLong_SHIFT - remshift;
 | |
| 
 | |
|     accum = a->long_value.ob_digit[wordshift];
 | |
|     if (a_negative) {
 | |
|         /*
 | |
|             For a positive integer a and nonnegative shift, we have:
 | |
| 
 | |
|                 (-a) >> shift == -((a + 2**shift - 1) >> shift).
 | |
| 
 | |
|             In the addition `a + (2**shift - 1)`, the low `wordshift` digits of
 | |
|             `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out
 | |
|             from the bottom `wordshift` digits when at least one of the least
 | |
|             significant `wordshift` digits of `a` is nonzero. Digit `wordshift`
 | |
|             of `2**shift - 1` has value `PyLong_MASK >> hishift`.
 | |
|         */
 | |
|         _PyLong_SetSignAndDigitCount(z, -1, newsize);
 | |
| 
 | |
|         digit sticky = 0;
 | |
|         for (Py_ssize_t j = 0; j < wordshift; j++) {
 | |
|             sticky |= a->long_value.ob_digit[j];
 | |
|         }
 | |
|         accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0);
 | |
|     }
 | |
| 
 | |
|     accum >>= remshift;
 | |
|     for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) {
 | |
|         accum += (twodigits)a->long_value.ob_digit[j] << hishift;
 | |
|         z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
 | |
|         accum >>= PyLong_SHIFT;
 | |
|     }
 | |
|     assert(accum <= PyLong_MASK);
 | |
|     z->long_value.ob_digit[newsize - 1] = (digit)accum;
 | |
| 
 | |
|     z = maybe_small_long(long_normalize(z));
 | |
|     return (PyObject *)z;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_rshift(PyObject *a, PyObject *b)
 | |
| {
 | |
|     Py_ssize_t wordshift;
 | |
|     digit remshift;
 | |
| 
 | |
|     CHECK_BINOP(a, b);
 | |
| 
 | |
|     if (_PyLong_IsNegative((PyLongObject *)b)) {
 | |
|         PyErr_SetString(PyExc_ValueError, "negative shift count");
 | |
|         return NULL;
 | |
|     }
 | |
|     if (_PyLong_IsZero((PyLongObject *)a)) {
 | |
|         return PyLong_FromLong(0);
 | |
|     }
 | |
|     if (divmod_shift(b, &wordshift, &remshift) < 0)
 | |
|         return NULL;
 | |
|     return long_rshift1((PyLongObject *)a, wordshift, remshift);
 | |
| }
 | |
| 
 | |
| /* Return a >> shiftby. */
 | |
| PyObject *
 | |
| _PyLong_Rshift(PyObject *a, size_t shiftby)
 | |
| {
 | |
|     Py_ssize_t wordshift;
 | |
|     digit remshift;
 | |
| 
 | |
|     assert(PyLong_Check(a));
 | |
|     if (_PyLong_IsZero((PyLongObject *)a)) {
 | |
|         return PyLong_FromLong(0);
 | |
|     }
 | |
|     wordshift = shiftby / PyLong_SHIFT;
 | |
|     remshift = shiftby % PyLong_SHIFT;
 | |
|     return long_rshift1((PyLongObject *)a, wordshift, remshift);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
 | |
| {
 | |
|     PyLongObject *z = NULL;
 | |
|     Py_ssize_t oldsize, newsize, i, j;
 | |
|     twodigits accum;
 | |
| 
 | |
|     if (wordshift == 0 && _PyLong_IsCompact(a)) {
 | |
|         stwodigits m = medium_value(a);
 | |
|         // bypass undefined shift operator behavior
 | |
|         stwodigits x = m < 0 ? -(-m << remshift) : m << remshift;
 | |
|         return _PyLong_FromSTwoDigits(x);
 | |
|     }
 | |
| 
 | |
|     oldsize = _PyLong_DigitCount(a);
 | |
|     newsize = oldsize + wordshift;
 | |
|     if (remshift)
 | |
|         ++newsize;
 | |
|     z = _PyLong_New(newsize);
 | |
|     if (z == NULL)
 | |
|         return NULL;
 | |
|     if (_PyLong_IsNegative(a)) {
 | |
|         assert(Py_REFCNT(z) == 1);
 | |
|         _PyLong_FlipSign(z);
 | |
|     }
 | |
|     for (i = 0; i < wordshift; i++)
 | |
|         z->long_value.ob_digit[i] = 0;
 | |
|     accum = 0;
 | |
|     for (j = 0; j < oldsize; i++, j++) {
 | |
|         accum |= (twodigits)a->long_value.ob_digit[j] << remshift;
 | |
|         z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
 | |
|         accum >>= PyLong_SHIFT;
 | |
|     }
 | |
|     if (remshift)
 | |
|         z->long_value.ob_digit[newsize-1] = (digit)accum;
 | |
|     else
 | |
|         assert(!accum);
 | |
|     z = long_normalize(z);
 | |
|     return (PyObject *) maybe_small_long(z);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_lshift(PyObject *a, PyObject *b)
 | |
| {
 | |
|     Py_ssize_t wordshift;
 | |
|     digit remshift;
 | |
| 
 | |
|     CHECK_BINOP(a, b);
 | |
| 
 | |
|     if (_PyLong_IsNegative((PyLongObject *)b)) {
 | |
|         PyErr_SetString(PyExc_ValueError, "negative shift count");
 | |
|         return NULL;
 | |
|     }
 | |
|     if (_PyLong_IsZero((PyLongObject *)a)) {
 | |
|         return PyLong_FromLong(0);
 | |
|     }
 | |
|     if (divmod_shift(b, &wordshift, &remshift) < 0)
 | |
|         return NULL;
 | |
|     return long_lshift1((PyLongObject *)a, wordshift, remshift);
 | |
| }
 | |
| 
 | |
| /* Return a << shiftby. */
 | |
| PyObject *
 | |
| _PyLong_Lshift(PyObject *a, size_t shiftby)
 | |
| {
 | |
|     Py_ssize_t wordshift;
 | |
|     digit remshift;
 | |
| 
 | |
|     assert(PyLong_Check(a));
 | |
|     if (_PyLong_IsZero((PyLongObject *)a)) {
 | |
|         return PyLong_FromLong(0);
 | |
|     }
 | |
|     wordshift = shiftby / PyLong_SHIFT;
 | |
|     remshift = shiftby % PyLong_SHIFT;
 | |
|     return long_lshift1((PyLongObject *)a, wordshift, remshift);
 | |
| }
 | |
| 
 | |
| /* Compute two's complement of digit vector a[0:m], writing result to
 | |
|    z[0:m].  The digit vector a need not be normalized, but should not
 | |
|    be entirely zero.  a and z may point to the same digit vector. */
 | |
| 
 | |
| static void
 | |
| v_complement(digit *z, digit *a, Py_ssize_t m)
 | |
| {
 | |
|     Py_ssize_t i;
 | |
|     digit carry = 1;
 | |
|     for (i = 0; i < m; ++i) {
 | |
|         carry += a[i] ^ PyLong_MASK;
 | |
|         z[i] = carry & PyLong_MASK;
 | |
|         carry >>= PyLong_SHIFT;
 | |
|     }
 | |
|     assert(carry == 0);
 | |
| }
 | |
| 
 | |
| /* Bitwise and/xor/or operations */
 | |
| 
 | |
| static PyObject *
 | |
| long_bitwise(PyLongObject *a,
 | |
|              char op,  /* '&', '|', '^' */
 | |
|              PyLongObject *b)
 | |
| {
 | |
|     int nega, negb, negz;
 | |
|     Py_ssize_t size_a, size_b, size_z, i;
 | |
|     PyLongObject *z;
 | |
| 
 | |
|     /* Bitwise operations for negative numbers operate as though
 | |
|        on a two's complement representation.  So convert arguments
 | |
|        from sign-magnitude to two's complement, and convert the
 | |
|        result back to sign-magnitude at the end. */
 | |
| 
 | |
|     /* If a is negative, replace it by its two's complement. */
 | |
|     size_a = _PyLong_DigitCount(a);
 | |
|     nega = _PyLong_IsNegative(a);
 | |
|     if (nega) {
 | |
|         z = _PyLong_New(size_a);
 | |
|         if (z == NULL)
 | |
|             return NULL;
 | |
|         v_complement(z->long_value.ob_digit, a->long_value.ob_digit, size_a);
 | |
|         a = z;
 | |
|     }
 | |
|     else
 | |
|         /* Keep reference count consistent. */
 | |
|         Py_INCREF(a);
 | |
| 
 | |
|     /* Same for b. */
 | |
|     size_b = _PyLong_DigitCount(b);
 | |
|     negb = _PyLong_IsNegative(b);
 | |
|     if (negb) {
 | |
|         z = _PyLong_New(size_b);
 | |
|         if (z == NULL) {
 | |
|             Py_DECREF(a);
 | |
|             return NULL;
 | |
|         }
 | |
|         v_complement(z->long_value.ob_digit, b->long_value.ob_digit, size_b);
 | |
|         b = z;
 | |
|     }
 | |
|     else
 | |
|         Py_INCREF(b);
 | |
| 
 | |
|     /* Swap a and b if necessary to ensure size_a >= size_b. */
 | |
|     if (size_a < size_b) {
 | |
|         z = a; a = b; b = z;
 | |
|         size_z = size_a; size_a = size_b; size_b = size_z;
 | |
|         negz = nega; nega = negb; negb = negz;
 | |
|     }
 | |
| 
 | |
|     /* JRH: The original logic here was to allocate the result value (z)
 | |
|        as the longer of the two operands.  However, there are some cases
 | |
|        where the result is guaranteed to be shorter than that: AND of two
 | |
|        positives, OR of two negatives: use the shorter number.  AND with
 | |
|        mixed signs: use the positive number.  OR with mixed signs: use the
 | |
|        negative number.
 | |
|     */
 | |
|     switch (op) {
 | |
|     case '^':
 | |
|         negz = nega ^ negb;
 | |
|         size_z = size_a;
 | |
|         break;
 | |
|     case '&':
 | |
|         negz = nega & negb;
 | |
|         size_z = negb ? size_a : size_b;
 | |
|         break;
 | |
|     case '|':
 | |
|         negz = nega | negb;
 | |
|         size_z = negb ? size_b : size_a;
 | |
|         break;
 | |
|     default:
 | |
|         Py_UNREACHABLE();
 | |
|     }
 | |
| 
 | |
|     /* We allow an extra digit if z is negative, to make sure that
 | |
|        the final two's complement of z doesn't overflow. */
 | |
|     z = _PyLong_New(size_z + negz);
 | |
|     if (z == NULL) {
 | |
|         Py_DECREF(a);
 | |
|         Py_DECREF(b);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Compute digits for overlap of a and b. */
 | |
|     switch(op) {
 | |
|     case '&':
 | |
|         for (i = 0; i < size_b; ++i)
 | |
|             z->long_value.ob_digit[i] = a->long_value.ob_digit[i] & b->long_value.ob_digit[i];
 | |
|         break;
 | |
|     case '|':
 | |
|         for (i = 0; i < size_b; ++i)
 | |
|             z->long_value.ob_digit[i] = a->long_value.ob_digit[i] | b->long_value.ob_digit[i];
 | |
|         break;
 | |
|     case '^':
 | |
|         for (i = 0; i < size_b; ++i)
 | |
|             z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ b->long_value.ob_digit[i];
 | |
|         break;
 | |
|     default:
 | |
|         Py_UNREACHABLE();
 | |
|     }
 | |
| 
 | |
|     /* Copy any remaining digits of a, inverting if necessary. */
 | |
|     if (op == '^' && negb)
 | |
|         for (; i < size_z; ++i)
 | |
|             z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ PyLong_MASK;
 | |
|     else if (i < size_z)
 | |
|         memcpy(&z->long_value.ob_digit[i], &a->long_value.ob_digit[i],
 | |
|                (size_z-i)*sizeof(digit));
 | |
| 
 | |
|     /* Complement result if negative. */
 | |
|     if (negz) {
 | |
|         _PyLong_FlipSign(z);
 | |
|         z->long_value.ob_digit[size_z] = PyLong_MASK;
 | |
|         v_complement(z->long_value.ob_digit, z->long_value.ob_digit, size_z+1);
 | |
|     }
 | |
| 
 | |
|     Py_DECREF(a);
 | |
|     Py_DECREF(b);
 | |
|     return (PyObject *)maybe_small_long(long_normalize(z));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_and(PyObject *a, PyObject *b)
 | |
| {
 | |
|     CHECK_BINOP(a, b);
 | |
|     PyLongObject *x = (PyLongObject*)a;
 | |
|     PyLongObject *y = (PyLongObject*)b;
 | |
|     if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
 | |
|         return _PyLong_FromSTwoDigits(medium_value(x) & medium_value(y));
 | |
|     }
 | |
|     return long_bitwise(x, '&', y);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_xor(PyObject *a, PyObject *b)
 | |
| {
 | |
|     CHECK_BINOP(a, b);
 | |
|     PyLongObject *x = (PyLongObject*)a;
 | |
|     PyLongObject *y = (PyLongObject*)b;
 | |
|     if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
 | |
|         return _PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y));
 | |
|     }
 | |
|     return long_bitwise(x, '^', y);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_or(PyObject *a, PyObject *b)
 | |
| {
 | |
|     CHECK_BINOP(a, b);
 | |
|     PyLongObject *x = (PyLongObject*)a;
 | |
|     PyLongObject *y = (PyLongObject*)b;
 | |
|     if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
 | |
|         return _PyLong_FromSTwoDigits(medium_value(x) | medium_value(y));
 | |
|     }
 | |
|     return long_bitwise(x, '|', y);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_long(PyObject *v)
 | |
| {
 | |
|     if (PyLong_CheckExact(v)) {
 | |
|         return Py_NewRef(v);
 | |
|     }
 | |
|     else {
 | |
|         return _PyLong_Copy((PyLongObject *)v);
 | |
|     }
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_GCD(PyObject *aarg, PyObject *barg)
 | |
| {
 | |
|     PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
 | |
|     stwodigits x, y, q, s, t, c_carry, d_carry;
 | |
|     stwodigits A, B, C, D, T;
 | |
|     int nbits, k;
 | |
|     digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
 | |
| 
 | |
|     a = (PyLongObject *)aarg;
 | |
|     b = (PyLongObject *)barg;
 | |
|     if (_PyLong_DigitCount(a) <= 2 && _PyLong_DigitCount(b) <= 2) {
 | |
|         Py_INCREF(a);
 | |
|         Py_INCREF(b);
 | |
|         goto simple;
 | |
|     }
 | |
| 
 | |
|     /* Initial reduction: make sure that 0 <= b <= a. */
 | |
|     a = (PyLongObject *)long_abs(a);
 | |
|     if (a == NULL)
 | |
|         return NULL;
 | |
|     b = (PyLongObject *)long_abs(b);
 | |
|     if (b == NULL) {
 | |
|         Py_DECREF(a);
 | |
|         return NULL;
 | |
|     }
 | |
|     if (long_compare(a, b) < 0) {
 | |
|         r = a;
 | |
|         a = b;
 | |
|         b = r;
 | |
|     }
 | |
|     /* We now own references to a and b */
 | |
| 
 | |
|     Py_ssize_t size_a, size_b, alloc_a, alloc_b;
 | |
|     alloc_a = _PyLong_DigitCount(a);
 | |
|     alloc_b = _PyLong_DigitCount(b);
 | |
|     /* reduce until a fits into 2 digits */
 | |
|     while ((size_a = _PyLong_DigitCount(a)) > 2) {
 | |
|         nbits = bit_length_digit(a->long_value.ob_digit[size_a-1]);
 | |
|         /* extract top 2*PyLong_SHIFT bits of a into x, along with
 | |
|            corresponding bits of b into y */
 | |
|         size_b = _PyLong_DigitCount(b);
 | |
|         assert(size_b <= size_a);
 | |
|         if (size_b == 0) {
 | |
|             if (size_a < alloc_a) {
 | |
|                 r = (PyLongObject *)_PyLong_Copy(a);
 | |
|                 Py_DECREF(a);
 | |
|             }
 | |
|             else
 | |
|                 r = a;
 | |
|             Py_DECREF(b);
 | |
|             Py_XDECREF(c);
 | |
|             Py_XDECREF(d);
 | |
|             return (PyObject *)r;
 | |
|         }
 | |
|         x = (((twodigits)a->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
 | |
|              ((twodigits)a->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
 | |
|              (a->long_value.ob_digit[size_a-3] >> nbits));
 | |
| 
 | |
|         y = ((size_b >= size_a - 2 ? b->long_value.ob_digit[size_a-3] >> nbits : 0) |
 | |
|              (size_b >= size_a - 1 ? (twodigits)b->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
 | |
|              (size_b >= size_a ? (twodigits)b->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
 | |
| 
 | |
|         /* inner loop of Lehmer's algorithm; A, B, C, D never grow
 | |
|            larger than PyLong_MASK during the algorithm. */
 | |
|         A = 1; B = 0; C = 0; D = 1;
 | |
|         for (k=0;; k++) {
 | |
|             if (y-C == 0)
 | |
|                 break;
 | |
|             q = (x+(A-1))/(y-C);
 | |
|             s = B+q*D;
 | |
|             t = x-q*y;
 | |
|             if (s > t)
 | |
|                 break;
 | |
|             x = y; y = t;
 | |
|             t = A+q*C; A = D; B = C; C = s; D = t;
 | |
|         }
 | |
| 
 | |
|         if (k == 0) {
 | |
|             /* no progress; do a Euclidean step */
 | |
|             if (l_mod(a, b, &r) < 0)
 | |
|                 goto error;
 | |
|             Py_SETREF(a, b);
 | |
|             b = r;
 | |
|             alloc_a = alloc_b;
 | |
|             alloc_b = _PyLong_DigitCount(b);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|           a, b = A*b-B*a, D*a-C*b if k is odd
 | |
|           a, b = A*a-B*b, D*b-C*a if k is even
 | |
|         */
 | |
|         if (k&1) {
 | |
|             T = -A; A = -B; B = T;
 | |
|             T = -C; C = -D; D = T;
 | |
|         }
 | |
|         if (c != NULL) {
 | |
|             assert(size_a >= 0);
 | |
|             _PyLong_SetSignAndDigitCount(c, 1, size_a);
 | |
|         }
 | |
|         else if (Py_REFCNT(a) == 1) {
 | |
|             c = (PyLongObject*)Py_NewRef(a);
 | |
|         }
 | |
|         else {
 | |
|             alloc_a = size_a;
 | |
|             c = _PyLong_New(size_a);
 | |
|             if (c == NULL)
 | |
|                 goto error;
 | |
|         }
 | |
| 
 | |
|         if (d != NULL) {
 | |
|             assert(size_a >= 0);
 | |
|             _PyLong_SetSignAndDigitCount(d, 1, size_a);
 | |
|         }
 | |
|         else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
 | |
|             d = (PyLongObject*)Py_NewRef(b);
 | |
|             assert(size_a >= 0);
 | |
|             _PyLong_SetSignAndDigitCount(d, 1, size_a);
 | |
|         }
 | |
|         else {
 | |
|             alloc_b = size_a;
 | |
|             d = _PyLong_New(size_a);
 | |
|             if (d == NULL)
 | |
|                 goto error;
 | |
|         }
 | |
|         a_end = a->long_value.ob_digit + size_a;
 | |
|         b_end = b->long_value.ob_digit + size_b;
 | |
| 
 | |
|         /* compute new a and new b in parallel */
 | |
|         a_digit = a->long_value.ob_digit;
 | |
|         b_digit = b->long_value.ob_digit;
 | |
|         c_digit = c->long_value.ob_digit;
 | |
|         d_digit = d->long_value.ob_digit;
 | |
|         c_carry = 0;
 | |
|         d_carry = 0;
 | |
|         while (b_digit < b_end) {
 | |
|             c_carry += (A * *a_digit) - (B * *b_digit);
 | |
|             d_carry += (D * *b_digit++) - (C * *a_digit++);
 | |
|             *c_digit++ = (digit)(c_carry & PyLong_MASK);
 | |
|             *d_digit++ = (digit)(d_carry & PyLong_MASK);
 | |
|             c_carry >>= PyLong_SHIFT;
 | |
|             d_carry >>= PyLong_SHIFT;
 | |
|         }
 | |
|         while (a_digit < a_end) {
 | |
|             c_carry += A * *a_digit;
 | |
|             d_carry -= C * *a_digit++;
 | |
|             *c_digit++ = (digit)(c_carry & PyLong_MASK);
 | |
|             *d_digit++ = (digit)(d_carry & PyLong_MASK);
 | |
|             c_carry >>= PyLong_SHIFT;
 | |
|             d_carry >>= PyLong_SHIFT;
 | |
|         }
 | |
|         assert(c_carry == 0);
 | |
|         assert(d_carry == 0);
 | |
| 
 | |
|         Py_INCREF(c);
 | |
|         Py_INCREF(d);
 | |
|         Py_DECREF(a);
 | |
|         Py_DECREF(b);
 | |
|         a = long_normalize(c);
 | |
|         b = long_normalize(d);
 | |
|     }
 | |
|     Py_XDECREF(c);
 | |
|     Py_XDECREF(d);
 | |
| 
 | |
| simple:
 | |
|     assert(Py_REFCNT(a) > 0);
 | |
|     assert(Py_REFCNT(b) > 0);
 | |
| /* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
 | |
|    undefined behaviour when LONG_MAX type is smaller than 60 bits */
 | |
| #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | |
|     /* a fits into a long, so b must too */
 | |
|     x = PyLong_AsLong((PyObject *)a);
 | |
|     y = PyLong_AsLong((PyObject *)b);
 | |
| #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | |
|     x = PyLong_AsLongLong((PyObject *)a);
 | |
|     y = PyLong_AsLongLong((PyObject *)b);
 | |
| #else
 | |
| # error "_PyLong_GCD"
 | |
| #endif
 | |
|     x = Py_ABS(x);
 | |
|     y = Py_ABS(y);
 | |
|     Py_DECREF(a);
 | |
|     Py_DECREF(b);
 | |
| 
 | |
|     /* usual Euclidean algorithm for longs */
 | |
|     while (y != 0) {
 | |
|         t = y;
 | |
|         y = x % y;
 | |
|         x = t;
 | |
|     }
 | |
| #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | |
|     return PyLong_FromLong(x);
 | |
| #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | |
|     return PyLong_FromLongLong(x);
 | |
| #else
 | |
| # error "_PyLong_GCD"
 | |
| #endif
 | |
| 
 | |
| error:
 | |
|     Py_DECREF(a);
 | |
|     Py_DECREF(b);
 | |
|     Py_XDECREF(c);
 | |
|     Py_XDECREF(d);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_float(PyObject *v)
 | |
| {
 | |
|     double result;
 | |
|     result = PyLong_AsDouble(v);
 | |
|     if (result == -1.0 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     return PyFloat_FromDouble(result);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
 | |
| 
 | |
| /*[clinic input]
 | |
| @classmethod
 | |
| int.__new__ as long_new
 | |
|     x: object(c_default="NULL") = 0
 | |
|     /
 | |
|     base as obase: object(c_default="NULL") = 10
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
 | |
| /*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
 | |
| {
 | |
|     Py_ssize_t base;
 | |
| 
 | |
|     if (type != &PyLong_Type)
 | |
|         return long_subtype_new(type, x, obase); /* Wimp out */
 | |
|     if (x == NULL) {
 | |
|         if (obase != NULL) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                             "int() missing string argument");
 | |
|             return NULL;
 | |
|         }
 | |
|         return PyLong_FromLong(0L);
 | |
|     }
 | |
|     /* default base and limit, forward to standard implementation */
 | |
|     if (obase == NULL)
 | |
|         return PyNumber_Long(x);
 | |
| 
 | |
|     base = PyNumber_AsSsize_t(obase, NULL);
 | |
|     if (base == -1 && PyErr_Occurred())
 | |
|         return NULL;
 | |
|     if ((base != 0 && base < 2) || base > 36) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "int() base must be >= 2 and <= 36, or 0");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (PyUnicode_Check(x))
 | |
|         return PyLong_FromUnicodeObject(x, (int)base);
 | |
|     else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
 | |
|         const char *string;
 | |
|         if (PyByteArray_Check(x))
 | |
|             string = PyByteArray_AS_STRING(x);
 | |
|         else
 | |
|             string = PyBytes_AS_STRING(x);
 | |
|         return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
 | |
|     }
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "int() can't convert non-string with explicit base");
 | |
|         return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Wimpy, slow approach to tp_new calls for subtypes of int:
 | |
|    first create a regular int from whatever arguments we got,
 | |
|    then allocate a subtype instance and initialize it from
 | |
|    the regular int.  The regular int is then thrown away.
 | |
| */
 | |
| static PyObject *
 | |
| long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
 | |
| {
 | |
|     PyLongObject *tmp, *newobj;
 | |
|     Py_ssize_t i, n;
 | |
| 
 | |
|     assert(PyType_IsSubtype(type, &PyLong_Type));
 | |
|     tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
 | |
|     if (tmp == NULL)
 | |
|         return NULL;
 | |
|     assert(PyLong_Check(tmp));
 | |
|     n = _PyLong_DigitCount(tmp);
 | |
|     /* Fast operations for single digit integers (including zero)
 | |
|      * assume that there is always at least one digit present. */
 | |
|     if (n == 0) {
 | |
|         n = 1;
 | |
|     }
 | |
|     newobj = (PyLongObject *)type->tp_alloc(type, n);
 | |
|     if (newobj == NULL) {
 | |
|         Py_DECREF(tmp);
 | |
|         return NULL;
 | |
|     }
 | |
|     assert(PyLong_Check(newobj));
 | |
|     newobj->long_value.lv_tag = tmp->long_value.lv_tag;
 | |
|     for (i = 0; i < n; i++) {
 | |
|         newobj->long_value.ob_digit[i] = tmp->long_value.ob_digit[i];
 | |
|     }
 | |
|     Py_DECREF(tmp);
 | |
|     return (PyObject *)newobj;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.__getnewargs__
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int___getnewargs___impl(PyObject *self)
 | |
| /*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
 | |
| {
 | |
|     return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
 | |
| {
 | |
|     return PyLong_FromLong(0L);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
 | |
| {
 | |
|     return PyLong_FromLong(1L);
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.__format__
 | |
| 
 | |
|     format_spec: unicode
 | |
|     /
 | |
| 
 | |
| Convert to a string according to format_spec.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int___format___impl(PyObject *self, PyObject *format_spec)
 | |
| /*[clinic end generated code: output=b4929dee9ae18689 input=d5e1254a47e8d1dc]*/
 | |
| {
 | |
|     _PyUnicodeWriter writer;
 | |
|     int ret;
 | |
| 
 | |
|     _PyUnicodeWriter_Init(&writer);
 | |
|     ret = _PyLong_FormatAdvancedWriter(
 | |
|         &writer,
 | |
|         self,
 | |
|         format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
 | |
|     if (ret == -1) {
 | |
|         _PyUnicodeWriter_Dealloc(&writer);
 | |
|         return NULL;
 | |
|     }
 | |
|     return _PyUnicodeWriter_Finish(&writer);
 | |
| }
 | |
| 
 | |
| /* Return a pair (q, r) such that a = b * q + r, and
 | |
|    abs(r) <= abs(b)/2, with equality possible only if q is even.
 | |
|    In other words, q == a / b, rounded to the nearest integer using
 | |
|    round-half-to-even. */
 | |
| 
 | |
| PyObject *
 | |
| _PyLong_DivmodNear(PyObject *a, PyObject *b)
 | |
| {
 | |
|     PyLongObject *quo = NULL, *rem = NULL;
 | |
|     PyObject *twice_rem, *result, *temp;
 | |
|     int quo_is_odd, quo_is_neg;
 | |
|     Py_ssize_t cmp;
 | |
| 
 | |
|     /* Equivalent Python code:
 | |
| 
 | |
|        def divmod_near(a, b):
 | |
|            q, r = divmod(a, b)
 | |
|            # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
 | |
|            # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
 | |
|            # positive, 2 * r < b if b negative.
 | |
|            greater_than_half = 2*r > b if b > 0 else 2*r < b
 | |
|            exactly_half = 2*r == b
 | |
|            if greater_than_half or exactly_half and q % 2 == 1:
 | |
|                q += 1
 | |
|                r -= b
 | |
|            return q, r
 | |
| 
 | |
|     */
 | |
|     if (!PyLong_Check(a) || !PyLong_Check(b)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|                         "non-integer arguments in division");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Do a and b have different signs?  If so, quotient is negative. */
 | |
|     quo_is_neg = (_PyLong_IsNegative((PyLongObject *)a)) != (_PyLong_IsNegative((PyLongObject *)b));
 | |
| 
 | |
|     if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
 | |
|         goto error;
 | |
| 
 | |
|     /* compare twice the remainder with the divisor, to see
 | |
|        if we need to adjust the quotient and remainder */
 | |
|     PyObject *one = _PyLong_GetOne();  // borrowed reference
 | |
|     twice_rem = long_lshift((PyObject *)rem, one);
 | |
|     if (twice_rem == NULL)
 | |
|         goto error;
 | |
|     if (quo_is_neg) {
 | |
|         temp = long_neg((PyLongObject*)twice_rem);
 | |
|         Py_SETREF(twice_rem, temp);
 | |
|         if (twice_rem == NULL)
 | |
|             goto error;
 | |
|     }
 | |
|     cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
 | |
|     Py_DECREF(twice_rem);
 | |
| 
 | |
|     quo_is_odd = (quo->long_value.ob_digit[0] & 1) != 0;
 | |
|     if ((_PyLong_IsNegative((PyLongObject *)b) ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
 | |
|         /* fix up quotient */
 | |
|         if (quo_is_neg)
 | |
|             temp = long_sub(quo, (PyLongObject *)one);
 | |
|         else
 | |
|             temp = long_add(quo, (PyLongObject *)one);
 | |
|         Py_SETREF(quo, (PyLongObject *)temp);
 | |
|         if (quo == NULL)
 | |
|             goto error;
 | |
|         /* and remainder */
 | |
|         if (quo_is_neg)
 | |
|             temp = long_add(rem, (PyLongObject *)b);
 | |
|         else
 | |
|             temp = long_sub(rem, (PyLongObject *)b);
 | |
|         Py_SETREF(rem, (PyLongObject *)temp);
 | |
|         if (rem == NULL)
 | |
|             goto error;
 | |
|     }
 | |
| 
 | |
|     result = PyTuple_New(2);
 | |
|     if (result == NULL)
 | |
|         goto error;
 | |
| 
 | |
|     /* PyTuple_SET_ITEM steals references */
 | |
|     PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
 | |
|     PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
 | |
|     return result;
 | |
| 
 | |
|   error:
 | |
|     Py_XDECREF(quo);
 | |
|     Py_XDECREF(rem);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.__round__
 | |
| 
 | |
|     ndigits as o_ndigits: object = NULL
 | |
|     /
 | |
| 
 | |
| Rounding an Integral returns itself.
 | |
| 
 | |
| Rounding with an ndigits argument also returns an integer.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int___round___impl(PyObject *self, PyObject *o_ndigits)
 | |
| /*[clinic end generated code: output=954fda6b18875998 input=1614cf23ec9e18c3]*/
 | |
| {
 | |
|     PyObject *temp, *result, *ndigits;
 | |
| 
 | |
|     /* To round an integer m to the nearest 10**n (n positive), we make use of
 | |
|      * the divmod_near operation, defined by:
 | |
|      *
 | |
|      *   divmod_near(a, b) = (q, r)
 | |
|      *
 | |
|      * where q is the nearest integer to the quotient a / b (the
 | |
|      * nearest even integer in the case of a tie) and r == a - q * b.
 | |
|      * Hence q * b = a - r is the nearest multiple of b to a,
 | |
|      * preferring even multiples in the case of a tie.
 | |
|      *
 | |
|      * So the nearest multiple of 10**n to m is:
 | |
|      *
 | |
|      *   m - divmod_near(m, 10**n)[1].
 | |
|      */
 | |
|     if (o_ndigits == NULL)
 | |
|         return long_long(self);
 | |
| 
 | |
|     ndigits = _PyNumber_Index(o_ndigits);
 | |
|     if (ndigits == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
 | |
|     if (!_PyLong_IsNegative((PyLongObject *)ndigits)) {
 | |
|         Py_DECREF(ndigits);
 | |
|         return long_long(self);
 | |
|     }
 | |
| 
 | |
|     /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
 | |
|     temp = long_neg((PyLongObject*)ndigits);
 | |
|     Py_SETREF(ndigits, temp);
 | |
|     if (ndigits == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     result = PyLong_FromLong(10L);
 | |
|     if (result == NULL) {
 | |
|         Py_DECREF(ndigits);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     temp = long_pow(result, ndigits, Py_None);
 | |
|     Py_DECREF(ndigits);
 | |
|     Py_SETREF(result, temp);
 | |
|     if (result == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     temp = _PyLong_DivmodNear(self, result);
 | |
|     Py_SETREF(result, temp);
 | |
|     if (result == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     temp = long_sub((PyLongObject *)self,
 | |
|                     (PyLongObject *)PyTuple_GET_ITEM(result, 1));
 | |
|     Py_SETREF(result, temp);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.__sizeof__ -> Py_ssize_t
 | |
| 
 | |
| Returns size in memory, in bytes.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_ssize_t
 | |
| int___sizeof___impl(PyObject *self)
 | |
| /*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
 | |
| {
 | |
|     /* using Py_MAX(..., 1) because we always allocate space for at least
 | |
|        one digit, even though the integer zero has a digit count of 0 */
 | |
|     Py_ssize_t ndigits = Py_MAX(_PyLong_DigitCount((PyLongObject *)self), 1);
 | |
|     return Py_TYPE(self)->tp_basicsize + Py_TYPE(self)->tp_itemsize * ndigits;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.bit_length
 | |
| 
 | |
| Number of bits necessary to represent self in binary.
 | |
| 
 | |
| >>> bin(37)
 | |
| '0b100101'
 | |
| >>> (37).bit_length()
 | |
| 6
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int_bit_length_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
 | |
| {
 | |
|     PyLongObject *result, *x, *y;
 | |
|     Py_ssize_t ndigits;
 | |
|     int msd_bits;
 | |
|     digit msd;
 | |
| 
 | |
|     assert(self != NULL);
 | |
|     assert(PyLong_Check(self));
 | |
| 
 | |
|     ndigits = _PyLong_DigitCount((PyLongObject *)self);
 | |
|     if (ndigits == 0)
 | |
|         return PyLong_FromLong(0);
 | |
| 
 | |
|     msd = ((PyLongObject *)self)->long_value.ob_digit[ndigits-1];
 | |
|     msd_bits = bit_length_digit(msd);
 | |
| 
 | |
|     if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
 | |
|         return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
 | |
| 
 | |
|     /* expression above may overflow; use Python integers instead */
 | |
|     result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
 | |
|     if (result == NULL)
 | |
|         return NULL;
 | |
|     x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
 | |
|     if (x == NULL)
 | |
|         goto error;
 | |
|     y = (PyLongObject *)long_mul(result, x);
 | |
|     Py_DECREF(x);
 | |
|     if (y == NULL)
 | |
|         goto error;
 | |
|     Py_SETREF(result, y);
 | |
| 
 | |
|     x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
 | |
|     if (x == NULL)
 | |
|         goto error;
 | |
|     y = (PyLongObject *)long_add(result, x);
 | |
|     Py_DECREF(x);
 | |
|     if (y == NULL)
 | |
|         goto error;
 | |
|     Py_SETREF(result, y);
 | |
| 
 | |
|     return (PyObject *)result;
 | |
| 
 | |
|   error:
 | |
|     Py_DECREF(result);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int
 | |
| popcount_digit(digit d)
 | |
| {
 | |
|     // digit can be larger than uint32_t, but only PyLong_SHIFT bits
 | |
|     // of it will be ever used.
 | |
|     static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t");
 | |
|     return _Py_popcount32((uint32_t)d);
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.bit_count
 | |
| 
 | |
| Number of ones in the binary representation of the absolute value of self.
 | |
| 
 | |
| Also known as the population count.
 | |
| 
 | |
| >>> bin(13)
 | |
| '0b1101'
 | |
| >>> (13).bit_count()
 | |
| 3
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int_bit_count_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=2e571970daf1e5c3 input=7e0adef8e8ccdf2e]*/
 | |
| {
 | |
|     assert(self != NULL);
 | |
|     assert(PyLong_Check(self));
 | |
| 
 | |
|     PyLongObject *z = (PyLongObject *)self;
 | |
|     Py_ssize_t ndigits = _PyLong_DigitCount(z);
 | |
|     Py_ssize_t bit_count = 0;
 | |
| 
 | |
|     /* Each digit has up to PyLong_SHIFT ones, so the accumulated bit count
 | |
|        from the first PY_SSIZE_T_MAX/PyLong_SHIFT digits can't overflow a
 | |
|        Py_ssize_t. */
 | |
|     Py_ssize_t ndigits_fast = Py_MIN(ndigits, PY_SSIZE_T_MAX/PyLong_SHIFT);
 | |
|     for (Py_ssize_t i = 0; i < ndigits_fast; i++) {
 | |
|         bit_count += popcount_digit(z->long_value.ob_digit[i]);
 | |
|     }
 | |
| 
 | |
|     PyObject *result = PyLong_FromSsize_t(bit_count);
 | |
|     if (result == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Use Python integers if bit_count would overflow. */
 | |
|     for (Py_ssize_t i = ndigits_fast; i < ndigits; i++) {
 | |
|         PyObject *x = PyLong_FromLong(popcount_digit(z->long_value.ob_digit[i]));
 | |
|         if (x == NULL) {
 | |
|             goto error;
 | |
|         }
 | |
|         PyObject *y = long_add((PyLongObject *)result, (PyLongObject *)x);
 | |
|         Py_DECREF(x);
 | |
|         if (y == NULL) {
 | |
|             goto error;
 | |
|         }
 | |
|         Py_SETREF(result, y);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| 
 | |
|   error:
 | |
|     Py_DECREF(result);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.as_integer_ratio
 | |
| 
 | |
| Return a pair of integers, whose ratio is equal to the original int.
 | |
| 
 | |
| The ratio is in lowest terms and has a positive denominator.
 | |
| 
 | |
| >>> (10).as_integer_ratio()
 | |
| (10, 1)
 | |
| >>> (-10).as_integer_ratio()
 | |
| (-10, 1)
 | |
| >>> (0).as_integer_ratio()
 | |
| (0, 1)
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int_as_integer_ratio_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=e60803ae1cc8621a input=384ff1766634bec2]*/
 | |
| {
 | |
|     PyObject *ratio_tuple;
 | |
|     PyObject *numerator = long_long(self);
 | |
|     if (numerator == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne());
 | |
|     Py_DECREF(numerator);
 | |
|     return ratio_tuple;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.to_bytes
 | |
| 
 | |
|     length: Py_ssize_t = 1
 | |
|         Length of bytes object to use.  An OverflowError is raised if the
 | |
|         integer is not representable with the given number of bytes.  Default
 | |
|         is length 1.
 | |
|     byteorder: unicode(c_default="NULL") = "big"
 | |
|         The byte order used to represent the integer.  If byteorder is 'big',
 | |
|         the most significant byte is at the beginning of the byte array.  If
 | |
|         byteorder is 'little', the most significant byte is at the end of the
 | |
|         byte array.  To request the native byte order of the host system, use
 | |
|         `sys.byteorder' as the byte order value.  Default is to use 'big'.
 | |
|     *
 | |
|     signed as is_signed: bool = False
 | |
|         Determines whether two's complement is used to represent the integer.
 | |
|         If signed is False and a negative integer is given, an OverflowError
 | |
|         is raised.
 | |
| 
 | |
| Return an array of bytes representing an integer.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
 | |
|                   int is_signed)
 | |
| /*[clinic end generated code: output=89c801df114050a3 input=d42ecfb545039d71]*/
 | |
| {
 | |
|     int little_endian;
 | |
|     PyObject *bytes;
 | |
| 
 | |
|     if (byteorder == NULL)
 | |
|         little_endian = 0;
 | |
|     else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
 | |
|         little_endian = 1;
 | |
|     else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
 | |
|         little_endian = 0;
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|             "byteorder must be either 'little' or 'big'");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (length < 0) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "length argument must be non-negative");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     bytes = PyBytes_FromStringAndSize(NULL, length);
 | |
|     if (bytes == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     if (_PyLong_AsByteArray((PyLongObject *)self,
 | |
|                             (unsigned char *)PyBytes_AS_STRING(bytes),
 | |
|                             length, little_endian, is_signed) < 0) {
 | |
|         Py_DECREF(bytes);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return bytes;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| @classmethod
 | |
| int.from_bytes
 | |
| 
 | |
|     bytes as bytes_obj: object
 | |
|         Holds the array of bytes to convert.  The argument must either
 | |
|         support the buffer protocol or be an iterable object producing bytes.
 | |
|         Bytes and bytearray are examples of built-in objects that support the
 | |
|         buffer protocol.
 | |
|     byteorder: unicode(c_default="NULL") = "big"
 | |
|         The byte order used to represent the integer.  If byteorder is 'big',
 | |
|         the most significant byte is at the beginning of the byte array.  If
 | |
|         byteorder is 'little', the most significant byte is at the end of the
 | |
|         byte array.  To request the native byte order of the host system, use
 | |
|         `sys.byteorder' as the byte order value.  Default is to use 'big'.
 | |
|     *
 | |
|     signed as is_signed: bool = False
 | |
|         Indicates whether two's complement is used to represent the integer.
 | |
| 
 | |
| Return the integer represented by the given array of bytes.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
 | |
|                     PyObject *byteorder, int is_signed)
 | |
| /*[clinic end generated code: output=efc5d68e31f9314f input=33326dccdd655553]*/
 | |
| {
 | |
|     int little_endian;
 | |
|     PyObject *long_obj, *bytes;
 | |
| 
 | |
|     if (byteorder == NULL)
 | |
|         little_endian = 0;
 | |
|     else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
 | |
|         little_endian = 1;
 | |
|     else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
 | |
|         little_endian = 0;
 | |
|     else {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|             "byteorder must be either 'little' or 'big'");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     bytes = PyObject_Bytes(bytes_obj);
 | |
|     if (bytes == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     long_obj = _PyLong_FromByteArray(
 | |
|         (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
 | |
|         little_endian, is_signed);
 | |
|     Py_DECREF(bytes);
 | |
| 
 | |
|     if (long_obj != NULL && type != &PyLong_Type) {
 | |
|         Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
 | |
|     }
 | |
| 
 | |
|     return long_obj;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
 | |
| {
 | |
|     return long_long(self);
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| int.is_integer
 | |
| 
 | |
| Returns True. Exists for duck type compatibility with float.is_integer.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| int_is_integer_impl(PyObject *self)
 | |
| /*[clinic end generated code: output=90f8e794ce5430ef input=7e41c4d4416e05f2]*/
 | |
| {
 | |
|     Py_RETURN_TRUE;
 | |
| }
 | |
| 
 | |
| static PyMethodDef long_methods[] = {
 | |
|     {"conjugate",       long_long_meth, METH_NOARGS,
 | |
|      "Returns self, the complex conjugate of any int."},
 | |
|     INT_BIT_LENGTH_METHODDEF
 | |
|     INT_BIT_COUNT_METHODDEF
 | |
|     INT_TO_BYTES_METHODDEF
 | |
|     INT_FROM_BYTES_METHODDEF
 | |
|     INT_AS_INTEGER_RATIO_METHODDEF
 | |
|     {"__trunc__",       long_long_meth, METH_NOARGS,
 | |
|      "Truncating an Integral returns itself."},
 | |
|     {"__floor__",       long_long_meth, METH_NOARGS,
 | |
|      "Flooring an Integral returns itself."},
 | |
|     {"__ceil__",        long_long_meth, METH_NOARGS,
 | |
|      "Ceiling of an Integral returns itself."},
 | |
|     INT___ROUND___METHODDEF
 | |
|     INT___GETNEWARGS___METHODDEF
 | |
|     INT___FORMAT___METHODDEF
 | |
|     INT___SIZEOF___METHODDEF
 | |
|     INT_IS_INTEGER_METHODDEF
 | |
|     {NULL,              NULL}           /* sentinel */
 | |
| };
 | |
| 
 | |
| static PyGetSetDef long_getset[] = {
 | |
|     {"real",
 | |
|      (getter)long_long_meth, (setter)NULL,
 | |
|      "the real part of a complex number",
 | |
|      NULL},
 | |
|     {"imag",
 | |
|      long_get0, (setter)NULL,
 | |
|      "the imaginary part of a complex number",
 | |
|      NULL},
 | |
|     {"numerator",
 | |
|      (getter)long_long_meth, (setter)NULL,
 | |
|      "the numerator of a rational number in lowest terms",
 | |
|      NULL},
 | |
|     {"denominator",
 | |
|      long_get1, (setter)NULL,
 | |
|      "the denominator of a rational number in lowest terms",
 | |
|      NULL},
 | |
|     {NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(long_doc,
 | |
| "int([x]) -> integer\n\
 | |
| int(x, base=10) -> integer\n\
 | |
| \n\
 | |
| Convert a number or string to an integer, or return 0 if no arguments\n\
 | |
| are given.  If x is a number, return x.__int__().  For floating point\n\
 | |
| numbers, this truncates towards zero.\n\
 | |
| \n\
 | |
| If x is not a number or if base is given, then x must be a string,\n\
 | |
| bytes, or bytearray instance representing an integer literal in the\n\
 | |
| given base.  The literal can be preceded by '+' or '-' and be surrounded\n\
 | |
| by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.\n\
 | |
| Base 0 means to interpret the base from the string as an integer literal.\n\
 | |
| >>> int('0b100', base=0)\n\
 | |
| 4");
 | |
| 
 | |
| static PyNumberMethods long_as_number = {
 | |
|     (binaryfunc)long_add,       /*nb_add*/
 | |
|     (binaryfunc)long_sub,       /*nb_subtract*/
 | |
|     (binaryfunc)long_mul,       /*nb_multiply*/
 | |
|     long_mod,                   /*nb_remainder*/
 | |
|     long_divmod,                /*nb_divmod*/
 | |
|     long_pow,                   /*nb_power*/
 | |
|     (unaryfunc)long_neg,        /*nb_negative*/
 | |
|     long_long,                  /*tp_positive*/
 | |
|     (unaryfunc)long_abs,        /*tp_absolute*/
 | |
|     (inquiry)long_bool,         /*tp_bool*/
 | |
|     (unaryfunc)long_invert,     /*nb_invert*/
 | |
|     long_lshift,                /*nb_lshift*/
 | |
|     long_rshift,                /*nb_rshift*/
 | |
|     long_and,                   /*nb_and*/
 | |
|     long_xor,                   /*nb_xor*/
 | |
|     long_or,                    /*nb_or*/
 | |
|     long_long,                  /*nb_int*/
 | |
|     0,                          /*nb_reserved*/
 | |
|     long_float,                 /*nb_float*/
 | |
|     0,                          /* nb_inplace_add */
 | |
|     0,                          /* nb_inplace_subtract */
 | |
|     0,                          /* nb_inplace_multiply */
 | |
|     0,                          /* nb_inplace_remainder */
 | |
|     0,                          /* nb_inplace_power */
 | |
|     0,                          /* nb_inplace_lshift */
 | |
|     0,                          /* nb_inplace_rshift */
 | |
|     0,                          /* nb_inplace_and */
 | |
|     0,                          /* nb_inplace_xor */
 | |
|     0,                          /* nb_inplace_or */
 | |
|     long_div,                   /* nb_floor_divide */
 | |
|     long_true_divide,           /* nb_true_divide */
 | |
|     0,                          /* nb_inplace_floor_divide */
 | |
|     0,                          /* nb_inplace_true_divide */
 | |
|     long_long,                  /* nb_index */
 | |
| };
 | |
| 
 | |
| PyTypeObject PyLong_Type = {
 | |
|     PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | |
|     "int",                                      /* tp_name */
 | |
|     offsetof(PyLongObject, long_value.ob_digit),  /* tp_basicsize */
 | |
|     sizeof(digit),                              /* tp_itemsize */
 | |
|     long_dealloc,                               /* tp_dealloc */
 | |
|     0,                                          /* tp_vectorcall_offset */
 | |
|     0,                                          /* tp_getattr */
 | |
|     0,                                          /* tp_setattr */
 | |
|     0,                                          /* tp_as_async */
 | |
|     long_to_decimal_string,                     /* tp_repr */
 | |
|     &long_as_number,                            /* tp_as_number */
 | |
|     0,                                          /* tp_as_sequence */
 | |
|     0,                                          /* tp_as_mapping */
 | |
|     (hashfunc)long_hash,                        /* tp_hash */
 | |
|     0,                                          /* tp_call */
 | |
|     0,                                          /* tp_str */
 | |
|     PyObject_GenericGetAttr,                    /* tp_getattro */
 | |
|     0,                                          /* tp_setattro */
 | |
|     0,                                          /* tp_as_buffer */
 | |
|     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
 | |
|         Py_TPFLAGS_LONG_SUBCLASS |
 | |
|         _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */
 | |
|     long_doc,                                   /* tp_doc */
 | |
|     0,                                          /* tp_traverse */
 | |
|     0,                                          /* tp_clear */
 | |
|     long_richcompare,                           /* tp_richcompare */
 | |
|     0,                                          /* tp_weaklistoffset */
 | |
|     0,                                          /* tp_iter */
 | |
|     0,                                          /* tp_iternext */
 | |
|     long_methods,                               /* tp_methods */
 | |
|     0,                                          /* tp_members */
 | |
|     long_getset,                                /* tp_getset */
 | |
|     0,                                          /* tp_base */
 | |
|     0,                                          /* tp_dict */
 | |
|     0,                                          /* tp_descr_get */
 | |
|     0,                                          /* tp_descr_set */
 | |
|     0,                                          /* tp_dictoffset */
 | |
|     0,                                          /* tp_init */
 | |
|     0,                                          /* tp_alloc */
 | |
|     long_new,                                   /* tp_new */
 | |
|     PyObject_Free,                              /* tp_free */
 | |
| };
 | |
| 
 | |
| static PyTypeObject Int_InfoType;
 | |
| 
 | |
| PyDoc_STRVAR(int_info__doc__,
 | |
| "sys.int_info\n\
 | |
| \n\
 | |
| A named tuple that holds information about Python's\n\
 | |
| internal representation of integers.  The attributes are read only.");
 | |
| 
 | |
| static PyStructSequence_Field int_info_fields[] = {
 | |
|     {"bits_per_digit", "size of a digit in bits"},
 | |
|     {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
 | |
|     {"default_max_str_digits", "maximum string conversion digits limitation"},
 | |
|     {"str_digits_check_threshold", "minimum positive value for int_max_str_digits"},
 | |
|     {NULL, NULL}
 | |
| };
 | |
| 
 | |
| static PyStructSequence_Desc int_info_desc = {
 | |
|     "sys.int_info",   /* name */
 | |
|     int_info__doc__,  /* doc */
 | |
|     int_info_fields,  /* fields */
 | |
|     4                 /* number of fields */
 | |
| };
 | |
| 
 | |
| PyObject *
 | |
| PyLong_GetInfo(void)
 | |
| {
 | |
|     PyObject* int_info;
 | |
|     int field = 0;
 | |
|     int_info = PyStructSequence_New(&Int_InfoType);
 | |
|     if (int_info == NULL)
 | |
|         return NULL;
 | |
|     PyStructSequence_SET_ITEM(int_info, field++,
 | |
|                               PyLong_FromLong(PyLong_SHIFT));
 | |
|     PyStructSequence_SET_ITEM(int_info, field++,
 | |
|                               PyLong_FromLong(sizeof(digit)));
 | |
|     /*
 | |
|      * The following two fields were added after investigating uses of
 | |
|      * sys.int_info in the wild: Exceedingly rarely used. The ONLY use found was
 | |
|      * numba using sys.int_info.bits_per_digit as attribute access rather than
 | |
|      * sequence unpacking. Cython and sympy also refer to sys.int_info but only
 | |
|      * as info for debugging. No concern about adding these in a backport.
 | |
|      */
 | |
|     PyStructSequence_SET_ITEM(int_info, field++,
 | |
|                               PyLong_FromLong(_PY_LONG_DEFAULT_MAX_STR_DIGITS));
 | |
|     PyStructSequence_SET_ITEM(int_info, field++,
 | |
|                               PyLong_FromLong(_PY_LONG_MAX_STR_DIGITS_THRESHOLD));
 | |
|     if (PyErr_Occurred()) {
 | |
|         Py_CLEAR(int_info);
 | |
|         return NULL;
 | |
|     }
 | |
|     return int_info;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* runtime lifecycle */
 | |
| 
 | |
| PyStatus
 | |
| _PyLong_InitTypes(PyInterpreterState *interp)
 | |
| {
 | |
|     /* initialize int_info */
 | |
|     if (_PyStructSequence_InitBuiltin(interp, &Int_InfoType,
 | |
|                                       &int_info_desc) < 0)
 | |
|     {
 | |
|         return _PyStatus_ERR("can't init int info type");
 | |
|     }
 | |
| 
 | |
|     return _PyStatus_OK();
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _PyLong_FiniTypes(PyInterpreterState *interp)
 | |
| {
 | |
|     _PyStructSequence_FiniBuiltin(interp, &Int_InfoType);
 | |
| }
 | |
| 
 | |
| #undef PyUnstable_Long_IsCompact
 | |
| 
 | |
| int
 | |
| PyUnstable_Long_IsCompact(const PyLongObject* op) {
 | |
|     return _PyLong_IsCompact(op);
 | |
| }
 | |
| 
 | |
| #undef PyUnstable_Long_CompactValue
 | |
| 
 | |
| Py_ssize_t
 | |
| PyUnstable_Long_CompactValue(const PyLongObject* op) {
 | |
|     return _PyLong_CompactValue(op);
 | |
| }
 | 
