mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	__bytes__, __trunc__, and __float__ returning instances of subclasses of bytes, int, and float to subclasses of bytes, int, and float correspondingly.
		
			
				
	
	
		
			5334 lines
		
	
	
	
		
			161 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5334 lines
		
	
	
	
		
			161 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Long (arbitrary precision) integer object implementation */
 | 
						|
 | 
						|
/* XXX The functional organization of this file is terrible */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "longintrepr.h"
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
#include <ctype.h>
 | 
						|
#include <stddef.h>
 | 
						|
 | 
						|
#ifndef NSMALLPOSINTS
 | 
						|
#define NSMALLPOSINTS           257
 | 
						|
#endif
 | 
						|
#ifndef NSMALLNEGINTS
 | 
						|
#define NSMALLNEGINTS           5
 | 
						|
#endif
 | 
						|
 | 
						|
/* convert a PyLong of size 1, 0 or -1 to an sdigit */
 | 
						|
#define MEDIUM_VALUE(x) (assert(-1 <= Py_SIZE(x) && Py_SIZE(x) <= 1),   \
 | 
						|
         Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] :   \
 | 
						|
             (Py_SIZE(x) == 0 ? (sdigit)0 :                             \
 | 
						|
              (sdigit)(x)->ob_digit[0]))
 | 
						|
 | 
						|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | 
						|
/* Small integers are preallocated in this array so that they
 | 
						|
   can be shared.
 | 
						|
   The integers that are preallocated are those in the range
 | 
						|
   -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
 | 
						|
*/
 | 
						|
static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
 | 
						|
#ifdef COUNT_ALLOCS
 | 
						|
Py_ssize_t quick_int_allocs, quick_neg_int_allocs;
 | 
						|
#endif
 | 
						|
 | 
						|
static PyObject *
 | 
						|
get_small_int(sdigit ival)
 | 
						|
{
 | 
						|
    PyObject *v;
 | 
						|
    assert(-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS);
 | 
						|
    v = (PyObject *)&small_ints[ival + NSMALLNEGINTS];
 | 
						|
    Py_INCREF(v);
 | 
						|
#ifdef COUNT_ALLOCS
 | 
						|
    if (ival >= 0)
 | 
						|
        quick_int_allocs++;
 | 
						|
    else
 | 
						|
        quick_neg_int_allocs++;
 | 
						|
#endif
 | 
						|
    return v;
 | 
						|
}
 | 
						|
#define CHECK_SMALL_INT(ival) \
 | 
						|
    do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \
 | 
						|
        return get_small_int((sdigit)ival); \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
maybe_small_long(PyLongObject *v)
 | 
						|
{
 | 
						|
    if (v && Py_ABS(Py_SIZE(v)) <= 1) {
 | 
						|
        sdigit ival = MEDIUM_VALUE(v);
 | 
						|
        if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
 | 
						|
            Py_DECREF(v);
 | 
						|
            return (PyLongObject *)get_small_int(ival);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return v;
 | 
						|
}
 | 
						|
#else
 | 
						|
#define CHECK_SMALL_INT(ival)
 | 
						|
#define maybe_small_long(val) (val)
 | 
						|
#endif
 | 
						|
 | 
						|
/* If a freshly-allocated int is already shared, it must
 | 
						|
   be a small integer, so negating it must go to PyLong_FromLong */
 | 
						|
Py_LOCAL_INLINE(void)
 | 
						|
_PyLong_Negate(PyLongObject **x_p)
 | 
						|
{
 | 
						|
    PyLongObject *x;
 | 
						|
 | 
						|
    x = (PyLongObject *)*x_p;
 | 
						|
    if (Py_REFCNT(x) == 1) {
 | 
						|
        Py_SIZE(x) = -Py_SIZE(x);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    *x_p = (PyLongObject *)PyLong_FromLong(-MEDIUM_VALUE(x));
 | 
						|
    Py_DECREF(x);
 | 
						|
}
 | 
						|
 | 
						|
/* For int multiplication, use the O(N**2) school algorithm unless
 | 
						|
 * both operands contain more than KARATSUBA_CUTOFF digits (this
 | 
						|
 * being an internal Python int digit, in base BASE).
 | 
						|
 */
 | 
						|
#define KARATSUBA_CUTOFF 70
 | 
						|
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
 | 
						|
 | 
						|
/* For exponentiation, use the binary left-to-right algorithm
 | 
						|
 * unless the exponent contains more than FIVEARY_CUTOFF digits.
 | 
						|
 * In that case, do 5 bits at a time.  The potential drawback is that
 | 
						|
 * a table of 2**5 intermediate results is computed.
 | 
						|
 */
 | 
						|
#define FIVEARY_CUTOFF 8
 | 
						|
 | 
						|
#define SIGCHECK(PyTryBlock)                    \
 | 
						|
    do {                                        \
 | 
						|
        if (PyErr_CheckSignals()) PyTryBlock    \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
/* Normalize (remove leading zeros from) an int object.
 | 
						|
   Doesn't attempt to free the storage--in most cases, due to the nature
 | 
						|
   of the algorithms used, this could save at most be one word anyway. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
long_normalize(PyLongObject *v)
 | 
						|
{
 | 
						|
    Py_ssize_t j = Py_ABS(Py_SIZE(v));
 | 
						|
    Py_ssize_t i = j;
 | 
						|
 | 
						|
    while (i > 0 && v->ob_digit[i-1] == 0)
 | 
						|
        --i;
 | 
						|
    if (i != j)
 | 
						|
        Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/* _PyLong_FromNbInt: Convert the given object to a PyLongObject
 | 
						|
   using the nb_int slot, if available.  Raise TypeError if either the
 | 
						|
   nb_int slot is not available or the result of the call to nb_int
 | 
						|
   returns something not of type int.
 | 
						|
*/
 | 
						|
PyLongObject *
 | 
						|
_PyLong_FromNbInt(PyObject *integral)
 | 
						|
{
 | 
						|
    PyNumberMethods *nb;
 | 
						|
    PyObject *result;
 | 
						|
 | 
						|
    /* Fast path for the case that we already have an int. */
 | 
						|
    if (PyLong_CheckExact(integral)) {
 | 
						|
        Py_INCREF(integral);
 | 
						|
        return (PyLongObject *)integral;
 | 
						|
    }
 | 
						|
 | 
						|
    nb = Py_TYPE(integral)->tp_as_number;
 | 
						|
    if (nb == NULL || nb->nb_int == NULL) {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
                     "an integer is required (got type %.200s)",
 | 
						|
                     Py_TYPE(integral)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Convert using the nb_int slot, which should return something
 | 
						|
       of exact type int. */
 | 
						|
    result = nb->nb_int(integral);
 | 
						|
    if (!result || PyLong_CheckExact(result))
 | 
						|
        return (PyLongObject *)result;
 | 
						|
    if (!PyLong_Check(result)) {
 | 
						|
        PyErr_Format(PyExc_TypeError,
 | 
						|
                     "__int__ returned non-int (type %.200s)",
 | 
						|
                     result->ob_type->tp_name);
 | 
						|
        Py_DECREF(result);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    /* Issue #17576: warn if 'result' not of exact type int. */
 | 
						|
    if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
 | 
						|
            "__int__ returned non-int (type %.200s).  "
 | 
						|
            "The ability to return an instance of a strict subclass of int "
 | 
						|
            "is deprecated, and may be removed in a future version of Python.",
 | 
						|
            result->ob_type->tp_name)) {
 | 
						|
        Py_DECREF(result);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return (PyLongObject *)result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Allocate a new int object with size digits.
 | 
						|
   Return NULL and set exception if we run out of memory. */
 | 
						|
 | 
						|
#define MAX_LONG_DIGITS \
 | 
						|
    ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
 | 
						|
 | 
						|
PyLongObject *
 | 
						|
_PyLong_New(Py_ssize_t size)
 | 
						|
{
 | 
						|
    PyLongObject *result;
 | 
						|
    /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
 | 
						|
       sizeof(digit)*size.  Previous incarnations of this code used
 | 
						|
       sizeof(PyVarObject) instead of the offsetof, but this risks being
 | 
						|
       incorrect in the presence of padding between the PyVarObject header
 | 
						|
       and the digits. */
 | 
						|
    if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "too many digits in integer");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
 | 
						|
                             size*sizeof(digit));
 | 
						|
    if (!result) {
 | 
						|
        PyErr_NoMemory();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_Copy(PyLongObject *src)
 | 
						|
{
 | 
						|
    PyLongObject *result;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    assert(src != NULL);
 | 
						|
    i = Py_SIZE(src);
 | 
						|
    if (i < 0)
 | 
						|
        i = -(i);
 | 
						|
    if (i < 2) {
 | 
						|
        sdigit ival = MEDIUM_VALUE(src);
 | 
						|
        CHECK_SMALL_INT(ival);
 | 
						|
    }
 | 
						|
    result = _PyLong_New(i);
 | 
						|
    if (result != NULL) {
 | 
						|
        Py_SIZE(result) = Py_SIZE(src);
 | 
						|
        while (--i >= 0)
 | 
						|
            result->ob_digit[i] = src->ob_digit[i];
 | 
						|
    }
 | 
						|
    return (PyObject *)result;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new int object from a C long int */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromLong(long ival)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned long abs_ival;
 | 
						|
    unsigned long t;  /* unsigned so >> doesn't propagate sign bit */
 | 
						|
    int ndigits = 0;
 | 
						|
    int sign = 1;
 | 
						|
 | 
						|
    CHECK_SMALL_INT(ival);
 | 
						|
 | 
						|
    if (ival < 0) {
 | 
						|
        /* negate: can't write this as abs_ival = -ival since that
 | 
						|
           invokes undefined behaviour when ival is LONG_MIN */
 | 
						|
        abs_ival = 0U-(unsigned long)ival;
 | 
						|
        sign = -1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        abs_ival = (unsigned long)ival;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Fast path for single-digit ints */
 | 
						|
    if (!(abs_ival >> PyLong_SHIFT)) {
 | 
						|
        v = _PyLong_New(1);
 | 
						|
        if (v) {
 | 
						|
            Py_SIZE(v) = sign;
 | 
						|
            v->ob_digit[0] = Py_SAFE_DOWNCAST(
 | 
						|
                abs_ival, unsigned long, digit);
 | 
						|
        }
 | 
						|
        return (PyObject*)v;
 | 
						|
    }
 | 
						|
 | 
						|
#if PyLong_SHIFT==15
 | 
						|
    /* 2 digits */
 | 
						|
    if (!(abs_ival >> 2*PyLong_SHIFT)) {
 | 
						|
        v = _PyLong_New(2);
 | 
						|
        if (v) {
 | 
						|
            Py_SIZE(v) = 2*sign;
 | 
						|
            v->ob_digit[0] = Py_SAFE_DOWNCAST(
 | 
						|
                abs_ival & PyLong_MASK, unsigned long, digit);
 | 
						|
            v->ob_digit[1] = Py_SAFE_DOWNCAST(
 | 
						|
                  abs_ival >> PyLong_SHIFT, unsigned long, digit);
 | 
						|
        }
 | 
						|
        return (PyObject*)v;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Larger numbers: loop to determine number of digits */
 | 
						|
    t = abs_ival;
 | 
						|
    while (t) {
 | 
						|
        ++ndigits;
 | 
						|
        t >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    v = _PyLong_New(ndigits);
 | 
						|
    if (v != NULL) {
 | 
						|
        digit *p = v->ob_digit;
 | 
						|
        Py_SIZE(v) = ndigits*sign;
 | 
						|
        t = abs_ival;
 | 
						|
        while (t) {
 | 
						|
            *p++ = Py_SAFE_DOWNCAST(
 | 
						|
                t & PyLong_MASK, unsigned long, digit);
 | 
						|
            t >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new int object from a C unsigned long int */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromUnsignedLong(unsigned long ival)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned long t;
 | 
						|
    int ndigits = 0;
 | 
						|
 | 
						|
    if (ival < PyLong_BASE)
 | 
						|
        return PyLong_FromLong(ival);
 | 
						|
    /* Count the number of Python digits. */
 | 
						|
    t = (unsigned long)ival;
 | 
						|
    while (t) {
 | 
						|
        ++ndigits;
 | 
						|
        t >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    v = _PyLong_New(ndigits);
 | 
						|
    if (v != NULL) {
 | 
						|
        digit *p = v->ob_digit;
 | 
						|
        Py_SIZE(v) = ndigits;
 | 
						|
        while (ival) {
 | 
						|
            *p++ = (digit)(ival & PyLong_MASK);
 | 
						|
            ival >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new int object from a C double */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromDouble(double dval)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    double frac;
 | 
						|
    int i, ndig, expo, neg;
 | 
						|
    neg = 0;
 | 
						|
    if (Py_IS_INFINITY(dval)) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "cannot convert float infinity to integer");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_NAN(dval)) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "cannot convert float NaN to integer");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (dval < 0.0) {
 | 
						|
        neg = 1;
 | 
						|
        dval = -dval;
 | 
						|
    }
 | 
						|
    frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
 | 
						|
    if (expo <= 0)
 | 
						|
        return PyLong_FromLong(0L);
 | 
						|
    ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
 | 
						|
    v = _PyLong_New(ndig);
 | 
						|
    if (v == NULL)
 | 
						|
        return NULL;
 | 
						|
    frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
 | 
						|
    for (i = ndig; --i >= 0; ) {
 | 
						|
        digit bits = (digit)frac;
 | 
						|
        v->ob_digit[i] = bits;
 | 
						|
        frac = frac - (double)bits;
 | 
						|
        frac = ldexp(frac, PyLong_SHIFT);
 | 
						|
    }
 | 
						|
    if (neg)
 | 
						|
        Py_SIZE(v) = -(Py_SIZE(v));
 | 
						|
    return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
 | 
						|
 * anything about what happens when a signed integer operation overflows,
 | 
						|
 * and some compilers think they're doing you a favor by being "clever"
 | 
						|
 * then.  The bit pattern for the largest postive signed long is
 | 
						|
 * (unsigned long)LONG_MAX, and for the smallest negative signed long
 | 
						|
 * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
 | 
						|
 * However, some other compilers warn about applying unary minus to an
 | 
						|
 * unsigned operand.  Hence the weird "0-".
 | 
						|
 */
 | 
						|
#define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN)
 | 
						|
#define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN)
 | 
						|
 | 
						|
/* Get a C long int from an int object or any object that has an __int__
 | 
						|
   method.
 | 
						|
 | 
						|
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
 | 
						|
   the result.  Otherwise *overflow is 0.
 | 
						|
 | 
						|
   For other errors (e.g., TypeError), return -1 and set an error condition.
 | 
						|
   In this case *overflow will be 0.
 | 
						|
*/
 | 
						|
 | 
						|
long
 | 
						|
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
 | 
						|
{
 | 
						|
    /* This version by Tim Peters */
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned long x, prev;
 | 
						|
    long res;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int sign;
 | 
						|
    int do_decref = 0; /* if nb_int was called */
 | 
						|
 | 
						|
    *overflow = 0;
 | 
						|
    if (vv == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyLong_Check(vv)) {
 | 
						|
        v = (PyLongObject *)vv;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        v = _PyLong_FromNbInt(vv);
 | 
						|
        if (v == NULL)
 | 
						|
            return -1;
 | 
						|
        do_decref = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    res = -1;
 | 
						|
    i = Py_SIZE(v);
 | 
						|
 | 
						|
    switch (i) {
 | 
						|
    case -1:
 | 
						|
        res = -(sdigit)v->ob_digit[0];
 | 
						|
        break;
 | 
						|
    case 0:
 | 
						|
        res = 0;
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        res = v->ob_digit[0];
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        sign = 1;
 | 
						|
        x = 0;
 | 
						|
        if (i < 0) {
 | 
						|
            sign = -1;
 | 
						|
            i = -(i);
 | 
						|
        }
 | 
						|
        while (--i >= 0) {
 | 
						|
            prev = x;
 | 
						|
            x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
            if ((x >> PyLong_SHIFT) != prev) {
 | 
						|
                *overflow = sign;
 | 
						|
                goto exit;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /* Haven't lost any bits, but casting to long requires extra
 | 
						|
         * care (see comment above).
 | 
						|
         */
 | 
						|
        if (x <= (unsigned long)LONG_MAX) {
 | 
						|
            res = (long)x * sign;
 | 
						|
        }
 | 
						|
        else if (sign < 0 && x == PY_ABS_LONG_MIN) {
 | 
						|
            res = LONG_MIN;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            *overflow = sign;
 | 
						|
            /* res is already set to -1 */
 | 
						|
        }
 | 
						|
    }
 | 
						|
  exit:
 | 
						|
    if (do_decref) {
 | 
						|
        Py_DECREF(v);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C long int from an int object or any object that has an __int__
 | 
						|
   method.  Return -1 and set an error if overflow occurs. */
 | 
						|
 | 
						|
long
 | 
						|
PyLong_AsLong(PyObject *obj)
 | 
						|
{
 | 
						|
    int overflow;
 | 
						|
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
 | 
						|
    if (overflow) {
 | 
						|
        /* XXX: could be cute and give a different
 | 
						|
           message for overflow == -1 */
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "Python int too large to convert to C long");
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C int from an int object or any object that has an __int__
 | 
						|
   method.  Return -1 and set an error if overflow occurs. */
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_AsInt(PyObject *obj)
 | 
						|
{
 | 
						|
    int overflow;
 | 
						|
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
 | 
						|
    if (overflow || result > INT_MAX || result < INT_MIN) {
 | 
						|
        /* XXX: could be cute and give a different
 | 
						|
           message for overflow == -1 */
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "Python int too large to convert to C int");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return (int)result;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a Py_ssize_t from an int object.
 | 
						|
   Returns -1 and sets an error condition if overflow occurs. */
 | 
						|
 | 
						|
Py_ssize_t
 | 
						|
PyLong_AsSsize_t(PyObject *vv) {
 | 
						|
    PyLongObject *v;
 | 
						|
    size_t x, prev;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int sign;
 | 
						|
 | 
						|
    if (vv == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (!PyLong_Check(vv)) {
 | 
						|
        PyErr_SetString(PyExc_TypeError, "an integer is required");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    v = (PyLongObject *)vv;
 | 
						|
    i = Py_SIZE(v);
 | 
						|
    switch (i) {
 | 
						|
    case -1: return -(sdigit)v->ob_digit[0];
 | 
						|
    case 0: return 0;
 | 
						|
    case 1: return v->ob_digit[0];
 | 
						|
    }
 | 
						|
    sign = 1;
 | 
						|
    x = 0;
 | 
						|
    if (i < 0) {
 | 
						|
        sign = -1;
 | 
						|
        i = -(i);
 | 
						|
    }
 | 
						|
    while (--i >= 0) {
 | 
						|
        prev = x;
 | 
						|
        x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
        if ((x >> PyLong_SHIFT) != prev)
 | 
						|
            goto overflow;
 | 
						|
    }
 | 
						|
    /* Haven't lost any bits, but casting to a signed type requires
 | 
						|
     * extra care (see comment above).
 | 
						|
     */
 | 
						|
    if (x <= (size_t)PY_SSIZE_T_MAX) {
 | 
						|
        return (Py_ssize_t)x * sign;
 | 
						|
    }
 | 
						|
    else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
 | 
						|
        return PY_SSIZE_T_MIN;
 | 
						|
    }
 | 
						|
    /* else overflow */
 | 
						|
 | 
						|
  overflow:
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "Python int too large to convert to C ssize_t");
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned long int from an int object.
 | 
						|
   Returns -1 and sets an error condition if overflow occurs. */
 | 
						|
 | 
						|
unsigned long
 | 
						|
PyLong_AsUnsignedLong(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned long x, prev;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    if (vv == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return (unsigned long)-1;
 | 
						|
    }
 | 
						|
    if (!PyLong_Check(vv)) {
 | 
						|
        PyErr_SetString(PyExc_TypeError, "an integer is required");
 | 
						|
        return (unsigned long)-1;
 | 
						|
    }
 | 
						|
 | 
						|
    v = (PyLongObject *)vv;
 | 
						|
    i = Py_SIZE(v);
 | 
						|
    x = 0;
 | 
						|
    if (i < 0) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "can't convert negative value to unsigned int");
 | 
						|
        return (unsigned long) -1;
 | 
						|
    }
 | 
						|
    switch (i) {
 | 
						|
    case 0: return 0;
 | 
						|
    case 1: return v->ob_digit[0];
 | 
						|
    }
 | 
						|
    while (--i >= 0) {
 | 
						|
        prev = x;
 | 
						|
        x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
        if ((x >> PyLong_SHIFT) != prev) {
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "Python int too large to convert "
 | 
						|
                            "to C unsigned long");
 | 
						|
            return (unsigned long) -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C size_t from an int object. Returns (size_t)-1 and sets
 | 
						|
   an error condition if overflow occurs. */
 | 
						|
 | 
						|
size_t
 | 
						|
PyLong_AsSize_t(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    size_t x, prev;
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    if (vv == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return (size_t) -1;
 | 
						|
    }
 | 
						|
    if (!PyLong_Check(vv)) {
 | 
						|
        PyErr_SetString(PyExc_TypeError, "an integer is required");
 | 
						|
        return (size_t)-1;
 | 
						|
    }
 | 
						|
 | 
						|
    v = (PyLongObject *)vv;
 | 
						|
    i = Py_SIZE(v);
 | 
						|
    x = 0;
 | 
						|
    if (i < 0) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                   "can't convert negative value to size_t");
 | 
						|
        return (size_t) -1;
 | 
						|
    }
 | 
						|
    switch (i) {
 | 
						|
    case 0: return 0;
 | 
						|
    case 1: return v->ob_digit[0];
 | 
						|
    }
 | 
						|
    while (--i >= 0) {
 | 
						|
        prev = x;
 | 
						|
        x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
        if ((x >> PyLong_SHIFT) != prev) {
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                "Python int too large to convert to C size_t");
 | 
						|
            return (size_t) -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned long int from an int object, ignoring the high bits.
 | 
						|
   Returns -1 and sets an error condition if an error occurs. */
 | 
						|
 | 
						|
static unsigned long
 | 
						|
_PyLong_AsUnsignedLongMask(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned long x;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int sign;
 | 
						|
 | 
						|
    if (vv == NULL || !PyLong_Check(vv)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return (unsigned long) -1;
 | 
						|
    }
 | 
						|
    v = (PyLongObject *)vv;
 | 
						|
    i = Py_SIZE(v);
 | 
						|
    switch (i) {
 | 
						|
    case 0: return 0;
 | 
						|
    case 1: return v->ob_digit[0];
 | 
						|
    }
 | 
						|
    sign = 1;
 | 
						|
    x = 0;
 | 
						|
    if (i < 0) {
 | 
						|
        sign = -1;
 | 
						|
        i = -i;
 | 
						|
    }
 | 
						|
    while (--i >= 0) {
 | 
						|
        x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
    }
 | 
						|
    return x * sign;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
PyLong_AsUnsignedLongMask(PyObject *op)
 | 
						|
{
 | 
						|
    PyLongObject *lo;
 | 
						|
    unsigned long val;
 | 
						|
 | 
						|
    if (op == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return (unsigned long)-1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyLong_Check(op)) {
 | 
						|
        return _PyLong_AsUnsignedLongMask(op);
 | 
						|
    }
 | 
						|
 | 
						|
    lo = _PyLong_FromNbInt(op);
 | 
						|
    if (lo == NULL)
 | 
						|
        return (unsigned long)-1;
 | 
						|
 | 
						|
    val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
 | 
						|
    Py_DECREF(lo);
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_Sign(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v = (PyLongObject *)vv;
 | 
						|
 | 
						|
    assert(v != NULL);
 | 
						|
    assert(PyLong_Check(v));
 | 
						|
 | 
						|
    return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
 | 
						|
}
 | 
						|
 | 
						|
size_t
 | 
						|
_PyLong_NumBits(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v = (PyLongObject *)vv;
 | 
						|
    size_t result = 0;
 | 
						|
    Py_ssize_t ndigits;
 | 
						|
 | 
						|
    assert(v != NULL);
 | 
						|
    assert(PyLong_Check(v));
 | 
						|
    ndigits = Py_ABS(Py_SIZE(v));
 | 
						|
    assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | 
						|
    if (ndigits > 0) {
 | 
						|
        digit msd = v->ob_digit[ndigits - 1];
 | 
						|
        if ((size_t)(ndigits - 1) > PY_SIZE_MAX / (size_t)PyLong_SHIFT)
 | 
						|
            goto Overflow;
 | 
						|
        result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
 | 
						|
        do {
 | 
						|
            ++result;
 | 
						|
            if (result == 0)
 | 
						|
                goto Overflow;
 | 
						|
            msd >>= 1;
 | 
						|
        } while (msd);
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
 | 
						|
  Overflow:
 | 
						|
    PyErr_SetString(PyExc_OverflowError, "int has too many bits "
 | 
						|
                    "to express in a platform size_t");
 | 
						|
    return (size_t)-1;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
 | 
						|
                      int little_endian, int is_signed)
 | 
						|
{
 | 
						|
    const unsigned char* pstartbyte;    /* LSB of bytes */
 | 
						|
    int incr;                           /* direction to move pstartbyte */
 | 
						|
    const unsigned char* pendbyte;      /* MSB of bytes */
 | 
						|
    size_t numsignificantbytes;         /* number of bytes that matter */
 | 
						|
    Py_ssize_t ndigits;                 /* number of Python int digits */
 | 
						|
    PyLongObject* v;                    /* result */
 | 
						|
    Py_ssize_t idigit = 0;              /* next free index in v->ob_digit */
 | 
						|
 | 
						|
    if (n == 0)
 | 
						|
        return PyLong_FromLong(0L);
 | 
						|
 | 
						|
    if (little_endian) {
 | 
						|
        pstartbyte = bytes;
 | 
						|
        pendbyte = bytes + n - 1;
 | 
						|
        incr = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        pstartbyte = bytes + n - 1;
 | 
						|
        pendbyte = bytes;
 | 
						|
        incr = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_signed)
 | 
						|
        is_signed = *pendbyte >= 0x80;
 | 
						|
 | 
						|
    /* Compute numsignificantbytes.  This consists of finding the most
 | 
						|
       significant byte.  Leading 0 bytes are insignificant if the number
 | 
						|
       is positive, and leading 0xff bytes if negative. */
 | 
						|
    {
 | 
						|
        size_t i;
 | 
						|
        const unsigned char* p = pendbyte;
 | 
						|
        const int pincr = -incr;  /* search MSB to LSB */
 | 
						|
        const unsigned char insignficant = is_signed ? 0xff : 0x00;
 | 
						|
 | 
						|
        for (i = 0; i < n; ++i, p += pincr) {
 | 
						|
            if (*p != insignficant)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        numsignificantbytes = n - i;
 | 
						|
        /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
 | 
						|
           actually has 2 significant bytes.  OTOH, 0xff0001 ==
 | 
						|
           -0x00ffff, so we wouldn't *need* to bump it there; but we
 | 
						|
           do for 0xffff = -0x0001.  To be safe without bothering to
 | 
						|
           check every case, bump it regardless. */
 | 
						|
        if (is_signed && numsignificantbytes < n)
 | 
						|
            ++numsignificantbytes;
 | 
						|
    }
 | 
						|
 | 
						|
    /* How many Python int digits do we need?  We have
 | 
						|
       8*numsignificantbytes bits, and each Python int digit has
 | 
						|
       PyLong_SHIFT bits, so it's the ceiling of the quotient. */
 | 
						|
    /* catch overflow before it happens */
 | 
						|
    if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "byte array too long to convert to int");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
 | 
						|
    v = _PyLong_New(ndigits);
 | 
						|
    if (v == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    /* Copy the bits over.  The tricky parts are computing 2's-comp on
 | 
						|
       the fly for signed numbers, and dealing with the mismatch between
 | 
						|
       8-bit bytes and (probably) 15-bit Python digits.*/
 | 
						|
    {
 | 
						|
        size_t i;
 | 
						|
        twodigits carry = 1;                    /* for 2's-comp calculation */
 | 
						|
        twodigits accum = 0;                    /* sliding register */
 | 
						|
        unsigned int accumbits = 0;             /* number of bits in accum */
 | 
						|
        const unsigned char* p = pstartbyte;
 | 
						|
 | 
						|
        for (i = 0; i < numsignificantbytes; ++i, p += incr) {
 | 
						|
            twodigits thisbyte = *p;
 | 
						|
            /* Compute correction for 2's comp, if needed. */
 | 
						|
            if (is_signed) {
 | 
						|
                thisbyte = (0xff ^ thisbyte) + carry;
 | 
						|
                carry = thisbyte >> 8;
 | 
						|
                thisbyte &= 0xff;
 | 
						|
            }
 | 
						|
            /* Because we're going LSB to MSB, thisbyte is
 | 
						|
               more significant than what's already in accum,
 | 
						|
               so needs to be prepended to accum. */
 | 
						|
            accum |= (twodigits)thisbyte << accumbits;
 | 
						|
            accumbits += 8;
 | 
						|
            if (accumbits >= PyLong_SHIFT) {
 | 
						|
                /* There's enough to fill a Python digit. */
 | 
						|
                assert(idigit < ndigits);
 | 
						|
                v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
 | 
						|
                ++idigit;
 | 
						|
                accum >>= PyLong_SHIFT;
 | 
						|
                accumbits -= PyLong_SHIFT;
 | 
						|
                assert(accumbits < PyLong_SHIFT);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        assert(accumbits < PyLong_SHIFT);
 | 
						|
        if (accumbits) {
 | 
						|
            assert(idigit < ndigits);
 | 
						|
            v->ob_digit[idigit] = (digit)accum;
 | 
						|
            ++idigit;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    Py_SIZE(v) = is_signed ? -idigit : idigit;
 | 
						|
    return (PyObject *)long_normalize(v);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_AsByteArray(PyLongObject* v,
 | 
						|
                    unsigned char* bytes, size_t n,
 | 
						|
                    int little_endian, int is_signed)
 | 
						|
{
 | 
						|
    Py_ssize_t i;               /* index into v->ob_digit */
 | 
						|
    Py_ssize_t ndigits;         /* |v->ob_size| */
 | 
						|
    twodigits accum;            /* sliding register */
 | 
						|
    unsigned int accumbits;     /* # bits in accum */
 | 
						|
    int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */
 | 
						|
    digit carry;                /* for computing 2's-comp */
 | 
						|
    size_t j;                   /* # bytes filled */
 | 
						|
    unsigned char* p;           /* pointer to next byte in bytes */
 | 
						|
    int pincr;                  /* direction to move p */
 | 
						|
 | 
						|
    assert(v != NULL && PyLong_Check(v));
 | 
						|
 | 
						|
    if (Py_SIZE(v) < 0) {
 | 
						|
        ndigits = -(Py_SIZE(v));
 | 
						|
        if (!is_signed) {
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "can't convert negative int to unsigned");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        do_twos_comp = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        ndigits = Py_SIZE(v);
 | 
						|
        do_twos_comp = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (little_endian) {
 | 
						|
        p = bytes;
 | 
						|
        pincr = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        p = bytes + n - 1;
 | 
						|
        pincr = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Copy over all the Python digits.
 | 
						|
       It's crucial that every Python digit except for the MSD contribute
 | 
						|
       exactly PyLong_SHIFT bits to the total, so first assert that the int is
 | 
						|
       normalized. */
 | 
						|
    assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
 | 
						|
    j = 0;
 | 
						|
    accum = 0;
 | 
						|
    accumbits = 0;
 | 
						|
    carry = do_twos_comp ? 1 : 0;
 | 
						|
    for (i = 0; i < ndigits; ++i) {
 | 
						|
        digit thisdigit = v->ob_digit[i];
 | 
						|
        if (do_twos_comp) {
 | 
						|
            thisdigit = (thisdigit ^ PyLong_MASK) + carry;
 | 
						|
            carry = thisdigit >> PyLong_SHIFT;
 | 
						|
            thisdigit &= PyLong_MASK;
 | 
						|
        }
 | 
						|
        /* Because we're going LSB to MSB, thisdigit is more
 | 
						|
           significant than what's already in accum, so needs to be
 | 
						|
           prepended to accum. */
 | 
						|
        accum |= (twodigits)thisdigit << accumbits;
 | 
						|
 | 
						|
        /* The most-significant digit may be (probably is) at least
 | 
						|
           partly empty. */
 | 
						|
        if (i == ndigits - 1) {
 | 
						|
            /* Count # of sign bits -- they needn't be stored,
 | 
						|
             * although for signed conversion we need later to
 | 
						|
             * make sure at least one sign bit gets stored. */
 | 
						|
            digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
 | 
						|
            while (s != 0) {
 | 
						|
                s >>= 1;
 | 
						|
                accumbits++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
            accumbits += PyLong_SHIFT;
 | 
						|
 | 
						|
        /* Store as many bytes as possible. */
 | 
						|
        while (accumbits >= 8) {
 | 
						|
            if (j >= n)
 | 
						|
                goto Overflow;
 | 
						|
            ++j;
 | 
						|
            *p = (unsigned char)(accum & 0xff);
 | 
						|
            p += pincr;
 | 
						|
            accumbits -= 8;
 | 
						|
            accum >>= 8;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Store the straggler (if any). */
 | 
						|
    assert(accumbits < 8);
 | 
						|
    assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
 | 
						|
    if (accumbits > 0) {
 | 
						|
        if (j >= n)
 | 
						|
            goto Overflow;
 | 
						|
        ++j;
 | 
						|
        if (do_twos_comp) {
 | 
						|
            /* Fill leading bits of the byte with sign bits
 | 
						|
               (appropriately pretending that the int had an
 | 
						|
               infinite supply of sign bits). */
 | 
						|
            accum |= (~(twodigits)0) << accumbits;
 | 
						|
        }
 | 
						|
        *p = (unsigned char)(accum & 0xff);
 | 
						|
        p += pincr;
 | 
						|
    }
 | 
						|
    else if (j == n && n > 0 && is_signed) {
 | 
						|
        /* The main loop filled the byte array exactly, so the code
 | 
						|
           just above didn't get to ensure there's a sign bit, and the
 | 
						|
           loop below wouldn't add one either.  Make sure a sign bit
 | 
						|
           exists. */
 | 
						|
        unsigned char msb = *(p - pincr);
 | 
						|
        int sign_bit_set = msb >= 0x80;
 | 
						|
        assert(accumbits == 0);
 | 
						|
        if (sign_bit_set == do_twos_comp)
 | 
						|
            return 0;
 | 
						|
        else
 | 
						|
            goto Overflow;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Fill remaining bytes with copies of the sign bit. */
 | 
						|
    {
 | 
						|
        unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
 | 
						|
        for ( ; j < n; ++j, p += pincr)
 | 
						|
            *p = signbyte;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
  Overflow:
 | 
						|
    PyErr_SetString(PyExc_OverflowError, "int too big to convert");
 | 
						|
    return -1;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new int object from a C pointer */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromVoidPtr(void *p)
 | 
						|
{
 | 
						|
#if SIZEOF_VOID_P <= SIZEOF_LONG
 | 
						|
    return PyLong_FromUnsignedLong((unsigned long)(Py_uintptr_t)p);
 | 
						|
#else
 | 
						|
 | 
						|
#ifndef HAVE_LONG_LONG
 | 
						|
#   error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | 
						|
#endif
 | 
						|
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | 
						|
#   error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | 
						|
#endif
 | 
						|
    return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)(Py_uintptr_t)p);
 | 
						|
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C pointer from an int object. */
 | 
						|
 | 
						|
void *
 | 
						|
PyLong_AsVoidPtr(PyObject *vv)
 | 
						|
{
 | 
						|
#if SIZEOF_VOID_P <= SIZEOF_LONG
 | 
						|
    long x;
 | 
						|
 | 
						|
    if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | 
						|
        x = PyLong_AsLong(vv);
 | 
						|
    else
 | 
						|
        x = PyLong_AsUnsignedLong(vv);
 | 
						|
#else
 | 
						|
 | 
						|
#ifndef HAVE_LONG_LONG
 | 
						|
#   error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
 | 
						|
#endif
 | 
						|
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
 | 
						|
#   error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
 | 
						|
#endif
 | 
						|
    PY_LONG_LONG x;
 | 
						|
 | 
						|
    if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
 | 
						|
        x = PyLong_AsLongLong(vv);
 | 
						|
    else
 | 
						|
        x = PyLong_AsUnsignedLongLong(vv);
 | 
						|
 | 
						|
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
 | 
						|
 | 
						|
    if (x == -1 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return (void *)x;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_LONG_LONG
 | 
						|
 | 
						|
/* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
 | 
						|
 * rewritten to use the newer PyLong_{As,From}ByteArray API.
 | 
						|
 */
 | 
						|
 | 
						|
#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN)
 | 
						|
 | 
						|
/* Create a new int object from a C PY_LONG_LONG int. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromLongLong(PY_LONG_LONG ival)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned PY_LONG_LONG abs_ival;
 | 
						|
    unsigned PY_LONG_LONG t;  /* unsigned so >> doesn't propagate sign bit */
 | 
						|
    int ndigits = 0;
 | 
						|
    int negative = 0;
 | 
						|
 | 
						|
    CHECK_SMALL_INT(ival);
 | 
						|
    if (ival < 0) {
 | 
						|
        /* avoid signed overflow on negation;  see comments
 | 
						|
           in PyLong_FromLong above. */
 | 
						|
        abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1;
 | 
						|
        negative = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        abs_ival = (unsigned PY_LONG_LONG)ival;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Count the number of Python digits.
 | 
						|
       We used to pick 5 ("big enough for anything"), but that's a
 | 
						|
       waste of time and space given that 5*15 = 75 bits are rarely
 | 
						|
       needed. */
 | 
						|
    t = abs_ival;
 | 
						|
    while (t) {
 | 
						|
        ++ndigits;
 | 
						|
        t >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    v = _PyLong_New(ndigits);
 | 
						|
    if (v != NULL) {
 | 
						|
        digit *p = v->ob_digit;
 | 
						|
        Py_SIZE(v) = negative ? -ndigits : ndigits;
 | 
						|
        t = abs_ival;
 | 
						|
        while (t) {
 | 
						|
            *p++ = (digit)(t & PyLong_MASK);
 | 
						|
            t >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new int object from a C unsigned PY_LONG_LONG int. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned PY_LONG_LONG t;
 | 
						|
    int ndigits = 0;
 | 
						|
 | 
						|
    if (ival < PyLong_BASE)
 | 
						|
        return PyLong_FromLong((long)ival);
 | 
						|
    /* Count the number of Python digits. */
 | 
						|
    t = (unsigned PY_LONG_LONG)ival;
 | 
						|
    while (t) {
 | 
						|
        ++ndigits;
 | 
						|
        t >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    v = _PyLong_New(ndigits);
 | 
						|
    if (v != NULL) {
 | 
						|
        digit *p = v->ob_digit;
 | 
						|
        Py_SIZE(v) = ndigits;
 | 
						|
        while (ival) {
 | 
						|
            *p++ = (digit)(ival & PyLong_MASK);
 | 
						|
            ival >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new int object from a C Py_ssize_t. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromSsize_t(Py_ssize_t ival)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    size_t abs_ival;
 | 
						|
    size_t t;  /* unsigned so >> doesn't propagate sign bit */
 | 
						|
    int ndigits = 0;
 | 
						|
    int negative = 0;
 | 
						|
 | 
						|
    CHECK_SMALL_INT(ival);
 | 
						|
    if (ival < 0) {
 | 
						|
        /* avoid signed overflow when ival = SIZE_T_MIN */
 | 
						|
        abs_ival = (size_t)(-1-ival)+1;
 | 
						|
        negative = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        abs_ival = (size_t)ival;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Count the number of Python digits. */
 | 
						|
    t = abs_ival;
 | 
						|
    while (t) {
 | 
						|
        ++ndigits;
 | 
						|
        t >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    v = _PyLong_New(ndigits);
 | 
						|
    if (v != NULL) {
 | 
						|
        digit *p = v->ob_digit;
 | 
						|
        Py_SIZE(v) = negative ? -ndigits : ndigits;
 | 
						|
        t = abs_ival;
 | 
						|
        while (t) {
 | 
						|
            *p++ = (digit)(t & PyLong_MASK);
 | 
						|
            t >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a new int object from a C size_t. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromSize_t(size_t ival)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    size_t t;
 | 
						|
    int ndigits = 0;
 | 
						|
 | 
						|
    if (ival < PyLong_BASE)
 | 
						|
        return PyLong_FromLong((long)ival);
 | 
						|
    /* Count the number of Python digits. */
 | 
						|
    t = ival;
 | 
						|
    while (t) {
 | 
						|
        ++ndigits;
 | 
						|
        t >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    v = _PyLong_New(ndigits);
 | 
						|
    if (v != NULL) {
 | 
						|
        digit *p = v->ob_digit;
 | 
						|
        Py_SIZE(v) = ndigits;
 | 
						|
        while (ival) {
 | 
						|
            *p++ = (digit)(ival & PyLong_MASK);
 | 
						|
            ival >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return (PyObject *)v;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C long long int from an int object or any object that has an
 | 
						|
   __int__ method.  Return -1 and set an error if overflow occurs. */
 | 
						|
 | 
						|
PY_LONG_LONG
 | 
						|
PyLong_AsLongLong(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    PY_LONG_LONG bytes;
 | 
						|
    int res;
 | 
						|
    int do_decref = 0; /* if nb_int was called */
 | 
						|
 | 
						|
    if (vv == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyLong_Check(vv)) {
 | 
						|
        v = (PyLongObject *)vv;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        v = _PyLong_FromNbInt(vv);
 | 
						|
        if (v == NULL)
 | 
						|
            return -1;
 | 
						|
        do_decref = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    res = 0;
 | 
						|
    switch(Py_SIZE(v)) {
 | 
						|
    case -1:
 | 
						|
        bytes = -(sdigit)v->ob_digit[0];
 | 
						|
        break;
 | 
						|
    case 0:
 | 
						|
        bytes = 0;
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        bytes = v->ob_digit[0];
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
 | 
						|
                                  SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
 | 
						|
    }
 | 
						|
    if (do_decref) {
 | 
						|
        Py_DECREF(v);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | 
						|
    if (res < 0)
 | 
						|
        return (PY_LONG_LONG)-1;
 | 
						|
    else
 | 
						|
        return bytes;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned PY_LONG_LONG int from an int object.
 | 
						|
   Return -1 and set an error if overflow occurs. */
 | 
						|
 | 
						|
unsigned PY_LONG_LONG
 | 
						|
PyLong_AsUnsignedLongLong(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned PY_LONG_LONG bytes;
 | 
						|
    int res;
 | 
						|
 | 
						|
    if (vv == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return (unsigned PY_LONG_LONG)-1;
 | 
						|
    }
 | 
						|
    if (!PyLong_Check(vv)) {
 | 
						|
        PyErr_SetString(PyExc_TypeError, "an integer is required");
 | 
						|
        return (unsigned PY_LONG_LONG)-1;
 | 
						|
    }
 | 
						|
 | 
						|
    v = (PyLongObject*)vv;
 | 
						|
    switch(Py_SIZE(v)) {
 | 
						|
    case 0: return 0;
 | 
						|
    case 1: return v->ob_digit[0];
 | 
						|
    }
 | 
						|
 | 
						|
    res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
 | 
						|
                              SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
 | 
						|
 | 
						|
    /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
 | 
						|
    if (res < 0)
 | 
						|
        return (unsigned PY_LONG_LONG)res;
 | 
						|
    else
 | 
						|
        return bytes;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C unsigned long int from an int object, ignoring the high bits.
 | 
						|
   Returns -1 and sets an error condition if an error occurs. */
 | 
						|
 | 
						|
static unsigned PY_LONG_LONG
 | 
						|
_PyLong_AsUnsignedLongLongMask(PyObject *vv)
 | 
						|
{
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned PY_LONG_LONG x;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int sign;
 | 
						|
 | 
						|
    if (vv == NULL || !PyLong_Check(vv)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return (unsigned long) -1;
 | 
						|
    }
 | 
						|
    v = (PyLongObject *)vv;
 | 
						|
    switch(Py_SIZE(v)) {
 | 
						|
    case 0: return 0;
 | 
						|
    case 1: return v->ob_digit[0];
 | 
						|
    }
 | 
						|
    i = Py_SIZE(v);
 | 
						|
    sign = 1;
 | 
						|
    x = 0;
 | 
						|
    if (i < 0) {
 | 
						|
        sign = -1;
 | 
						|
        i = -i;
 | 
						|
    }
 | 
						|
    while (--i >= 0) {
 | 
						|
        x = (x << PyLong_SHIFT) | v->ob_digit[i];
 | 
						|
    }
 | 
						|
    return x * sign;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PY_LONG_LONG
 | 
						|
PyLong_AsUnsignedLongLongMask(PyObject *op)
 | 
						|
{
 | 
						|
    PyLongObject *lo;
 | 
						|
    unsigned PY_LONG_LONG val;
 | 
						|
 | 
						|
    if (op == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return (unsigned long)-1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyLong_Check(op)) {
 | 
						|
        return _PyLong_AsUnsignedLongLongMask(op);
 | 
						|
    }
 | 
						|
 | 
						|
    lo = _PyLong_FromNbInt(op);
 | 
						|
    if (lo == NULL)
 | 
						|
        return (unsigned PY_LONG_LONG)-1;
 | 
						|
 | 
						|
    val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
 | 
						|
    Py_DECREF(lo);
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C long long int from an int object or any object that has an
 | 
						|
   __int__ method.
 | 
						|
 | 
						|
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
 | 
						|
   the result.  Otherwise *overflow is 0.
 | 
						|
 | 
						|
   For other errors (e.g., TypeError), return -1 and set an error condition.
 | 
						|
   In this case *overflow will be 0.
 | 
						|
*/
 | 
						|
 | 
						|
PY_LONG_LONG
 | 
						|
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
 | 
						|
{
 | 
						|
    /* This version by Tim Peters */
 | 
						|
    PyLongObject *v;
 | 
						|
    unsigned PY_LONG_LONG x, prev;
 | 
						|
    PY_LONG_LONG res;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int sign;
 | 
						|
    int do_decref = 0; /* if nb_int was called */
 | 
						|
 | 
						|
    *overflow = 0;
 | 
						|
    if (vv == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyLong_Check(vv)) {
 | 
						|
        v = (PyLongObject *)vv;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        v = _PyLong_FromNbInt(vv);
 | 
						|
        if (v == NULL)
 | 
						|
            return -1;
 | 
						|
        do_decref = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    res = -1;
 | 
						|
    i = Py_SIZE(v);
 | 
						|
 | 
						|
    switch (i) {
 | 
						|
    case -1:
 | 
						|
        res = -(sdigit)v->ob_digit[0];
 | 
						|
        break;
 | 
						|
    case 0:
 | 
						|
        res = 0;
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        res = v->ob_digit[0];
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        sign = 1;
 | 
						|
        x = 0;
 | 
						|
        if (i < 0) {
 | 
						|
            sign = -1;
 | 
						|
            i = -(i);
 | 
						|
        }
 | 
						|
        while (--i >= 0) {
 | 
						|
            prev = x;
 | 
						|
            x = (x << PyLong_SHIFT) + v->ob_digit[i];
 | 
						|
            if ((x >> PyLong_SHIFT) != prev) {
 | 
						|
                *overflow = sign;
 | 
						|
                goto exit;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /* Haven't lost any bits, but casting to long requires extra
 | 
						|
         * care (see comment above).
 | 
						|
         */
 | 
						|
        if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) {
 | 
						|
            res = (PY_LONG_LONG)x * sign;
 | 
						|
        }
 | 
						|
        else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
 | 
						|
            res = PY_LLONG_MIN;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            *overflow = sign;
 | 
						|
            /* res is already set to -1 */
 | 
						|
        }
 | 
						|
    }
 | 
						|
  exit:
 | 
						|
    if (do_decref) {
 | 
						|
        Py_DECREF(v);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* HAVE_LONG_LONG */
 | 
						|
 | 
						|
#define CHECK_BINOP(v,w)                                \
 | 
						|
    do {                                                \
 | 
						|
        if (!PyLong_Check(v) || !PyLong_Check(w))       \
 | 
						|
            Py_RETURN_NOTIMPLEMENTED;                   \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
 | 
						|
   2**k if d is nonzero, else 0. */
 | 
						|
 | 
						|
static const unsigned char BitLengthTable[32] = {
 | 
						|
    0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
 | 
						|
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
bits_in_digit(digit d)
 | 
						|
{
 | 
						|
    int d_bits = 0;
 | 
						|
    while (d >= 32) {
 | 
						|
        d_bits += 6;
 | 
						|
        d >>= 6;
 | 
						|
    }
 | 
						|
    d_bits += (int)BitLengthTable[d];
 | 
						|
    return d_bits;
 | 
						|
}
 | 
						|
 | 
						|
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | 
						|
 * is modified in place, by adding y to it.  Carries are propagated as far as
 | 
						|
 * x[m-1], and the remaining carry (0 or 1) is returned.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    digit carry = 0;
 | 
						|
 | 
						|
    assert(m >= n);
 | 
						|
    for (i = 0; i < n; ++i) {
 | 
						|
        carry += x[i] + y[i];
 | 
						|
        x[i] = carry & PyLong_MASK;
 | 
						|
        carry >>= PyLong_SHIFT;
 | 
						|
        assert((carry & 1) == carry);
 | 
						|
    }
 | 
						|
    for (; carry && i < m; ++i) {
 | 
						|
        carry += x[i];
 | 
						|
        x[i] = carry & PyLong_MASK;
 | 
						|
        carry >>= PyLong_SHIFT;
 | 
						|
        assert((carry & 1) == carry);
 | 
						|
    }
 | 
						|
    return carry;
 | 
						|
}
 | 
						|
 | 
						|
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
 | 
						|
 * is modified in place, by subtracting y from it.  Borrows are propagated as
 | 
						|
 * far as x[m-1], and the remaining borrow (0 or 1) is returned.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    digit borrow = 0;
 | 
						|
 | 
						|
    assert(m >= n);
 | 
						|
    for (i = 0; i < n; ++i) {
 | 
						|
        borrow = x[i] - y[i] - borrow;
 | 
						|
        x[i] = borrow & PyLong_MASK;
 | 
						|
        borrow >>= PyLong_SHIFT;
 | 
						|
        borrow &= 1;            /* keep only 1 sign bit */
 | 
						|
    }
 | 
						|
    for (; borrow && i < m; ++i) {
 | 
						|
        borrow = x[i] - borrow;
 | 
						|
        x[i] = borrow & PyLong_MASK;
 | 
						|
        borrow >>= PyLong_SHIFT;
 | 
						|
        borrow &= 1;
 | 
						|
    }
 | 
						|
    return borrow;
 | 
						|
}
 | 
						|
 | 
						|
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
 | 
						|
 * result in z[0:m], and return the d bits shifted out of the top.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    digit carry = 0;
 | 
						|
 | 
						|
    assert(0 <= d && d < PyLong_SHIFT);
 | 
						|
    for (i=0; i < m; i++) {
 | 
						|
        twodigits acc = (twodigits)a[i] << d | carry;
 | 
						|
        z[i] = (digit)acc & PyLong_MASK;
 | 
						|
        carry = (digit)(acc >> PyLong_SHIFT);
 | 
						|
    }
 | 
						|
    return carry;
 | 
						|
}
 | 
						|
 | 
						|
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
 | 
						|
 * result in z[0:m], and return the d bits shifted out of the bottom.
 | 
						|
 */
 | 
						|
static digit
 | 
						|
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    digit carry = 0;
 | 
						|
    digit mask = ((digit)1 << d) - 1U;
 | 
						|
 | 
						|
    assert(0 <= d && d < PyLong_SHIFT);
 | 
						|
    for (i=m; i-- > 0;) {
 | 
						|
        twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
 | 
						|
        carry = (digit)acc & mask;
 | 
						|
        z[i] = (digit)(acc >> d);
 | 
						|
    }
 | 
						|
    return carry;
 | 
						|
}
 | 
						|
 | 
						|
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
 | 
						|
   in pout, and returning the remainder.  pin and pout point at the LSD.
 | 
						|
   It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
 | 
						|
   _PyLong_Format, but that should be done with great care since ints are
 | 
						|
   immutable. */
 | 
						|
 | 
						|
static digit
 | 
						|
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
 | 
						|
{
 | 
						|
    twodigits rem = 0;
 | 
						|
 | 
						|
    assert(n > 0 && n <= PyLong_MASK);
 | 
						|
    pin += size;
 | 
						|
    pout += size;
 | 
						|
    while (--size >= 0) {
 | 
						|
        digit hi;
 | 
						|
        rem = (rem << PyLong_SHIFT) | *--pin;
 | 
						|
        *--pout = hi = (digit)(rem / n);
 | 
						|
        rem -= (twodigits)hi * n;
 | 
						|
    }
 | 
						|
    return (digit)rem;
 | 
						|
}
 | 
						|
 | 
						|
/* Divide an integer by a digit, returning both the quotient
 | 
						|
   (as function result) and the remainder (through *prem).
 | 
						|
   The sign of a is ignored; n should not be zero. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
divrem1(PyLongObject *a, digit n, digit *prem)
 | 
						|
{
 | 
						|
    const Py_ssize_t size = Py_ABS(Py_SIZE(a));
 | 
						|
    PyLongObject *z;
 | 
						|
 | 
						|
    assert(n > 0 && n <= PyLong_MASK);
 | 
						|
    z = _PyLong_New(size);
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
    *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
 | 
						|
    return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert an integer to a base 10 string.  Returns a new non-shared
 | 
						|
   string.  (Return value is non-shared so that callers can modify the
 | 
						|
   returned value if necessary.) */
 | 
						|
 | 
						|
static int
 | 
						|
long_to_decimal_string_internal(PyObject *aa,
 | 
						|
                                PyObject **p_output,
 | 
						|
                                _PyUnicodeWriter *writer)
 | 
						|
{
 | 
						|
    PyLongObject *scratch, *a;
 | 
						|
    PyObject *str;
 | 
						|
    Py_ssize_t size, strlen, size_a, i, j;
 | 
						|
    digit *pout, *pin, rem, tenpow;
 | 
						|
    int negative;
 | 
						|
    enum PyUnicode_Kind kind;
 | 
						|
 | 
						|
    a = (PyLongObject *)aa;
 | 
						|
    if (a == NULL || !PyLong_Check(a)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    size_a = Py_ABS(Py_SIZE(a));
 | 
						|
    negative = Py_SIZE(a) < 0;
 | 
						|
 | 
						|
    /* quick and dirty upper bound for the number of digits
 | 
						|
       required to express a in base _PyLong_DECIMAL_BASE:
 | 
						|
 | 
						|
         #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
 | 
						|
 | 
						|
       But log2(a) < size_a * PyLong_SHIFT, and
 | 
						|
       log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
 | 
						|
                                  > 3 * _PyLong_DECIMAL_SHIFT
 | 
						|
    */
 | 
						|
    if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "int too large to format");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    /* the expression size_a * PyLong_SHIFT is now safe from overflow */
 | 
						|
    size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
 | 
						|
    scratch = _PyLong_New(size);
 | 
						|
    if (scratch == NULL)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    /* convert array of base _PyLong_BASE digits in pin to an array of
 | 
						|
       base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
 | 
						|
       Volume 2 (3rd edn), section 4.4, Method 1b). */
 | 
						|
    pin = a->ob_digit;
 | 
						|
    pout = scratch->ob_digit;
 | 
						|
    size = 0;
 | 
						|
    for (i = size_a; --i >= 0; ) {
 | 
						|
        digit hi = pin[i];
 | 
						|
        for (j = 0; j < size; j++) {
 | 
						|
            twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
 | 
						|
            hi = (digit)(z / _PyLong_DECIMAL_BASE);
 | 
						|
            pout[j] = (digit)(z - (twodigits)hi *
 | 
						|
                              _PyLong_DECIMAL_BASE);
 | 
						|
        }
 | 
						|
        while (hi) {
 | 
						|
            pout[size++] = hi % _PyLong_DECIMAL_BASE;
 | 
						|
            hi /= _PyLong_DECIMAL_BASE;
 | 
						|
        }
 | 
						|
        /* check for keyboard interrupt */
 | 
						|
        SIGCHECK({
 | 
						|
                Py_DECREF(scratch);
 | 
						|
                return -1;
 | 
						|
            });
 | 
						|
    }
 | 
						|
    /* pout should have at least one digit, so that the case when a = 0
 | 
						|
       works correctly */
 | 
						|
    if (size == 0)
 | 
						|
        pout[size++] = 0;
 | 
						|
 | 
						|
    /* calculate exact length of output string, and allocate */
 | 
						|
    strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
 | 
						|
    tenpow = 10;
 | 
						|
    rem = pout[size-1];
 | 
						|
    while (rem >= tenpow) {
 | 
						|
        tenpow *= 10;
 | 
						|
        strlen++;
 | 
						|
    }
 | 
						|
    if (writer) {
 | 
						|
        if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
 | 
						|
            Py_DECREF(scratch);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        kind = writer->kind;
 | 
						|
        str = NULL;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        str = PyUnicode_New(strlen, '9');
 | 
						|
        if (str == NULL) {
 | 
						|
            Py_DECREF(scratch);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        kind = PyUnicode_KIND(str);
 | 
						|
    }
 | 
						|
 | 
						|
#define WRITE_DIGITS(TYPE)                                            \
 | 
						|
    do {                                                              \
 | 
						|
        if (writer)                                                   \
 | 
						|
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
 | 
						|
        else                                                          \
 | 
						|
            p = (TYPE*)PyUnicode_DATA(str) + strlen;                  \
 | 
						|
                                                                      \
 | 
						|
        /* pout[0] through pout[size-2] contribute exactly            \
 | 
						|
           _PyLong_DECIMAL_SHIFT digits each */                       \
 | 
						|
        for (i=0; i < size - 1; i++) {                                \
 | 
						|
            rem = pout[i];                                            \
 | 
						|
            for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {             \
 | 
						|
                *--p = '0' + rem % 10;                                \
 | 
						|
                rem /= 10;                                            \
 | 
						|
            }                                                         \
 | 
						|
        }                                                             \
 | 
						|
        /* pout[size-1]: always produce at least one decimal digit */ \
 | 
						|
        rem = pout[i];                                                \
 | 
						|
        do {                                                          \
 | 
						|
            *--p = '0' + rem % 10;                                    \
 | 
						|
            rem /= 10;                                                \
 | 
						|
        } while (rem != 0);                                           \
 | 
						|
                                                                      \
 | 
						|
        /* and sign */                                                \
 | 
						|
        if (negative)                                                 \
 | 
						|
            *--p = '-';                                               \
 | 
						|
                                                                      \
 | 
						|
        /* check we've counted correctly */                           \
 | 
						|
        if (writer)                                                   \
 | 
						|
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
 | 
						|
        else                                                          \
 | 
						|
            assert(p == (TYPE*)PyUnicode_DATA(str));                  \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
    /* fill the string right-to-left */
 | 
						|
    if (kind == PyUnicode_1BYTE_KIND) {
 | 
						|
        Py_UCS1 *p;
 | 
						|
        WRITE_DIGITS(Py_UCS1);
 | 
						|
    }
 | 
						|
    else if (kind == PyUnicode_2BYTE_KIND) {
 | 
						|
        Py_UCS2 *p;
 | 
						|
        WRITE_DIGITS(Py_UCS2);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_UCS4 *p;
 | 
						|
        assert (kind == PyUnicode_4BYTE_KIND);
 | 
						|
        WRITE_DIGITS(Py_UCS4);
 | 
						|
    }
 | 
						|
#undef WRITE_DIGITS
 | 
						|
 | 
						|
    Py_DECREF(scratch);
 | 
						|
    if (writer) {
 | 
						|
        writer->pos += strlen;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(_PyUnicode_CheckConsistency(str, 1));
 | 
						|
        *p_output = (PyObject *)str;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_to_decimal_string(PyObject *aa)
 | 
						|
{
 | 
						|
    PyObject *v;
 | 
						|
    if (long_to_decimal_string_internal(aa, &v, NULL) == -1)
 | 
						|
        return NULL;
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert an int object to a string, using a given conversion base,
 | 
						|
   which should be one of 2, 8 or 16.  Return a string object.
 | 
						|
   If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
 | 
						|
   if alternate is nonzero. */
 | 
						|
 | 
						|
static int
 | 
						|
long_format_binary(PyObject *aa, int base, int alternate,
 | 
						|
                   PyObject **p_output, _PyUnicodeWriter *writer)
 | 
						|
{
 | 
						|
    PyLongObject *a = (PyLongObject *)aa;
 | 
						|
    PyObject *v;
 | 
						|
    Py_ssize_t sz;
 | 
						|
    Py_ssize_t size_a;
 | 
						|
    enum PyUnicode_Kind kind;
 | 
						|
    int negative;
 | 
						|
    int bits;
 | 
						|
 | 
						|
    assert(base == 2 || base == 8 || base == 16);
 | 
						|
    if (a == NULL || !PyLong_Check(a)) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    size_a = Py_ABS(Py_SIZE(a));
 | 
						|
    negative = Py_SIZE(a) < 0;
 | 
						|
 | 
						|
    /* Compute a rough upper bound for the length of the string */
 | 
						|
    switch (base) {
 | 
						|
    case 16:
 | 
						|
        bits = 4;
 | 
						|
        break;
 | 
						|
    case 8:
 | 
						|
        bits = 3;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        bits = 1;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        assert(0); /* shouldn't ever get here */
 | 
						|
        bits = 0; /* to silence gcc warning */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compute exact length 'sz' of output string. */
 | 
						|
    if (size_a == 0) {
 | 
						|
        sz = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_ssize_t size_a_in_bits;
 | 
						|
        /* Ensure overflow doesn't occur during computation of sz. */
 | 
						|
        if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "int too large to format");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
 | 
						|
                         bits_in_digit(a->ob_digit[size_a - 1]);
 | 
						|
        /* Allow 1 character for a '-' sign. */
 | 
						|
        sz = negative + (size_a_in_bits + (bits - 1)) / bits;
 | 
						|
    }
 | 
						|
    if (alternate) {
 | 
						|
        /* 2 characters for prefix  */
 | 
						|
        sz += 2;
 | 
						|
    }
 | 
						|
 | 
						|
    if (writer) {
 | 
						|
        if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
 | 
						|
            return -1;
 | 
						|
        kind = writer->kind;
 | 
						|
        v = NULL;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        v = PyUnicode_New(sz, 'x');
 | 
						|
        if (v == NULL)
 | 
						|
            return -1;
 | 
						|
        kind = PyUnicode_KIND(v);
 | 
						|
    }
 | 
						|
 | 
						|
#define WRITE_DIGITS(TYPE)                                              \
 | 
						|
    do {                                                                \
 | 
						|
        if (writer)                                                     \
 | 
						|
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
 | 
						|
        else                                                            \
 | 
						|
            p = (TYPE*)PyUnicode_DATA(v) + sz;                          \
 | 
						|
                                                                        \
 | 
						|
        if (size_a == 0) {                                              \
 | 
						|
            *--p = '0';                                                 \
 | 
						|
        }                                                               \
 | 
						|
        else {                                                          \
 | 
						|
            /* JRH: special case for power-of-2 bases */                \
 | 
						|
            twodigits accum = 0;                                        \
 | 
						|
            int accumbits = 0;   /* # of bits in accum */               \
 | 
						|
            Py_ssize_t i;                                               \
 | 
						|
            for (i = 0; i < size_a; ++i) {                              \
 | 
						|
                accum |= (twodigits)a->ob_digit[i] << accumbits;        \
 | 
						|
                accumbits += PyLong_SHIFT;                              \
 | 
						|
                assert(accumbits >= bits);                              \
 | 
						|
                do {                                                    \
 | 
						|
                    char cdigit;                                        \
 | 
						|
                    cdigit = (char)(accum & (base - 1));                \
 | 
						|
                    cdigit += (cdigit < 10) ? '0' : 'a'-10;             \
 | 
						|
                    *--p = cdigit;                                      \
 | 
						|
                    accumbits -= bits;                                  \
 | 
						|
                    accum >>= bits;                                     \
 | 
						|
                } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
 | 
						|
            }                                                           \
 | 
						|
        }                                                               \
 | 
						|
                                                                        \
 | 
						|
        if (alternate) {                                                \
 | 
						|
            if (base == 16)                                             \
 | 
						|
                *--p = 'x';                                             \
 | 
						|
            else if (base == 8)                                         \
 | 
						|
                *--p = 'o';                                             \
 | 
						|
            else /* (base == 2) */                                      \
 | 
						|
                *--p = 'b';                                             \
 | 
						|
            *--p = '0';                                                 \
 | 
						|
        }                                                               \
 | 
						|
        if (negative)                                                   \
 | 
						|
            *--p = '-';                                                 \
 | 
						|
        if (writer)                                                     \
 | 
						|
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
 | 
						|
        else                                                            \
 | 
						|
            assert(p == (TYPE*)PyUnicode_DATA(v));                      \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
    if (kind == PyUnicode_1BYTE_KIND) {
 | 
						|
        Py_UCS1 *p;
 | 
						|
        WRITE_DIGITS(Py_UCS1);
 | 
						|
    }
 | 
						|
    else if (kind == PyUnicode_2BYTE_KIND) {
 | 
						|
        Py_UCS2 *p;
 | 
						|
        WRITE_DIGITS(Py_UCS2);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_UCS4 *p;
 | 
						|
        assert (kind == PyUnicode_4BYTE_KIND);
 | 
						|
        WRITE_DIGITS(Py_UCS4);
 | 
						|
    }
 | 
						|
#undef WRITE_DIGITS
 | 
						|
 | 
						|
    if (writer) {
 | 
						|
        writer->pos += sz;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(_PyUnicode_CheckConsistency(v, 1));
 | 
						|
        *p_output = v;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_Format(PyObject *obj, int base)
 | 
						|
{
 | 
						|
    PyObject *str;
 | 
						|
    int err;
 | 
						|
    if (base == 10)
 | 
						|
        err = long_to_decimal_string_internal(obj, &str, NULL);
 | 
						|
    else
 | 
						|
        err = long_format_binary(obj, base, 1, &str, NULL);
 | 
						|
    if (err == -1)
 | 
						|
        return NULL;
 | 
						|
    return str;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_FormatWriter(_PyUnicodeWriter *writer,
 | 
						|
                     PyObject *obj,
 | 
						|
                     int base, int alternate)
 | 
						|
{
 | 
						|
    if (base == 10)
 | 
						|
        return long_to_decimal_string_internal(obj, NULL, writer);
 | 
						|
    else
 | 
						|
        return long_format_binary(obj, base, alternate, NULL, writer);
 | 
						|
}
 | 
						|
 | 
						|
/* Table of digit values for 8-bit string -> integer conversion.
 | 
						|
 * '0' maps to 0, ..., '9' maps to 9.
 | 
						|
 * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
 | 
						|
 * All other indices map to 37.
 | 
						|
 * Note that when converting a base B string, a char c is a legitimate
 | 
						|
 * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
 | 
						|
 */
 | 
						|
unsigned char _PyLong_DigitValue[256] = {
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
 | 
						|
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | 
						|
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | 
						|
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
 | 
						|
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
 | 
						|
};
 | 
						|
 | 
						|
/* *str points to the first digit in a string of base `base` digits.  base
 | 
						|
 * is a power of 2 (2, 4, 8, 16, or 32).  *str is set to point to the first
 | 
						|
 * non-digit (which may be *str!).  A normalized int is returned.
 | 
						|
 * The point to this routine is that it takes time linear in the number of
 | 
						|
 * string characters.
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
long_from_binary_base(const char **str, int base)
 | 
						|
{
 | 
						|
    const char *p = *str;
 | 
						|
    const char *start = p;
 | 
						|
    int bits_per_char;
 | 
						|
    Py_ssize_t n;
 | 
						|
    PyLongObject *z;
 | 
						|
    twodigits accum;
 | 
						|
    int bits_in_accum;
 | 
						|
    digit *pdigit;
 | 
						|
 | 
						|
    assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
 | 
						|
    n = base;
 | 
						|
    for (bits_per_char = -1; n; ++bits_per_char)
 | 
						|
        n >>= 1;
 | 
						|
    /* n <- total # of bits needed, while setting p to end-of-string */
 | 
						|
    while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
 | 
						|
        ++p;
 | 
						|
    *str = p;
 | 
						|
    /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
 | 
						|
    n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
 | 
						|
    if (n / bits_per_char < p - start) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "int string too large to convert");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    n = n / PyLong_SHIFT;
 | 
						|
    z = _PyLong_New(n);
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
    /* Read string from right, and fill in int from left; i.e.,
 | 
						|
     * from least to most significant in both.
 | 
						|
     */
 | 
						|
    accum = 0;
 | 
						|
    bits_in_accum = 0;
 | 
						|
    pdigit = z->ob_digit;
 | 
						|
    while (--p >= start) {
 | 
						|
        int k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
 | 
						|
        assert(k >= 0 && k < base);
 | 
						|
        accum |= (twodigits)k << bits_in_accum;
 | 
						|
        bits_in_accum += bits_per_char;
 | 
						|
        if (bits_in_accum >= PyLong_SHIFT) {
 | 
						|
            *pdigit++ = (digit)(accum & PyLong_MASK);
 | 
						|
            assert(pdigit - z->ob_digit <= n);
 | 
						|
            accum >>= PyLong_SHIFT;
 | 
						|
            bits_in_accum -= PyLong_SHIFT;
 | 
						|
            assert(bits_in_accum < PyLong_SHIFT);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (bits_in_accum) {
 | 
						|
        assert(bits_in_accum <= PyLong_SHIFT);
 | 
						|
        *pdigit++ = (digit)accum;
 | 
						|
        assert(pdigit - z->ob_digit <= n);
 | 
						|
    }
 | 
						|
    while (pdigit - z->ob_digit < n)
 | 
						|
        *pdigit++ = 0;
 | 
						|
    return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
/* Parses an int from a bytestring. Leading and trailing whitespace will be
 | 
						|
 * ignored.
 | 
						|
 *
 | 
						|
 * If successful, a PyLong object will be returned and 'pend' will be pointing
 | 
						|
 * to the first unused byte unless it's NULL.
 | 
						|
 *
 | 
						|
 * If unsuccessful, NULL will be returned.
 | 
						|
 */
 | 
						|
PyObject *
 | 
						|
PyLong_FromString(const char *str, char **pend, int base)
 | 
						|
{
 | 
						|
    int sign = 1, error_if_nonzero = 0;
 | 
						|
    const char *start, *orig_str = str;
 | 
						|
    PyLongObject *z = NULL;
 | 
						|
    PyObject *strobj;
 | 
						|
    Py_ssize_t slen;
 | 
						|
 | 
						|
    if ((base != 0 && base < 2) || base > 36) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "int() arg 2 must be >= 2 and <= 36");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    while (*str != '\0' && Py_ISSPACE(Py_CHARMASK(*str)))
 | 
						|
        str++;
 | 
						|
    if (*str == '+')
 | 
						|
        ++str;
 | 
						|
    else if (*str == '-') {
 | 
						|
        ++str;
 | 
						|
        sign = -1;
 | 
						|
    }
 | 
						|
    if (base == 0) {
 | 
						|
        if (str[0] != '0')
 | 
						|
            base = 10;
 | 
						|
        else if (str[1] == 'x' || str[1] == 'X')
 | 
						|
            base = 16;
 | 
						|
        else if (str[1] == 'o' || str[1] == 'O')
 | 
						|
            base = 8;
 | 
						|
        else if (str[1] == 'b' || str[1] == 'B')
 | 
						|
            base = 2;
 | 
						|
        else {
 | 
						|
            /* "old" (C-style) octal literal, now invalid.
 | 
						|
               it might still be zero though */
 | 
						|
            error_if_nonzero = 1;
 | 
						|
            base = 10;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (str[0] == '0' &&
 | 
						|
        ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
 | 
						|
         (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
 | 
						|
         (base == 2  && (str[1] == 'b' || str[1] == 'B'))))
 | 
						|
        str += 2;
 | 
						|
 | 
						|
    start = str;
 | 
						|
    if ((base & (base - 1)) == 0)
 | 
						|
        z = long_from_binary_base(&str, base);
 | 
						|
    else {
 | 
						|
/***
 | 
						|
Binary bases can be converted in time linear in the number of digits, because
 | 
						|
Python's representation base is binary.  Other bases (including decimal!) use
 | 
						|
the simple quadratic-time algorithm below, complicated by some speed tricks.
 | 
						|
 | 
						|
First some math:  the largest integer that can be expressed in N base-B digits
 | 
						|
is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
 | 
						|
case number of Python digits needed to hold it is the smallest integer n s.t.
 | 
						|
 | 
						|
    BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
 | 
						|
    BASE**n >= B**N      [taking logs to base BASE]
 | 
						|
    n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
 | 
						|
 | 
						|
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
 | 
						|
this quickly.  A Python int with that much space is reserved near the start,
 | 
						|
and the result is computed into it.
 | 
						|
 | 
						|
The input string is actually treated as being in base base**i (i.e., i digits
 | 
						|
are processed at a time), where two more static arrays hold:
 | 
						|
 | 
						|
    convwidth_base[base] = the largest integer i such that base**i <= BASE
 | 
						|
    convmultmax_base[base] = base ** convwidth_base[base]
 | 
						|
 | 
						|
The first of these is the largest i such that i consecutive input digits
 | 
						|
must fit in a single Python digit.  The second is effectively the input
 | 
						|
base we're really using.
 | 
						|
 | 
						|
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
 | 
						|
convmultmax_base[base], the result is "simply"
 | 
						|
 | 
						|
   (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
 | 
						|
 | 
						|
where B = convmultmax_base[base].
 | 
						|
 | 
						|
Error analysis:  as above, the number of Python digits `n` needed is worst-
 | 
						|
case
 | 
						|
 | 
						|
    n >= N * log(B)/log(BASE)
 | 
						|
 | 
						|
where `N` is the number of input digits in base `B`.  This is computed via
 | 
						|
 | 
						|
    size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
 | 
						|
 | 
						|
below.  Two numeric concerns are how much space this can waste, and whether
 | 
						|
the computed result can be too small.  To be concrete, assume BASE = 2**15,
 | 
						|
which is the default (and it's unlikely anyone changes that).
 | 
						|
 | 
						|
Waste isn't a problem:  provided the first input digit isn't 0, the difference
 | 
						|
between the worst-case input with N digits and the smallest input with N
 | 
						|
digits is about a factor of B, but B is small compared to BASE so at most
 | 
						|
one allocated Python digit can remain unused on that count.  If
 | 
						|
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
 | 
						|
and adding 1 returns a result 1 larger than necessary.  However, that can't
 | 
						|
happen:  whenever B is a power of 2, long_from_binary_base() is called
 | 
						|
instead, and it's impossible for B**i to be an integer power of 2**15 when
 | 
						|
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
 | 
						|
an exact integer when B is not a power of 2, since B**i has a prime factor
 | 
						|
other than 2 in that case, but (2**15)**j's only prime factor is 2).
 | 
						|
 | 
						|
The computed result can be too small if the true value of N*log(B)/log(BASE)
 | 
						|
is a little bit larger than an exact integer, but due to roundoff errors (in
 | 
						|
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
 | 
						|
yields a numeric result a little less than that integer.  Unfortunately, "how
 | 
						|
close can a transcendental function get to an integer over some range?"
 | 
						|
questions are generally theoretically intractable.  Computer analysis via
 | 
						|
continued fractions is practical:  expand log(B)/log(BASE) via continued
 | 
						|
fractions, giving a sequence i/j of "the best" rational approximations.  Then
 | 
						|
j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
 | 
						|
we can get very close to being in trouble, but very rarely.  For example,
 | 
						|
76573 is a denominator in one of the continued-fraction approximations to
 | 
						|
log(10)/log(2**15), and indeed:
 | 
						|
 | 
						|
    >>> log(10)/log(2**15)*76573
 | 
						|
    16958.000000654003
 | 
						|
 | 
						|
is very close to an integer.  If we were working with IEEE single-precision,
 | 
						|
rounding errors could kill us.  Finding worst cases in IEEE double-precision
 | 
						|
requires better-than-double-precision log() functions, and Tim didn't bother.
 | 
						|
Instead the code checks to see whether the allocated space is enough as each
 | 
						|
new Python digit is added, and copies the whole thing to a larger int if not.
 | 
						|
This should happen extremely rarely, and in fact I don't have a test case
 | 
						|
that triggers it(!).  Instead the code was tested by artificially allocating
 | 
						|
just 1 digit at the start, so that the copying code was exercised for every
 | 
						|
digit beyond the first.
 | 
						|
***/
 | 
						|
        twodigits c;           /* current input character */
 | 
						|
        Py_ssize_t size_z;
 | 
						|
        int i;
 | 
						|
        int convwidth;
 | 
						|
        twodigits convmultmax, convmult;
 | 
						|
        digit *pz, *pzstop;
 | 
						|
        const char* scan;
 | 
						|
 | 
						|
        static double log_base_BASE[37] = {0.0e0,};
 | 
						|
        static int convwidth_base[37] = {0,};
 | 
						|
        static twodigits convmultmax_base[37] = {0,};
 | 
						|
 | 
						|
        if (log_base_BASE[base] == 0.0) {
 | 
						|
            twodigits convmax = base;
 | 
						|
            int i = 1;
 | 
						|
 | 
						|
            log_base_BASE[base] = (log((double)base) /
 | 
						|
                                   log((double)PyLong_BASE));
 | 
						|
            for (;;) {
 | 
						|
                twodigits next = convmax * base;
 | 
						|
                if (next > PyLong_BASE)
 | 
						|
                    break;
 | 
						|
                convmax = next;
 | 
						|
                ++i;
 | 
						|
            }
 | 
						|
            convmultmax_base[base] = convmax;
 | 
						|
            assert(i > 0);
 | 
						|
            convwidth_base[base] = i;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Find length of the string of numeric characters. */
 | 
						|
        scan = str;
 | 
						|
        while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
 | 
						|
            ++scan;
 | 
						|
 | 
						|
        /* Create an int object that can contain the largest possible
 | 
						|
         * integer with this base and length.  Note that there's no
 | 
						|
         * need to initialize z->ob_digit -- no slot is read up before
 | 
						|
         * being stored into.
 | 
						|
         */
 | 
						|
        size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
 | 
						|
        /* Uncomment next line to test exceedingly rare copy code */
 | 
						|
        /* size_z = 1; */
 | 
						|
        assert(size_z > 0);
 | 
						|
        z = _PyLong_New(size_z);
 | 
						|
        if (z == NULL)
 | 
						|
            return NULL;
 | 
						|
        Py_SIZE(z) = 0;
 | 
						|
 | 
						|
        /* `convwidth` consecutive input digits are treated as a single
 | 
						|
         * digit in base `convmultmax`.
 | 
						|
         */
 | 
						|
        convwidth = convwidth_base[base];
 | 
						|
        convmultmax = convmultmax_base[base];
 | 
						|
 | 
						|
        /* Work ;-) */
 | 
						|
        while (str < scan) {
 | 
						|
            /* grab up to convwidth digits from the input string */
 | 
						|
            c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
 | 
						|
            for (i = 1; i < convwidth && str != scan; ++i, ++str) {
 | 
						|
                c = (twodigits)(c *  base +
 | 
						|
                                (int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
 | 
						|
                assert(c < PyLong_BASE);
 | 
						|
            }
 | 
						|
 | 
						|
            convmult = convmultmax;
 | 
						|
            /* Calculate the shift only if we couldn't get
 | 
						|
             * convwidth digits.
 | 
						|
             */
 | 
						|
            if (i != convwidth) {
 | 
						|
                convmult = base;
 | 
						|
                for ( ; i > 1; --i)
 | 
						|
                    convmult *= base;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Multiply z by convmult, and add c. */
 | 
						|
            pz = z->ob_digit;
 | 
						|
            pzstop = pz + Py_SIZE(z);
 | 
						|
            for (; pz < pzstop; ++pz) {
 | 
						|
                c += (twodigits)*pz * convmult;
 | 
						|
                *pz = (digit)(c & PyLong_MASK);
 | 
						|
                c >>= PyLong_SHIFT;
 | 
						|
            }
 | 
						|
            /* carry off the current end? */
 | 
						|
            if (c) {
 | 
						|
                assert(c < PyLong_BASE);
 | 
						|
                if (Py_SIZE(z) < size_z) {
 | 
						|
                    *pz = (digit)c;
 | 
						|
                    ++Py_SIZE(z);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    PyLongObject *tmp;
 | 
						|
                    /* Extremely rare.  Get more space. */
 | 
						|
                    assert(Py_SIZE(z) == size_z);
 | 
						|
                    tmp = _PyLong_New(size_z + 1);
 | 
						|
                    if (tmp == NULL) {
 | 
						|
                        Py_DECREF(z);
 | 
						|
                        return NULL;
 | 
						|
                    }
 | 
						|
                    memcpy(tmp->ob_digit,
 | 
						|
                           z->ob_digit,
 | 
						|
                           sizeof(digit) * size_z);
 | 
						|
                    Py_DECREF(z);
 | 
						|
                    z = tmp;
 | 
						|
                    z->ob_digit[size_z] = (digit)c;
 | 
						|
                    ++size_z;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
    if (error_if_nonzero) {
 | 
						|
        /* reset the base to 0, else the exception message
 | 
						|
           doesn't make too much sense */
 | 
						|
        base = 0;
 | 
						|
        if (Py_SIZE(z) != 0)
 | 
						|
            goto onError;
 | 
						|
        /* there might still be other problems, therefore base
 | 
						|
           remains zero here for the same reason */
 | 
						|
    }
 | 
						|
    if (str == start)
 | 
						|
        goto onError;
 | 
						|
    if (sign < 0)
 | 
						|
        Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
    while (*str && Py_ISSPACE(Py_CHARMASK(*str)))
 | 
						|
        str++;
 | 
						|
    if (*str != '\0')
 | 
						|
        goto onError;
 | 
						|
    long_normalize(z);
 | 
						|
    z = maybe_small_long(z);
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
    if (pend != NULL)
 | 
						|
        *pend = (char *)str;
 | 
						|
    return (PyObject *) z;
 | 
						|
 | 
						|
  onError:
 | 
						|
    if (pend != NULL)
 | 
						|
        *pend = (char *)str;
 | 
						|
    Py_XDECREF(z);
 | 
						|
    slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
 | 
						|
    strobj = PyUnicode_FromStringAndSize(orig_str, slen);
 | 
						|
    if (strobj == NULL)
 | 
						|
        return NULL;
 | 
						|
    PyErr_Format(PyExc_ValueError,
 | 
						|
                 "invalid literal for int() with base %d: %.200R",
 | 
						|
                 base, strobj);
 | 
						|
    Py_DECREF(strobj);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Since PyLong_FromString doesn't have a length parameter,
 | 
						|
 * check here for possible NULs in the string.
 | 
						|
 *
 | 
						|
 * Reports an invalid literal as a bytes object.
 | 
						|
 */
 | 
						|
PyObject *
 | 
						|
_PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
 | 
						|
{
 | 
						|
    PyObject *result, *strobj;
 | 
						|
    char *end = NULL;
 | 
						|
 | 
						|
    result = PyLong_FromString(s, &end, base);
 | 
						|
    if (end == NULL || (result != NULL && end == s + len))
 | 
						|
        return result;
 | 
						|
    Py_XDECREF(result);
 | 
						|
    strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
 | 
						|
    if (strobj != NULL) {
 | 
						|
        PyErr_Format(PyExc_ValueError,
 | 
						|
                     "invalid literal for int() with base %d: %.200R",
 | 
						|
                     base, strobj);
 | 
						|
        Py_DECREF(strobj);
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
 | 
						|
{
 | 
						|
    PyObject *v, *unicode = PyUnicode_FromUnicode(u, length);
 | 
						|
    if (unicode == NULL)
 | 
						|
        return NULL;
 | 
						|
    v = PyLong_FromUnicodeObject(unicode, base);
 | 
						|
    Py_DECREF(unicode);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_FromUnicodeObject(PyObject *u, int base)
 | 
						|
{
 | 
						|
    PyObject *result, *asciidig;
 | 
						|
    char *buffer, *end = NULL;
 | 
						|
    Py_ssize_t buflen;
 | 
						|
 | 
						|
    asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
 | 
						|
    if (asciidig == NULL)
 | 
						|
        return NULL;
 | 
						|
    buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
 | 
						|
    if (buffer == NULL) {
 | 
						|
        Py_DECREF(asciidig);
 | 
						|
        if (!PyErr_ExceptionMatches(PyExc_UnicodeEncodeError))
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        result = PyLong_FromString(buffer, &end, base);
 | 
						|
        if (end == NULL || (result != NULL && end == buffer + buflen)) {
 | 
						|
            Py_DECREF(asciidig);
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        Py_DECREF(asciidig);
 | 
						|
        Py_XDECREF(result);
 | 
						|
    }
 | 
						|
    PyErr_Format(PyExc_ValueError,
 | 
						|
                 "invalid literal for int() with base %d: %.200R",
 | 
						|
                 base, u);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* forward */
 | 
						|
static PyLongObject *x_divrem
 | 
						|
    (PyLongObject *, PyLongObject *, PyLongObject **);
 | 
						|
static PyObject *long_long(PyObject *v);
 | 
						|
 | 
						|
/* Int division with remainder, top-level routine */
 | 
						|
 | 
						|
static int
 | 
						|
long_divrem(PyLongObject *a, PyLongObject *b,
 | 
						|
            PyLongObject **pdiv, PyLongObject **prem)
 | 
						|
{
 | 
						|
    Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
 | 
						|
    PyLongObject *z;
 | 
						|
 | 
						|
    if (size_b == 0) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
                        "integer division or modulo by zero");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (size_a < size_b ||
 | 
						|
        (size_a == size_b &&
 | 
						|
         a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
 | 
						|
        /* |a| < |b|. */
 | 
						|
        *pdiv = (PyLongObject*)PyLong_FromLong(0);
 | 
						|
        if (*pdiv == NULL)
 | 
						|
            return -1;
 | 
						|
        Py_INCREF(a);
 | 
						|
        *prem = (PyLongObject *) a;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (size_b == 1) {
 | 
						|
        digit rem = 0;
 | 
						|
        z = divrem1(a, b->ob_digit[0], &rem);
 | 
						|
        if (z == NULL)
 | 
						|
            return -1;
 | 
						|
        *prem = (PyLongObject *) PyLong_FromLong((long)rem);
 | 
						|
        if (*prem == NULL) {
 | 
						|
            Py_DECREF(z);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        z = x_divrem(a, b, prem);
 | 
						|
        if (z == NULL)
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
    /* Set the signs.
 | 
						|
       The quotient z has the sign of a*b;
 | 
						|
       the remainder r has the sign of a,
 | 
						|
       so a = b*z + r. */
 | 
						|
    if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) {
 | 
						|
        _PyLong_Negate(&z);
 | 
						|
        if (z == NULL) {
 | 
						|
            Py_CLEAR(*prem);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
 | 
						|
        _PyLong_Negate(prem);
 | 
						|
        if (*prem == NULL) {
 | 
						|
            Py_DECREF(z);
 | 
						|
            Py_CLEAR(*prem);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    *pdiv = maybe_small_long(z);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Unsigned int division with remainder -- the algorithm.  The arguments v1
 | 
						|
   and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
 | 
						|
{
 | 
						|
    PyLongObject *v, *w, *a;
 | 
						|
    Py_ssize_t i, k, size_v, size_w;
 | 
						|
    int d;
 | 
						|
    digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
 | 
						|
    twodigits vv;
 | 
						|
    sdigit zhi;
 | 
						|
    stwodigits z;
 | 
						|
 | 
						|
    /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
 | 
						|
       edn.), section 4.3.1, Algorithm D], except that we don't explicitly
 | 
						|
       handle the special case when the initial estimate q for a quotient
 | 
						|
       digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
 | 
						|
       that won't overflow a digit. */
 | 
						|
 | 
						|
    /* allocate space; w will also be used to hold the final remainder */
 | 
						|
    size_v = Py_ABS(Py_SIZE(v1));
 | 
						|
    size_w = Py_ABS(Py_SIZE(w1));
 | 
						|
    assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
 | 
						|
    v = _PyLong_New(size_v+1);
 | 
						|
    if (v == NULL) {
 | 
						|
        *prem = NULL;
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    w = _PyLong_New(size_w);
 | 
						|
    if (w == NULL) {
 | 
						|
        Py_DECREF(v);
 | 
						|
        *prem = NULL;
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
 | 
						|
       shift v1 left by the same amount.  Results go into w and v. */
 | 
						|
    d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
 | 
						|
    carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
 | 
						|
    assert(carry == 0);
 | 
						|
    carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
 | 
						|
    if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
 | 
						|
        v->ob_digit[size_v] = carry;
 | 
						|
        size_v++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
 | 
						|
       at most (and usually exactly) k = size_v - size_w digits. */
 | 
						|
    k = size_v - size_w;
 | 
						|
    assert(k >= 0);
 | 
						|
    a = _PyLong_New(k);
 | 
						|
    if (a == NULL) {
 | 
						|
        Py_DECREF(w);
 | 
						|
        Py_DECREF(v);
 | 
						|
        *prem = NULL;
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    v0 = v->ob_digit;
 | 
						|
    w0 = w->ob_digit;
 | 
						|
    wm1 = w0[size_w-1];
 | 
						|
    wm2 = w0[size_w-2];
 | 
						|
    for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
 | 
						|
        /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
 | 
						|
           single-digit quotient q, remainder in vk[0:size_w]. */
 | 
						|
 | 
						|
        SIGCHECK({
 | 
						|
                Py_DECREF(a);
 | 
						|
                Py_DECREF(w);
 | 
						|
                Py_DECREF(v);
 | 
						|
                *prem = NULL;
 | 
						|
                return NULL;
 | 
						|
            });
 | 
						|
 | 
						|
        /* estimate quotient digit q; may overestimate by 1 (rare) */
 | 
						|
        vtop = vk[size_w];
 | 
						|
        assert(vtop <= wm1);
 | 
						|
        vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
 | 
						|
        q = (digit)(vv / wm1);
 | 
						|
        r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
 | 
						|
        while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
 | 
						|
                                     | vk[size_w-2])) {
 | 
						|
            --q;
 | 
						|
            r += wm1;
 | 
						|
            if (r >= PyLong_BASE)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        assert(q <= PyLong_BASE);
 | 
						|
 | 
						|
        /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
 | 
						|
        zhi = 0;
 | 
						|
        for (i = 0; i < size_w; ++i) {
 | 
						|
            /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
 | 
						|
               -PyLong_BASE * q <= z < PyLong_BASE */
 | 
						|
            z = (sdigit)vk[i] + zhi -
 | 
						|
                (stwodigits)q * (stwodigits)w0[i];
 | 
						|
            vk[i] = (digit)z & PyLong_MASK;
 | 
						|
            zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
 | 
						|
                                                    z, PyLong_SHIFT);
 | 
						|
        }
 | 
						|
 | 
						|
        /* add w back if q was too large (this branch taken rarely) */
 | 
						|
        assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
 | 
						|
        if ((sdigit)vtop + zhi < 0) {
 | 
						|
            carry = 0;
 | 
						|
            for (i = 0; i < size_w; ++i) {
 | 
						|
                carry += vk[i] + w0[i];
 | 
						|
                vk[i] = carry & PyLong_MASK;
 | 
						|
                carry >>= PyLong_SHIFT;
 | 
						|
            }
 | 
						|
            --q;
 | 
						|
        }
 | 
						|
 | 
						|
        /* store quotient digit */
 | 
						|
        assert(q < PyLong_BASE);
 | 
						|
        *--ak = q;
 | 
						|
    }
 | 
						|
 | 
						|
    /* unshift remainder; we reuse w to store the result */
 | 
						|
    carry = v_rshift(w0, v0, size_w, d);
 | 
						|
    assert(carry==0);
 | 
						|
    Py_DECREF(v);
 | 
						|
 | 
						|
    *prem = long_normalize(w);
 | 
						|
    return long_normalize(a);
 | 
						|
}
 | 
						|
 | 
						|
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
 | 
						|
   abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
 | 
						|
   rounded to DBL_MANT_DIG significant bits using round-half-to-even.
 | 
						|
   If a == 0, return 0.0 and set *e = 0.  If the resulting exponent
 | 
						|
   e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
 | 
						|
   -1.0. */
 | 
						|
 | 
						|
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
 | 
						|
#if DBL_MANT_DIG == 53
 | 
						|
#define EXP2_DBL_MANT_DIG 9007199254740992.0
 | 
						|
#else
 | 
						|
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
 | 
						|
#endif
 | 
						|
 | 
						|
double
 | 
						|
_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
 | 
						|
{
 | 
						|
    Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
 | 
						|
    /* See below for why x_digits is always large enough. */
 | 
						|
    digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
 | 
						|
    double dx;
 | 
						|
    /* Correction term for round-half-to-even rounding.  For a digit x,
 | 
						|
       "x + half_even_correction[x & 7]" gives x rounded to the nearest
 | 
						|
       multiple of 4, rounding ties to a multiple of 8. */
 | 
						|
    static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
 | 
						|
 | 
						|
    a_size = Py_ABS(Py_SIZE(a));
 | 
						|
    if (a_size == 0) {
 | 
						|
        /* Special case for 0: significand 0.0, exponent 0. */
 | 
						|
        *e = 0;
 | 
						|
        return 0.0;
 | 
						|
    }
 | 
						|
    a_bits = bits_in_digit(a->ob_digit[a_size-1]);
 | 
						|
    /* The following is an overflow-free version of the check
 | 
						|
       "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
 | 
						|
    if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
 | 
						|
        (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
 | 
						|
         a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
 | 
						|
        goto overflow;
 | 
						|
    a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
 | 
						|
 | 
						|
    /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
 | 
						|
       (shifting left if a_bits <= DBL_MANT_DIG + 2).
 | 
						|
 | 
						|
       Number of digits needed for result: write // for floor division.
 | 
						|
       Then if shifting left, we end up using
 | 
						|
 | 
						|
         1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
 | 
						|
 | 
						|
       digits.  If shifting right, we use
 | 
						|
 | 
						|
         a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
 | 
						|
 | 
						|
       digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
 | 
						|
       the inequalities
 | 
						|
 | 
						|
         m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
 | 
						|
         m // PyLong_SHIFT - n // PyLong_SHIFT <=
 | 
						|
                                          1 + (m - n - 1) // PyLong_SHIFT,
 | 
						|
 | 
						|
       valid for any integers m and n, we find that x_size satisfies
 | 
						|
 | 
						|
         x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
 | 
						|
 | 
						|
       in both cases.
 | 
						|
    */
 | 
						|
    if (a_bits <= DBL_MANT_DIG + 2) {
 | 
						|
        shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
 | 
						|
        shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
 | 
						|
        x_size = 0;
 | 
						|
        while (x_size < shift_digits)
 | 
						|
            x_digits[x_size++] = 0;
 | 
						|
        rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
 | 
						|
                       (int)shift_bits);
 | 
						|
        x_size += a_size;
 | 
						|
        x_digits[x_size++] = rem;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
 | 
						|
        shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
 | 
						|
        rem = v_rshift(x_digits, a->ob_digit + shift_digits,
 | 
						|
                       a_size - shift_digits, (int)shift_bits);
 | 
						|
        x_size = a_size - shift_digits;
 | 
						|
        /* For correct rounding below, we need the least significant
 | 
						|
           bit of x to be 'sticky' for this shift: if any of the bits
 | 
						|
           shifted out was nonzero, we set the least significant bit
 | 
						|
           of x. */
 | 
						|
        if (rem)
 | 
						|
            x_digits[0] |= 1;
 | 
						|
        else
 | 
						|
            while (shift_digits > 0)
 | 
						|
                if (a->ob_digit[--shift_digits]) {
 | 
						|
                    x_digits[0] |= 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
    }
 | 
						|
    assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
 | 
						|
 | 
						|
    /* Round, and convert to double. */
 | 
						|
    x_digits[0] += half_even_correction[x_digits[0] & 7];
 | 
						|
    dx = x_digits[--x_size];
 | 
						|
    while (x_size > 0)
 | 
						|
        dx = dx * PyLong_BASE + x_digits[--x_size];
 | 
						|
 | 
						|
    /* Rescale;  make correction if result is 1.0. */
 | 
						|
    dx /= 4.0 * EXP2_DBL_MANT_DIG;
 | 
						|
    if (dx == 1.0) {
 | 
						|
        if (a_bits == PY_SSIZE_T_MAX)
 | 
						|
            goto overflow;
 | 
						|
        dx = 0.5;
 | 
						|
        a_bits += 1;
 | 
						|
    }
 | 
						|
 | 
						|
    *e = a_bits;
 | 
						|
    return Py_SIZE(a) < 0 ? -dx : dx;
 | 
						|
 | 
						|
  overflow:
 | 
						|
    /* exponent > PY_SSIZE_T_MAX */
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "huge integer: number of bits overflows a Py_ssize_t");
 | 
						|
    *e = 0;
 | 
						|
    return -1.0;
 | 
						|
}
 | 
						|
 | 
						|
/* Get a C double from an int object.  Rounds to the nearest double,
 | 
						|
   using the round-half-to-even rule in the case of a tie. */
 | 
						|
 | 
						|
double
 | 
						|
PyLong_AsDouble(PyObject *v)
 | 
						|
{
 | 
						|
    Py_ssize_t exponent;
 | 
						|
    double x;
 | 
						|
 | 
						|
    if (v == NULL) {
 | 
						|
        PyErr_BadInternalCall();
 | 
						|
        return -1.0;
 | 
						|
    }
 | 
						|
    if (!PyLong_Check(v)) {
 | 
						|
        PyErr_SetString(PyExc_TypeError, "an integer is required");
 | 
						|
        return -1.0;
 | 
						|
    }
 | 
						|
    x = _PyLong_Frexp((PyLongObject *)v, &exponent);
 | 
						|
    if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
 | 
						|
        PyErr_SetString(PyExc_OverflowError,
 | 
						|
                        "int too large to convert to float");
 | 
						|
        return -1.0;
 | 
						|
    }
 | 
						|
    return ldexp(x, (int)exponent);
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static void
 | 
						|
long_dealloc(PyObject *v)
 | 
						|
{
 | 
						|
    Py_TYPE(v)->tp_free(v);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
long_compare(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    Py_ssize_t sign;
 | 
						|
 | 
						|
    if (Py_SIZE(a) != Py_SIZE(b)) {
 | 
						|
        sign = Py_SIZE(a) - Py_SIZE(b);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_ssize_t i = Py_ABS(Py_SIZE(a));
 | 
						|
        while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | 
						|
            ;
 | 
						|
        if (i < 0)
 | 
						|
            sign = 0;
 | 
						|
        else {
 | 
						|
            sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
 | 
						|
            if (Py_SIZE(a) < 0)
 | 
						|
                sign = -sign;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return sign < 0 ? -1 : sign > 0 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
#define TEST_COND(cond) \
 | 
						|
    ((cond) ? Py_True : Py_False)
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_richcompare(PyObject *self, PyObject *other, int op)
 | 
						|
{
 | 
						|
    int result;
 | 
						|
    PyObject *v;
 | 
						|
    CHECK_BINOP(self, other);
 | 
						|
    if (self == other)
 | 
						|
        result = 0;
 | 
						|
    else
 | 
						|
        result = long_compare((PyLongObject*)self, (PyLongObject*)other);
 | 
						|
    /* Convert the return value to a Boolean */
 | 
						|
    switch (op) {
 | 
						|
    case Py_EQ:
 | 
						|
        v = TEST_COND(result == 0);
 | 
						|
        break;
 | 
						|
    case Py_NE:
 | 
						|
        v = TEST_COND(result != 0);
 | 
						|
        break;
 | 
						|
    case Py_LE:
 | 
						|
        v = TEST_COND(result <= 0);
 | 
						|
        break;
 | 
						|
    case Py_GE:
 | 
						|
        v = TEST_COND(result >= 0);
 | 
						|
        break;
 | 
						|
    case Py_LT:
 | 
						|
        v = TEST_COND(result == -1);
 | 
						|
        break;
 | 
						|
    case Py_GT:
 | 
						|
        v = TEST_COND(result == 1);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        PyErr_BadArgument();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    Py_INCREF(v);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static Py_hash_t
 | 
						|
long_hash(PyLongObject *v)
 | 
						|
{
 | 
						|
    Py_uhash_t x;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int sign;
 | 
						|
 | 
						|
    i = Py_SIZE(v);
 | 
						|
    switch(i) {
 | 
						|
    case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
 | 
						|
    case 0: return 0;
 | 
						|
    case 1: return v->ob_digit[0];
 | 
						|
    }
 | 
						|
    sign = 1;
 | 
						|
    x = 0;
 | 
						|
    if (i < 0) {
 | 
						|
        sign = -1;
 | 
						|
        i = -(i);
 | 
						|
    }
 | 
						|
    while (--i >= 0) {
 | 
						|
        /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
 | 
						|
           want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo
 | 
						|
           _PyHASH_MODULUS.
 | 
						|
 | 
						|
           The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
 | 
						|
           amounts to a rotation of the bits of x.  To see this, write
 | 
						|
 | 
						|
             x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
 | 
						|
 | 
						|
           where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
 | 
						|
           PyLong_SHIFT bits of x (those that are shifted out of the
 | 
						|
           original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
 | 
						|
           _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
 | 
						|
           bits of x, shifted up.  Then since 2**_PyHASH_BITS is
 | 
						|
           congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
 | 
						|
           congruent to y modulo _PyHASH_MODULUS.  So
 | 
						|
 | 
						|
             x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
 | 
						|
 | 
						|
           The right-hand side is just the result of rotating the
 | 
						|
           _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
 | 
						|
           not all _PyHASH_BITS bits of x are 1s, the same is true
 | 
						|
           after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
 | 
						|
           the reduction of x*2**PyLong_SHIFT modulo
 | 
						|
           _PyHASH_MODULUS. */
 | 
						|
        x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
 | 
						|
            (x >> (_PyHASH_BITS - PyLong_SHIFT));
 | 
						|
        x += v->ob_digit[i];
 | 
						|
        if (x >= _PyHASH_MODULUS)
 | 
						|
            x -= _PyHASH_MODULUS;
 | 
						|
    }
 | 
						|
    x = x * sign;
 | 
						|
    if (x == (Py_uhash_t)-1)
 | 
						|
        x = (Py_uhash_t)-2;
 | 
						|
    return (Py_hash_t)x;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Add the absolute values of two integers. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
x_add(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
 | 
						|
    PyLongObject *z;
 | 
						|
    Py_ssize_t i;
 | 
						|
    digit carry = 0;
 | 
						|
 | 
						|
    /* Ensure a is the larger of the two: */
 | 
						|
    if (size_a < size_b) {
 | 
						|
        { PyLongObject *temp = a; a = b; b = temp; }
 | 
						|
        { Py_ssize_t size_temp = size_a;
 | 
						|
            size_a = size_b;
 | 
						|
            size_b = size_temp; }
 | 
						|
    }
 | 
						|
    z = _PyLong_New(size_a+1);
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
    for (i = 0; i < size_b; ++i) {
 | 
						|
        carry += a->ob_digit[i] + b->ob_digit[i];
 | 
						|
        z->ob_digit[i] = carry & PyLong_MASK;
 | 
						|
        carry >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    for (; i < size_a; ++i) {
 | 
						|
        carry += a->ob_digit[i];
 | 
						|
        z->ob_digit[i] = carry & PyLong_MASK;
 | 
						|
        carry >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    z->ob_digit[i] = carry;
 | 
						|
    return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
/* Subtract the absolute values of two integers. */
 | 
						|
 | 
						|
static PyLongObject *
 | 
						|
x_sub(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
 | 
						|
    PyLongObject *z;
 | 
						|
    Py_ssize_t i;
 | 
						|
    int sign = 1;
 | 
						|
    digit borrow = 0;
 | 
						|
 | 
						|
    /* Ensure a is the larger of the two: */
 | 
						|
    if (size_a < size_b) {
 | 
						|
        sign = -1;
 | 
						|
        { PyLongObject *temp = a; a = b; b = temp; }
 | 
						|
        { Py_ssize_t size_temp = size_a;
 | 
						|
            size_a = size_b;
 | 
						|
            size_b = size_temp; }
 | 
						|
    }
 | 
						|
    else if (size_a == size_b) {
 | 
						|
        /* Find highest digit where a and b differ: */
 | 
						|
        i = size_a;
 | 
						|
        while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
 | 
						|
            ;
 | 
						|
        if (i < 0)
 | 
						|
            return (PyLongObject *)PyLong_FromLong(0);
 | 
						|
        if (a->ob_digit[i] < b->ob_digit[i]) {
 | 
						|
            sign = -1;
 | 
						|
            { PyLongObject *temp = a; a = b; b = temp; }
 | 
						|
        }
 | 
						|
        size_a = size_b = i+1;
 | 
						|
    }
 | 
						|
    z = _PyLong_New(size_a);
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
    for (i = 0; i < size_b; ++i) {
 | 
						|
        /* The following assumes unsigned arithmetic
 | 
						|
           works module 2**N for some N>PyLong_SHIFT. */
 | 
						|
        borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
 | 
						|
        z->ob_digit[i] = borrow & PyLong_MASK;
 | 
						|
        borrow >>= PyLong_SHIFT;
 | 
						|
        borrow &= 1; /* Keep only one sign bit */
 | 
						|
    }
 | 
						|
    for (; i < size_a; ++i) {
 | 
						|
        borrow = a->ob_digit[i] - borrow;
 | 
						|
        z->ob_digit[i] = borrow & PyLong_MASK;
 | 
						|
        borrow >>= PyLong_SHIFT;
 | 
						|
        borrow &= 1; /* Keep only one sign bit */
 | 
						|
    }
 | 
						|
    assert(borrow == 0);
 | 
						|
    if (sign < 0) {
 | 
						|
        _PyLong_Negate(&z);
 | 
						|
        if (z == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_add(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *z;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
 | 
						|
    if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
 | 
						|
        PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) +
 | 
						|
                                          MEDIUM_VALUE(b));
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
    if (Py_SIZE(a) < 0) {
 | 
						|
        if (Py_SIZE(b) < 0) {
 | 
						|
            z = x_add(a, b);
 | 
						|
            if (z != NULL && Py_SIZE(z) != 0)
 | 
						|
                Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
        }
 | 
						|
        else
 | 
						|
            z = x_sub(b, a);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (Py_SIZE(b) < 0)
 | 
						|
            z = x_sub(a, b);
 | 
						|
        else
 | 
						|
            z = x_add(a, b);
 | 
						|
    }
 | 
						|
    return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_sub(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *z;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
 | 
						|
    if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
 | 
						|
        PyObject* r;
 | 
						|
        r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b));
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
    if (Py_SIZE(a) < 0) {
 | 
						|
        if (Py_SIZE(b) < 0)
 | 
						|
            z = x_sub(a, b);
 | 
						|
        else
 | 
						|
            z = x_add(a, b);
 | 
						|
        if (z != NULL && Py_SIZE(z) != 0)
 | 
						|
            Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (Py_SIZE(b) < 0)
 | 
						|
            z = x_add(a, b);
 | 
						|
        else
 | 
						|
            z = x_sub(a, b);
 | 
						|
    }
 | 
						|
    return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
/* Grade school multiplication, ignoring the signs.
 | 
						|
 * Returns the absolute value of the product, or NULL if error.
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
x_mul(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *z;
 | 
						|
    Py_ssize_t size_a = Py_ABS(Py_SIZE(a));
 | 
						|
    Py_ssize_t size_b = Py_ABS(Py_SIZE(b));
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    z = _PyLong_New(size_a + size_b);
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
 | 
						|
    if (a == b) {
 | 
						|
        /* Efficient squaring per HAC, Algorithm 14.16:
 | 
						|
         * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
 | 
						|
         * Gives slightly less than a 2x speedup when a == b,
 | 
						|
         * via exploiting that each entry in the multiplication
 | 
						|
         * pyramid appears twice (except for the size_a squares).
 | 
						|
         */
 | 
						|
        for (i = 0; i < size_a; ++i) {
 | 
						|
            twodigits carry;
 | 
						|
            twodigits f = a->ob_digit[i];
 | 
						|
            digit *pz = z->ob_digit + (i << 1);
 | 
						|
            digit *pa = a->ob_digit + i + 1;
 | 
						|
            digit *paend = a->ob_digit + size_a;
 | 
						|
 | 
						|
            SIGCHECK({
 | 
						|
                    Py_DECREF(z);
 | 
						|
                    return NULL;
 | 
						|
                });
 | 
						|
 | 
						|
            carry = *pz + f * f;
 | 
						|
            *pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
            carry >>= PyLong_SHIFT;
 | 
						|
            assert(carry <= PyLong_MASK);
 | 
						|
 | 
						|
            /* Now f is added in twice in each column of the
 | 
						|
             * pyramid it appears.  Same as adding f<<1 once.
 | 
						|
             */
 | 
						|
            f <<= 1;
 | 
						|
            while (pa < paend) {
 | 
						|
                carry += *pz + *pa++ * f;
 | 
						|
                *pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
                carry >>= PyLong_SHIFT;
 | 
						|
                assert(carry <= (PyLong_MASK << 1));
 | 
						|
            }
 | 
						|
            if (carry) {
 | 
						|
                carry += *pz;
 | 
						|
                *pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
                carry >>= PyLong_SHIFT;
 | 
						|
            }
 | 
						|
            if (carry)
 | 
						|
                *pz += (digit)(carry & PyLong_MASK);
 | 
						|
            assert((carry >> PyLong_SHIFT) == 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {      /* a is not the same as b -- gradeschool int mult */
 | 
						|
        for (i = 0; i < size_a; ++i) {
 | 
						|
            twodigits carry = 0;
 | 
						|
            twodigits f = a->ob_digit[i];
 | 
						|
            digit *pz = z->ob_digit + i;
 | 
						|
            digit *pb = b->ob_digit;
 | 
						|
            digit *pbend = b->ob_digit + size_b;
 | 
						|
 | 
						|
            SIGCHECK({
 | 
						|
                    Py_DECREF(z);
 | 
						|
                    return NULL;
 | 
						|
                });
 | 
						|
 | 
						|
            while (pb < pbend) {
 | 
						|
                carry += *pz + *pb++ * f;
 | 
						|
                *pz++ = (digit)(carry & PyLong_MASK);
 | 
						|
                carry >>= PyLong_SHIFT;
 | 
						|
                assert(carry <= PyLong_MASK);
 | 
						|
            }
 | 
						|
            if (carry)
 | 
						|
                *pz += (digit)(carry & PyLong_MASK);
 | 
						|
            assert((carry >> PyLong_SHIFT) == 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return long_normalize(z);
 | 
						|
}
 | 
						|
 | 
						|
/* A helper for Karatsuba multiplication (k_mul).
 | 
						|
   Takes an int "n" and an integer "size" representing the place to
 | 
						|
   split, and sets low and high such that abs(n) == (high << size) + low,
 | 
						|
   viewing the shift as being by digits.  The sign bit is ignored, and
 | 
						|
   the return values are >= 0.
 | 
						|
   Returns 0 on success, -1 on failure.
 | 
						|
*/
 | 
						|
static int
 | 
						|
kmul_split(PyLongObject *n,
 | 
						|
           Py_ssize_t size,
 | 
						|
           PyLongObject **high,
 | 
						|
           PyLongObject **low)
 | 
						|
{
 | 
						|
    PyLongObject *hi, *lo;
 | 
						|
    Py_ssize_t size_lo, size_hi;
 | 
						|
    const Py_ssize_t size_n = Py_ABS(Py_SIZE(n));
 | 
						|
 | 
						|
    size_lo = Py_MIN(size_n, size);
 | 
						|
    size_hi = size_n - size_lo;
 | 
						|
 | 
						|
    if ((hi = _PyLong_New(size_hi)) == NULL)
 | 
						|
        return -1;
 | 
						|
    if ((lo = _PyLong_New(size_lo)) == NULL) {
 | 
						|
        Py_DECREF(hi);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
 | 
						|
    memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
 | 
						|
 | 
						|
    *high = long_normalize(hi);
 | 
						|
    *low = long_normalize(lo);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
 | 
						|
 | 
						|
/* Karatsuba multiplication.  Ignores the input signs, and returns the
 | 
						|
 * absolute value of the product (or NULL if error).
 | 
						|
 * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
k_mul(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    Py_ssize_t asize = Py_ABS(Py_SIZE(a));
 | 
						|
    Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
 | 
						|
    PyLongObject *ah = NULL;
 | 
						|
    PyLongObject *al = NULL;
 | 
						|
    PyLongObject *bh = NULL;
 | 
						|
    PyLongObject *bl = NULL;
 | 
						|
    PyLongObject *ret = NULL;
 | 
						|
    PyLongObject *t1, *t2, *t3;
 | 
						|
    Py_ssize_t shift;           /* the number of digits we split off */
 | 
						|
    Py_ssize_t i;
 | 
						|
 | 
						|
    /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
 | 
						|
     * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
 | 
						|
     * Then the original product is
 | 
						|
     *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
 | 
						|
     * By picking X to be a power of 2, "*X" is just shifting, and it's
 | 
						|
     * been reduced to 3 multiplies on numbers half the size.
 | 
						|
     */
 | 
						|
 | 
						|
    /* We want to split based on the larger number; fiddle so that b
 | 
						|
     * is largest.
 | 
						|
     */
 | 
						|
    if (asize > bsize) {
 | 
						|
        t1 = a;
 | 
						|
        a = b;
 | 
						|
        b = t1;
 | 
						|
 | 
						|
        i = asize;
 | 
						|
        asize = bsize;
 | 
						|
        bsize = i;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Use gradeschool math when either number is too small. */
 | 
						|
    i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
 | 
						|
    if (asize <= i) {
 | 
						|
        if (asize == 0)
 | 
						|
            return (PyLongObject *)PyLong_FromLong(0);
 | 
						|
        else
 | 
						|
            return x_mul(a, b);
 | 
						|
    }
 | 
						|
 | 
						|
    /* If a is small compared to b, splitting on b gives a degenerate
 | 
						|
     * case with ah==0, and Karatsuba may be (even much) less efficient
 | 
						|
     * than "grade school" then.  However, we can still win, by viewing
 | 
						|
     * b as a string of "big digits", each of width a->ob_size.  That
 | 
						|
     * leads to a sequence of balanced calls to k_mul.
 | 
						|
     */
 | 
						|
    if (2 * asize <= bsize)
 | 
						|
        return k_lopsided_mul(a, b);
 | 
						|
 | 
						|
    /* Split a & b into hi & lo pieces. */
 | 
						|
    shift = bsize >> 1;
 | 
						|
    if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
 | 
						|
    assert(Py_SIZE(ah) > 0);            /* the split isn't degenerate */
 | 
						|
 | 
						|
    if (a == b) {
 | 
						|
        bh = ah;
 | 
						|
        bl = al;
 | 
						|
        Py_INCREF(bh);
 | 
						|
        Py_INCREF(bl);
 | 
						|
    }
 | 
						|
    else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
 | 
						|
 | 
						|
    /* The plan:
 | 
						|
     * 1. Allocate result space (asize + bsize digits:  that's always
 | 
						|
     *    enough).
 | 
						|
     * 2. Compute ah*bh, and copy into result at 2*shift.
 | 
						|
     * 3. Compute al*bl, and copy into result at 0.  Note that this
 | 
						|
     *    can't overlap with #2.
 | 
						|
     * 4. Subtract al*bl from the result, starting at shift.  This may
 | 
						|
     *    underflow (borrow out of the high digit), but we don't care:
 | 
						|
     *    we're effectively doing unsigned arithmetic mod
 | 
						|
     *    BASE**(sizea + sizeb), and so long as the *final* result fits,
 | 
						|
     *    borrows and carries out of the high digit can be ignored.
 | 
						|
     * 5. Subtract ah*bh from the result, starting at shift.
 | 
						|
     * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
 | 
						|
     *    at shift.
 | 
						|
     */
 | 
						|
 | 
						|
    /* 1. Allocate result space. */
 | 
						|
    ret = _PyLong_New(asize + bsize);
 | 
						|
    if (ret == NULL) goto fail;
 | 
						|
#ifdef Py_DEBUG
 | 
						|
    /* Fill with trash, to catch reference to uninitialized digits. */
 | 
						|
    memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
 | 
						|
#endif
 | 
						|
 | 
						|
    /* 2. t1 <- ah*bh, and copy into high digits of result. */
 | 
						|
    if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
 | 
						|
    assert(Py_SIZE(t1) >= 0);
 | 
						|
    assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
 | 
						|
    memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
 | 
						|
           Py_SIZE(t1) * sizeof(digit));
 | 
						|
 | 
						|
    /* Zero-out the digits higher than the ah*bh copy. */
 | 
						|
    i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
 | 
						|
    if (i)
 | 
						|
        memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
 | 
						|
               i * sizeof(digit));
 | 
						|
 | 
						|
    /* 3. t2 <- al*bl, and copy into the low digits. */
 | 
						|
    if ((t2 = k_mul(al, bl)) == NULL) {
 | 
						|
        Py_DECREF(t1);
 | 
						|
        goto fail;
 | 
						|
    }
 | 
						|
    assert(Py_SIZE(t2) >= 0);
 | 
						|
    assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
 | 
						|
    memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
 | 
						|
 | 
						|
    /* Zero out remaining digits. */
 | 
						|
    i = 2*shift - Py_SIZE(t2);          /* number of uninitialized digits */
 | 
						|
    if (i)
 | 
						|
        memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
 | 
						|
 | 
						|
    /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
 | 
						|
     * because it's fresher in cache.
 | 
						|
     */
 | 
						|
    i = Py_SIZE(ret) - shift;  /* # digits after shift */
 | 
						|
    (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
 | 
						|
    Py_DECREF(t2);
 | 
						|
 | 
						|
    (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
 | 
						|
    Py_DECREF(t1);
 | 
						|
 | 
						|
    /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
 | 
						|
    if ((t1 = x_add(ah, al)) == NULL) goto fail;
 | 
						|
    Py_DECREF(ah);
 | 
						|
    Py_DECREF(al);
 | 
						|
    ah = al = NULL;
 | 
						|
 | 
						|
    if (a == b) {
 | 
						|
        t2 = t1;
 | 
						|
        Py_INCREF(t2);
 | 
						|
    }
 | 
						|
    else if ((t2 = x_add(bh, bl)) == NULL) {
 | 
						|
        Py_DECREF(t1);
 | 
						|
        goto fail;
 | 
						|
    }
 | 
						|
    Py_DECREF(bh);
 | 
						|
    Py_DECREF(bl);
 | 
						|
    bh = bl = NULL;
 | 
						|
 | 
						|
    t3 = k_mul(t1, t2);
 | 
						|
    Py_DECREF(t1);
 | 
						|
    Py_DECREF(t2);
 | 
						|
    if (t3 == NULL) goto fail;
 | 
						|
    assert(Py_SIZE(t3) >= 0);
 | 
						|
 | 
						|
    /* Add t3.  It's not obvious why we can't run out of room here.
 | 
						|
     * See the (*) comment after this function.
 | 
						|
     */
 | 
						|
    (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
 | 
						|
    Py_DECREF(t3);
 | 
						|
 | 
						|
    return long_normalize(ret);
 | 
						|
 | 
						|
  fail:
 | 
						|
    Py_XDECREF(ret);
 | 
						|
    Py_XDECREF(ah);
 | 
						|
    Py_XDECREF(al);
 | 
						|
    Py_XDECREF(bh);
 | 
						|
    Py_XDECREF(bl);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* (*) Why adding t3 can't "run out of room" above.
 | 
						|
 | 
						|
Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
 | 
						|
to start with:
 | 
						|
 | 
						|
1. For any integer i, i = c(i/2) + f(i/2).  In particular,
 | 
						|
   bsize = c(bsize/2) + f(bsize/2).
 | 
						|
2. shift = f(bsize/2)
 | 
						|
3. asize <= bsize
 | 
						|
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
 | 
						|
   routine, so asize > bsize/2 >= f(bsize/2) in this routine.
 | 
						|
 | 
						|
We allocated asize + bsize result digits, and add t3 into them at an offset
 | 
						|
of shift.  This leaves asize+bsize-shift allocated digit positions for t3
 | 
						|
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
 | 
						|
asize + c(bsize/2) available digit positions.
 | 
						|
 | 
						|
bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
 | 
						|
at most c(bsize/2) digits + 1 bit.
 | 
						|
 | 
						|
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
 | 
						|
digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
 | 
						|
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
 | 
						|
 | 
						|
The product (ah+al)*(bh+bl) therefore has at most
 | 
						|
 | 
						|
    c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
 | 
						|
 | 
						|
and we have asize + c(bsize/2) available digit positions.  We need to show
 | 
						|
this is always enough.  An instance of c(bsize/2) cancels out in both, so
 | 
						|
the question reduces to whether asize digits is enough to hold
 | 
						|
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
 | 
						|
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
 | 
						|
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
 | 
						|
digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
 | 
						|
asize == bsize, then we're asking whether bsize digits is enough to hold
 | 
						|
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
 | 
						|
is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
 | 
						|
bsize >= KARATSUBA_CUTOFF >= 2.
 | 
						|
 | 
						|
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
 | 
						|
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
 | 
						|
ah*bh and al*bl too.
 | 
						|
*/
 | 
						|
 | 
						|
/* b has at least twice the digits of a, and a is big enough that Karatsuba
 | 
						|
 * would pay off *if* the inputs had balanced sizes.  View b as a sequence
 | 
						|
 * of slices, each with a->ob_size digits, and multiply the slices by a,
 | 
						|
 * one at a time.  This gives k_mul balanced inputs to work with, and is
 | 
						|
 * also cache-friendly (we compute one double-width slice of the result
 | 
						|
 * at a time, then move on, never backtracking except for the helpful
 | 
						|
 * single-width slice overlap between successive partial sums).
 | 
						|
 */
 | 
						|
static PyLongObject *
 | 
						|
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    const Py_ssize_t asize = Py_ABS(Py_SIZE(a));
 | 
						|
    Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
 | 
						|
    Py_ssize_t nbdone;          /* # of b digits already multiplied */
 | 
						|
    PyLongObject *ret;
 | 
						|
    PyLongObject *bslice = NULL;
 | 
						|
 | 
						|
    assert(asize > KARATSUBA_CUTOFF);
 | 
						|
    assert(2 * asize <= bsize);
 | 
						|
 | 
						|
    /* Allocate result space, and zero it out. */
 | 
						|
    ret = _PyLong_New(asize + bsize);
 | 
						|
    if (ret == NULL)
 | 
						|
        return NULL;
 | 
						|
    memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
 | 
						|
 | 
						|
    /* Successive slices of b are copied into bslice. */
 | 
						|
    bslice = _PyLong_New(asize);
 | 
						|
    if (bslice == NULL)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    nbdone = 0;
 | 
						|
    while (bsize > 0) {
 | 
						|
        PyLongObject *product;
 | 
						|
        const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
 | 
						|
 | 
						|
        /* Multiply the next slice of b by a. */
 | 
						|
        memcpy(bslice->ob_digit, b->ob_digit + nbdone,
 | 
						|
               nbtouse * sizeof(digit));
 | 
						|
        Py_SIZE(bslice) = nbtouse;
 | 
						|
        product = k_mul(a, bslice);
 | 
						|
        if (product == NULL)
 | 
						|
            goto fail;
 | 
						|
 | 
						|
        /* Add into result. */
 | 
						|
        (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
 | 
						|
                     product->ob_digit, Py_SIZE(product));
 | 
						|
        Py_DECREF(product);
 | 
						|
 | 
						|
        bsize -= nbtouse;
 | 
						|
        nbdone += nbtouse;
 | 
						|
    }
 | 
						|
 | 
						|
    Py_DECREF(bslice);
 | 
						|
    return long_normalize(ret);
 | 
						|
 | 
						|
  fail:
 | 
						|
    Py_DECREF(ret);
 | 
						|
    Py_XDECREF(bslice);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_mul(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *z;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
 | 
						|
    /* fast path for single-digit multiplication */
 | 
						|
    if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
 | 
						|
        stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b);
 | 
						|
#ifdef HAVE_LONG_LONG
 | 
						|
        return PyLong_FromLongLong((PY_LONG_LONG)v);
 | 
						|
#else
 | 
						|
        /* if we don't have long long then we're almost certainly
 | 
						|
           using 15-bit digits, so v will fit in a long.  In the
 | 
						|
           unlikely event that we're using 30-bit digits on a platform
 | 
						|
           without long long, a large v will just cause us to fall
 | 
						|
           through to the general multiplication code below. */
 | 
						|
        if (v >= LONG_MIN && v <= LONG_MAX)
 | 
						|
            return PyLong_FromLong((long)v);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    z = k_mul(a, b);
 | 
						|
    /* Negate if exactly one of the inputs is negative. */
 | 
						|
    if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) {
 | 
						|
        _PyLong_Negate(&z);
 | 
						|
        if (z == NULL)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
    return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
/* The / and % operators are now defined in terms of divmod().
 | 
						|
   The expression a mod b has the value a - b*floor(a/b).
 | 
						|
   The long_divrem function gives the remainder after division of
 | 
						|
   |a| by |b|, with the sign of a.  This is also expressed
 | 
						|
   as a - b*trunc(a/b), if trunc truncates towards zero.
 | 
						|
   Some examples:
 | 
						|
     a           b      a rem b         a mod b
 | 
						|
     13          10      3               3
 | 
						|
    -13          10     -3               7
 | 
						|
     13         -10      3              -7
 | 
						|
    -13         -10     -3              -3
 | 
						|
   So, to get from rem to mod, we have to add b if a and b
 | 
						|
   have different signs.  We then subtract one from the 'div'
 | 
						|
   part of the outcome to keep the invariant intact. */
 | 
						|
 | 
						|
/* Compute
 | 
						|
 *     *pdiv, *pmod = divmod(v, w)
 | 
						|
 * NULL can be passed for pdiv or pmod, in which case that part of
 | 
						|
 * the result is simply thrown away.  The caller owns a reference to
 | 
						|
 * each of these it requests (does not pass NULL for).
 | 
						|
 */
 | 
						|
static int
 | 
						|
l_divmod(PyLongObject *v, PyLongObject *w,
 | 
						|
         PyLongObject **pdiv, PyLongObject **pmod)
 | 
						|
{
 | 
						|
    PyLongObject *div, *mod;
 | 
						|
 | 
						|
    if (long_divrem(v, w, &div, &mod) < 0)
 | 
						|
        return -1;
 | 
						|
    if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
 | 
						|
        (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
 | 
						|
        PyLongObject *temp;
 | 
						|
        PyLongObject *one;
 | 
						|
        temp = (PyLongObject *) long_add(mod, w);
 | 
						|
        Py_DECREF(mod);
 | 
						|
        mod = temp;
 | 
						|
        if (mod == NULL) {
 | 
						|
            Py_DECREF(div);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        one = (PyLongObject *) PyLong_FromLong(1L);
 | 
						|
        if (one == NULL ||
 | 
						|
            (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
 | 
						|
            Py_DECREF(mod);
 | 
						|
            Py_DECREF(div);
 | 
						|
            Py_XDECREF(one);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        Py_DECREF(one);
 | 
						|
        Py_DECREF(div);
 | 
						|
        div = temp;
 | 
						|
    }
 | 
						|
    if (pdiv != NULL)
 | 
						|
        *pdiv = div;
 | 
						|
    else
 | 
						|
        Py_DECREF(div);
 | 
						|
 | 
						|
    if (pmod != NULL)
 | 
						|
        *pmod = mod;
 | 
						|
    else
 | 
						|
        Py_DECREF(mod);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_div(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *div;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
 | 
						|
        div = NULL;
 | 
						|
    return (PyObject *)div;
 | 
						|
}
 | 
						|
 | 
						|
/* PyLong/PyLong -> float, with correctly rounded result. */
 | 
						|
 | 
						|
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
 | 
						|
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_true_divide(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    PyLongObject *a, *b, *x;
 | 
						|
    Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
 | 
						|
    digit mask, low;
 | 
						|
    int inexact, negate, a_is_small, b_is_small;
 | 
						|
    double dx, result;
 | 
						|
 | 
						|
    CHECK_BINOP(v, w);
 | 
						|
    a = (PyLongObject *)v;
 | 
						|
    b = (PyLongObject *)w;
 | 
						|
 | 
						|
    /*
 | 
						|
       Method in a nutshell:
 | 
						|
 | 
						|
         0. reduce to case a, b > 0; filter out obvious underflow/overflow
 | 
						|
         1. choose a suitable integer 'shift'
 | 
						|
         2. use integer arithmetic to compute x = floor(2**-shift*a/b)
 | 
						|
         3. adjust x for correct rounding
 | 
						|
         4. convert x to a double dx with the same value
 | 
						|
         5. return ldexp(dx, shift).
 | 
						|
 | 
						|
       In more detail:
 | 
						|
 | 
						|
       0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
 | 
						|
       returns either 0.0 or -0.0, depending on the sign of b.  For a and
 | 
						|
       b both nonzero, ignore signs of a and b, and add the sign back in
 | 
						|
       at the end.  Now write a_bits and b_bits for the bit lengths of a
 | 
						|
       and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
 | 
						|
       for b).  Then
 | 
						|
 | 
						|
          2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
 | 
						|
 | 
						|
       So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
 | 
						|
       so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
 | 
						|
       DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
 | 
						|
       the way, we can assume that
 | 
						|
 | 
						|
          DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
 | 
						|
 | 
						|
       1. The integer 'shift' is chosen so that x has the right number of
 | 
						|
       bits for a double, plus two or three extra bits that will be used
 | 
						|
       in the rounding decisions.  Writing a_bits and b_bits for the
 | 
						|
       number of significant bits in a and b respectively, a
 | 
						|
       straightforward formula for shift is:
 | 
						|
 | 
						|
          shift = a_bits - b_bits - DBL_MANT_DIG - 2
 | 
						|
 | 
						|
       This is fine in the usual case, but if a/b is smaller than the
 | 
						|
       smallest normal float then it can lead to double rounding on an
 | 
						|
       IEEE 754 platform, giving incorrectly rounded results.  So we
 | 
						|
       adjust the formula slightly.  The actual formula used is:
 | 
						|
 | 
						|
           shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
 | 
						|
 | 
						|
       2. The quantity x is computed by first shifting a (left -shift bits
 | 
						|
       if shift <= 0, right shift bits if shift > 0) and then dividing by
 | 
						|
       b.  For both the shift and the division, we keep track of whether
 | 
						|
       the result is inexact, in a flag 'inexact'; this information is
 | 
						|
       needed at the rounding stage.
 | 
						|
 | 
						|
       With the choice of shift above, together with our assumption that
 | 
						|
       a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
 | 
						|
       that x >= 1.
 | 
						|
 | 
						|
       3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
 | 
						|
       this with an exactly representable float of the form
 | 
						|
 | 
						|
          round(x/2**extra_bits) * 2**(extra_bits+shift).
 | 
						|
 | 
						|
       For float representability, we need x/2**extra_bits <
 | 
						|
       2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
 | 
						|
       DBL_MANT_DIG.  This translates to the condition:
 | 
						|
 | 
						|
          extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
 | 
						|
 | 
						|
       To round, we just modify the bottom digit of x in-place; this can
 | 
						|
       end up giving a digit with value > PyLONG_MASK, but that's not a
 | 
						|
       problem since digits can hold values up to 2*PyLONG_MASK+1.
 | 
						|
 | 
						|
       With the original choices for shift above, extra_bits will always
 | 
						|
       be 2 or 3.  Then rounding under the round-half-to-even rule, we
 | 
						|
       round up iff the most significant of the extra bits is 1, and
 | 
						|
       either: (a) the computation of x in step 2 had an inexact result,
 | 
						|
       or (b) at least one other of the extra bits is 1, or (c) the least
 | 
						|
       significant bit of x (above those to be rounded) is 1.
 | 
						|
 | 
						|
       4. Conversion to a double is straightforward; all floating-point
 | 
						|
       operations involved in the conversion are exact, so there's no
 | 
						|
       danger of rounding errors.
 | 
						|
 | 
						|
       5. Use ldexp(x, shift) to compute x*2**shift, the final result.
 | 
						|
       The result will always be exactly representable as a double, except
 | 
						|
       in the case that it overflows.  To avoid dependence on the exact
 | 
						|
       behaviour of ldexp on overflow, we check for overflow before
 | 
						|
       applying ldexp.  The result of ldexp is adjusted for sign before
 | 
						|
       returning.
 | 
						|
    */
 | 
						|
 | 
						|
    /* Reduce to case where a and b are both positive. */
 | 
						|
    a_size = Py_ABS(Py_SIZE(a));
 | 
						|
    b_size = Py_ABS(Py_SIZE(b));
 | 
						|
    negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
 | 
						|
    if (b_size == 0) {
 | 
						|
        PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
                        "division by zero");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    if (a_size == 0)
 | 
						|
        goto underflow_or_zero;
 | 
						|
 | 
						|
    /* Fast path for a and b small (exactly representable in a double).
 | 
						|
       Relies on floating-point division being correctly rounded; results
 | 
						|
       may be subject to double rounding on x86 machines that operate with
 | 
						|
       the x87 FPU set to 64-bit precision. */
 | 
						|
    a_is_small = a_size <= MANT_DIG_DIGITS ||
 | 
						|
        (a_size == MANT_DIG_DIGITS+1 &&
 | 
						|
         a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
 | 
						|
    b_is_small = b_size <= MANT_DIG_DIGITS ||
 | 
						|
        (b_size == MANT_DIG_DIGITS+1 &&
 | 
						|
         b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
 | 
						|
    if (a_is_small && b_is_small) {
 | 
						|
        double da, db;
 | 
						|
        da = a->ob_digit[--a_size];
 | 
						|
        while (a_size > 0)
 | 
						|
            da = da * PyLong_BASE + a->ob_digit[--a_size];
 | 
						|
        db = b->ob_digit[--b_size];
 | 
						|
        while (b_size > 0)
 | 
						|
            db = db * PyLong_BASE + b->ob_digit[--b_size];
 | 
						|
        result = da / db;
 | 
						|
        goto success;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Catch obvious cases of underflow and overflow */
 | 
						|
    diff = a_size - b_size;
 | 
						|
    if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
 | 
						|
        /* Extreme overflow */
 | 
						|
        goto overflow;
 | 
						|
    else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
 | 
						|
        /* Extreme underflow */
 | 
						|
        goto underflow_or_zero;
 | 
						|
    /* Next line is now safe from overflowing a Py_ssize_t */
 | 
						|
    diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
 | 
						|
        bits_in_digit(b->ob_digit[b_size - 1]);
 | 
						|
    /* Now diff = a_bits - b_bits. */
 | 
						|
    if (diff > DBL_MAX_EXP)
 | 
						|
        goto overflow;
 | 
						|
    else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
 | 
						|
        goto underflow_or_zero;
 | 
						|
 | 
						|
    /* Choose value for shift; see comments for step 1 above. */
 | 
						|
    shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
 | 
						|
 | 
						|
    inexact = 0;
 | 
						|
 | 
						|
    /* x = abs(a * 2**-shift) */
 | 
						|
    if (shift <= 0) {
 | 
						|
        Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
 | 
						|
        digit rem;
 | 
						|
        /* x = a << -shift */
 | 
						|
        if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
 | 
						|
            /* In practice, it's probably impossible to end up
 | 
						|
               here.  Both a and b would have to be enormous,
 | 
						|
               using close to SIZE_T_MAX bytes of memory each. */
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "intermediate overflow during division");
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        x = _PyLong_New(a_size + shift_digits + 1);
 | 
						|
        if (x == NULL)
 | 
						|
            goto error;
 | 
						|
        for (i = 0; i < shift_digits; i++)
 | 
						|
            x->ob_digit[i] = 0;
 | 
						|
        rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
 | 
						|
                       a_size, -shift % PyLong_SHIFT);
 | 
						|
        x->ob_digit[a_size + shift_digits] = rem;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_ssize_t shift_digits = shift / PyLong_SHIFT;
 | 
						|
        digit rem;
 | 
						|
        /* x = a >> shift */
 | 
						|
        assert(a_size >= shift_digits);
 | 
						|
        x = _PyLong_New(a_size - shift_digits);
 | 
						|
        if (x == NULL)
 | 
						|
            goto error;
 | 
						|
        rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
 | 
						|
                       a_size - shift_digits, shift % PyLong_SHIFT);
 | 
						|
        /* set inexact if any of the bits shifted out is nonzero */
 | 
						|
        if (rem)
 | 
						|
            inexact = 1;
 | 
						|
        while (!inexact && shift_digits > 0)
 | 
						|
            if (a->ob_digit[--shift_digits])
 | 
						|
                inexact = 1;
 | 
						|
    }
 | 
						|
    long_normalize(x);
 | 
						|
    x_size = Py_SIZE(x);
 | 
						|
 | 
						|
    /* x //= b. If the remainder is nonzero, set inexact.  We own the only
 | 
						|
       reference to x, so it's safe to modify it in-place. */
 | 
						|
    if (b_size == 1) {
 | 
						|
        digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
 | 
						|
                              b->ob_digit[0]);
 | 
						|
        long_normalize(x);
 | 
						|
        if (rem)
 | 
						|
            inexact = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyLongObject *div, *rem;
 | 
						|
        div = x_divrem(x, b, &rem);
 | 
						|
        Py_DECREF(x);
 | 
						|
        x = div;
 | 
						|
        if (x == NULL)
 | 
						|
            goto error;
 | 
						|
        if (Py_SIZE(rem))
 | 
						|
            inexact = 1;
 | 
						|
        Py_DECREF(rem);
 | 
						|
    }
 | 
						|
    x_size = Py_ABS(Py_SIZE(x));
 | 
						|
    assert(x_size > 0); /* result of division is never zero */
 | 
						|
    x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
 | 
						|
 | 
						|
    /* The number of extra bits that have to be rounded away. */
 | 
						|
    extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
 | 
						|
    assert(extra_bits == 2 || extra_bits == 3);
 | 
						|
 | 
						|
    /* Round by directly modifying the low digit of x. */
 | 
						|
    mask = (digit)1 << (extra_bits - 1);
 | 
						|
    low = x->ob_digit[0] | inexact;
 | 
						|
    if (low & mask && low & (3*mask-1))
 | 
						|
        low += mask;
 | 
						|
    x->ob_digit[0] = low & ~(mask-1U);
 | 
						|
 | 
						|
    /* Convert x to a double dx; the conversion is exact. */
 | 
						|
    dx = x->ob_digit[--x_size];
 | 
						|
    while (x_size > 0)
 | 
						|
        dx = dx * PyLong_BASE + x->ob_digit[--x_size];
 | 
						|
    Py_DECREF(x);
 | 
						|
 | 
						|
    /* Check whether ldexp result will overflow a double. */
 | 
						|
    if (shift + x_bits >= DBL_MAX_EXP &&
 | 
						|
        (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
 | 
						|
        goto overflow;
 | 
						|
    result = ldexp(dx, (int)shift);
 | 
						|
 | 
						|
  success:
 | 
						|
    return PyFloat_FromDouble(negate ? -result : result);
 | 
						|
 | 
						|
  underflow_or_zero:
 | 
						|
    return PyFloat_FromDouble(negate ? -0.0 : 0.0);
 | 
						|
 | 
						|
  overflow:
 | 
						|
    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                    "integer division result too large for a float");
 | 
						|
  error:
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_mod(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *mod;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
 | 
						|
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0)
 | 
						|
        mod = NULL;
 | 
						|
    return (PyObject *)mod;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_divmod(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *div, *mod;
 | 
						|
    PyObject *z;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
 | 
						|
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    z = PyTuple_New(2);
 | 
						|
    if (z != NULL) {
 | 
						|
        PyTuple_SetItem(z, 0, (PyObject *) div);
 | 
						|
        PyTuple_SetItem(z, 1, (PyObject *) mod);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        Py_DECREF(div);
 | 
						|
        Py_DECREF(mod);
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/* pow(v, w, x) */
 | 
						|
static PyObject *
 | 
						|
long_pow(PyObject *v, PyObject *w, PyObject *x)
 | 
						|
{
 | 
						|
    PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
 | 
						|
    int negativeOutput = 0;  /* if x<0 return negative output */
 | 
						|
 | 
						|
    PyLongObject *z = NULL;  /* accumulated result */
 | 
						|
    Py_ssize_t i, j, k;             /* counters */
 | 
						|
    PyLongObject *temp = NULL;
 | 
						|
 | 
						|
    /* 5-ary values.  If the exponent is large enough, table is
 | 
						|
     * precomputed so that table[i] == a**i % c for i in range(32).
 | 
						|
     */
 | 
						|
    PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 | 
						|
                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 | 
						|
 | 
						|
    /* a, b, c = v, w, x */
 | 
						|
    CHECK_BINOP(v, w);
 | 
						|
    a = (PyLongObject*)v; Py_INCREF(a);
 | 
						|
    b = (PyLongObject*)w; Py_INCREF(b);
 | 
						|
    if (PyLong_Check(x)) {
 | 
						|
        c = (PyLongObject *)x;
 | 
						|
        Py_INCREF(x);
 | 
						|
    }
 | 
						|
    else if (x == Py_None)
 | 
						|
        c = NULL;
 | 
						|
    else {
 | 
						|
        Py_DECREF(a);
 | 
						|
        Py_DECREF(b);
 | 
						|
        Py_RETURN_NOTIMPLEMENTED;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Py_SIZE(b) < 0) {  /* if exponent is negative */
 | 
						|
        if (c) {
 | 
						|
            PyErr_SetString(PyExc_ValueError, "pow() 2nd argument "
 | 
						|
                            "cannot be negative when 3rd argument specified");
 | 
						|
            goto Error;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /* else return a float.  This works because we know
 | 
						|
               that this calls float_pow() which converts its
 | 
						|
               arguments to double. */
 | 
						|
            Py_DECREF(a);
 | 
						|
            Py_DECREF(b);
 | 
						|
            return PyFloat_Type.tp_as_number->nb_power(v, w, x);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (c) {
 | 
						|
        /* if modulus == 0:
 | 
						|
               raise ValueError() */
 | 
						|
        if (Py_SIZE(c) == 0) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "pow() 3rd argument cannot be 0");
 | 
						|
            goto Error;
 | 
						|
        }
 | 
						|
 | 
						|
        /* if modulus < 0:
 | 
						|
               negativeOutput = True
 | 
						|
               modulus = -modulus */
 | 
						|
        if (Py_SIZE(c) < 0) {
 | 
						|
            negativeOutput = 1;
 | 
						|
            temp = (PyLongObject *)_PyLong_Copy(c);
 | 
						|
            if (temp == NULL)
 | 
						|
                goto Error;
 | 
						|
            Py_DECREF(c);
 | 
						|
            c = temp;
 | 
						|
            temp = NULL;
 | 
						|
            _PyLong_Negate(&c);
 | 
						|
            if (c == NULL)
 | 
						|
                goto Error;
 | 
						|
        }
 | 
						|
 | 
						|
        /* if modulus == 1:
 | 
						|
               return 0 */
 | 
						|
        if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
 | 
						|
            z = (PyLongObject *)PyLong_FromLong(0L);
 | 
						|
            goto Done;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Reduce base by modulus in some cases:
 | 
						|
           1. If base < 0.  Forcing the base non-negative makes things easier.
 | 
						|
           2. If base is obviously larger than the modulus.  The "small
 | 
						|
              exponent" case later can multiply directly by base repeatedly,
 | 
						|
              while the "large exponent" case multiplies directly by base 31
 | 
						|
              times.  It can be unboundedly faster to multiply by
 | 
						|
              base % modulus instead.
 | 
						|
           We could _always_ do this reduction, but l_divmod() isn't cheap,
 | 
						|
           so we only do it when it buys something. */
 | 
						|
        if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
 | 
						|
            if (l_divmod(a, c, NULL, &temp) < 0)
 | 
						|
                goto Error;
 | 
						|
            Py_DECREF(a);
 | 
						|
            a = temp;
 | 
						|
            temp = NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* At this point a, b, and c are guaranteed non-negative UNLESS
 | 
						|
       c is NULL, in which case a may be negative. */
 | 
						|
 | 
						|
    z = (PyLongObject *)PyLong_FromLong(1L);
 | 
						|
    if (z == NULL)
 | 
						|
        goto Error;
 | 
						|
 | 
						|
    /* Perform a modular reduction, X = X % c, but leave X alone if c
 | 
						|
     * is NULL.
 | 
						|
     */
 | 
						|
#define REDUCE(X)                                       \
 | 
						|
    do {                                                \
 | 
						|
        if (c != NULL) {                                \
 | 
						|
            if (l_divmod(X, c, NULL, &temp) < 0)        \
 | 
						|
                goto Error;                             \
 | 
						|
            Py_XDECREF(X);                              \
 | 
						|
            X = temp;                                   \
 | 
						|
            temp = NULL;                                \
 | 
						|
        }                                               \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
    /* Multiply two values, then reduce the result:
 | 
						|
       result = X*Y % c.  If c is NULL, skip the mod. */
 | 
						|
#define MULT(X, Y, result)                      \
 | 
						|
    do {                                        \
 | 
						|
        temp = (PyLongObject *)long_mul(X, Y);  \
 | 
						|
        if (temp == NULL)                       \
 | 
						|
            goto Error;                         \
 | 
						|
        Py_XDECREF(result);                     \
 | 
						|
        result = temp;                          \
 | 
						|
        temp = NULL;                            \
 | 
						|
        REDUCE(result);                         \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
    if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
 | 
						|
        /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
 | 
						|
        /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf    */
 | 
						|
        for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | 
						|
            digit bi = b->ob_digit[i];
 | 
						|
 | 
						|
            for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
 | 
						|
                MULT(z, z, z);
 | 
						|
                if (bi & j)
 | 
						|
                    MULT(z, a, z);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
 | 
						|
        Py_INCREF(z);           /* still holds 1L */
 | 
						|
        table[0] = z;
 | 
						|
        for (i = 1; i < 32; ++i)
 | 
						|
            MULT(table[i-1], a, table[i]);
 | 
						|
 | 
						|
        for (i = Py_SIZE(b) - 1; i >= 0; --i) {
 | 
						|
            const digit bi = b->ob_digit[i];
 | 
						|
 | 
						|
            for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
 | 
						|
                const int index = (bi >> j) & 0x1f;
 | 
						|
                for (k = 0; k < 5; ++k)
 | 
						|
                    MULT(z, z, z);
 | 
						|
                if (index)
 | 
						|
                    MULT(z, table[index], z);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (negativeOutput && (Py_SIZE(z) != 0)) {
 | 
						|
        temp = (PyLongObject *)long_sub(z, c);
 | 
						|
        if (temp == NULL)
 | 
						|
            goto Error;
 | 
						|
        Py_DECREF(z);
 | 
						|
        z = temp;
 | 
						|
        temp = NULL;
 | 
						|
    }
 | 
						|
    goto Done;
 | 
						|
 | 
						|
  Error:
 | 
						|
    Py_CLEAR(z);
 | 
						|
    /* fall through */
 | 
						|
  Done:
 | 
						|
    if (Py_SIZE(b) > FIVEARY_CUTOFF) {
 | 
						|
        for (i = 0; i < 32; ++i)
 | 
						|
            Py_XDECREF(table[i]);
 | 
						|
    }
 | 
						|
    Py_DECREF(a);
 | 
						|
    Py_DECREF(b);
 | 
						|
    Py_XDECREF(c);
 | 
						|
    Py_XDECREF(temp);
 | 
						|
    return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_invert(PyLongObject *v)
 | 
						|
{
 | 
						|
    /* Implement ~x as -(x+1) */
 | 
						|
    PyLongObject *x;
 | 
						|
    PyLongObject *w;
 | 
						|
    if (Py_ABS(Py_SIZE(v)) <=1)
 | 
						|
        return PyLong_FromLong(-(MEDIUM_VALUE(v)+1));
 | 
						|
    w = (PyLongObject *)PyLong_FromLong(1L);
 | 
						|
    if (w == NULL)
 | 
						|
        return NULL;
 | 
						|
    x = (PyLongObject *) long_add(v, w);
 | 
						|
    Py_DECREF(w);
 | 
						|
    if (x == NULL)
 | 
						|
        return NULL;
 | 
						|
    Py_SIZE(x) = -(Py_SIZE(x));
 | 
						|
    return (PyObject *)maybe_small_long(x);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_neg(PyLongObject *v)
 | 
						|
{
 | 
						|
    PyLongObject *z;
 | 
						|
    if (Py_ABS(Py_SIZE(v)) <= 1)
 | 
						|
        return PyLong_FromLong(-MEDIUM_VALUE(v));
 | 
						|
    z = (PyLongObject *)_PyLong_Copy(v);
 | 
						|
    if (z != NULL)
 | 
						|
        Py_SIZE(z) = -(Py_SIZE(v));
 | 
						|
    return (PyObject *)z;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_abs(PyLongObject *v)
 | 
						|
{
 | 
						|
    if (Py_SIZE(v) < 0)
 | 
						|
        return long_neg(v);
 | 
						|
    else
 | 
						|
        return long_long((PyObject *)v);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
long_bool(PyLongObject *v)
 | 
						|
{
 | 
						|
    return Py_SIZE(v) != 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_rshift(PyLongObject *a, PyLongObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *z = NULL;
 | 
						|
    Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j;
 | 
						|
    digit lomask, himask;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
 | 
						|
    if (Py_SIZE(a) < 0) {
 | 
						|
        /* Right shifting negative numbers is harder */
 | 
						|
        PyLongObject *a1, *a2;
 | 
						|
        a1 = (PyLongObject *) long_invert(a);
 | 
						|
        if (a1 == NULL)
 | 
						|
            goto rshift_error;
 | 
						|
        a2 = (PyLongObject *) long_rshift(a1, b);
 | 
						|
        Py_DECREF(a1);
 | 
						|
        if (a2 == NULL)
 | 
						|
            goto rshift_error;
 | 
						|
        z = (PyLongObject *) long_invert(a2);
 | 
						|
        Py_DECREF(a2);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        shiftby = PyLong_AsSsize_t((PyObject *)b);
 | 
						|
        if (shiftby == -1L && PyErr_Occurred())
 | 
						|
            goto rshift_error;
 | 
						|
        if (shiftby < 0) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "negative shift count");
 | 
						|
            goto rshift_error;
 | 
						|
        }
 | 
						|
        wordshift = shiftby / PyLong_SHIFT;
 | 
						|
        newsize = Py_ABS(Py_SIZE(a)) - wordshift;
 | 
						|
        if (newsize <= 0)
 | 
						|
            return PyLong_FromLong(0);
 | 
						|
        loshift = shiftby % PyLong_SHIFT;
 | 
						|
        hishift = PyLong_SHIFT - loshift;
 | 
						|
        lomask = ((digit)1 << hishift) - 1;
 | 
						|
        himask = PyLong_MASK ^ lomask;
 | 
						|
        z = _PyLong_New(newsize);
 | 
						|
        if (z == NULL)
 | 
						|
            goto rshift_error;
 | 
						|
        if (Py_SIZE(a) < 0)
 | 
						|
            Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
        for (i = 0, j = wordshift; i < newsize; i++, j++) {
 | 
						|
            z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
 | 
						|
            if (i+1 < newsize)
 | 
						|
                z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask;
 | 
						|
        }
 | 
						|
        z = long_normalize(z);
 | 
						|
    }
 | 
						|
  rshift_error:
 | 
						|
    return (PyObject *) maybe_small_long(z);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_lshift(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
    /* This version due to Tim Peters */
 | 
						|
    PyLongObject *a = (PyLongObject*)v;
 | 
						|
    PyLongObject *b = (PyLongObject*)w;
 | 
						|
    PyLongObject *z = NULL;
 | 
						|
    Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j;
 | 
						|
    twodigits accum;
 | 
						|
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
 | 
						|
    shiftby = PyLong_AsSsize_t((PyObject *)b);
 | 
						|
    if (shiftby == -1L && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    if (shiftby < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError, "negative shift count");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
 | 
						|
    wordshift = shiftby / PyLong_SHIFT;
 | 
						|
    remshift  = shiftby - wordshift * PyLong_SHIFT;
 | 
						|
 | 
						|
    oldsize = Py_ABS(Py_SIZE(a));
 | 
						|
    newsize = oldsize + wordshift;
 | 
						|
    if (remshift)
 | 
						|
        ++newsize;
 | 
						|
    z = _PyLong_New(newsize);
 | 
						|
    if (z == NULL)
 | 
						|
        return NULL;
 | 
						|
    if (Py_SIZE(a) < 0) {
 | 
						|
        assert(Py_REFCNT(z) == 1);
 | 
						|
        Py_SIZE(z) = -Py_SIZE(z);
 | 
						|
    }
 | 
						|
    for (i = 0; i < wordshift; i++)
 | 
						|
        z->ob_digit[i] = 0;
 | 
						|
    accum = 0;
 | 
						|
    for (i = wordshift, j = 0; j < oldsize; i++, j++) {
 | 
						|
        accum |= (twodigits)a->ob_digit[j] << remshift;
 | 
						|
        z->ob_digit[i] = (digit)(accum & PyLong_MASK);
 | 
						|
        accum >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    if (remshift)
 | 
						|
        z->ob_digit[newsize-1] = (digit)accum;
 | 
						|
    else
 | 
						|
        assert(!accum);
 | 
						|
    z = long_normalize(z);
 | 
						|
    return (PyObject *) maybe_small_long(z);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute two's complement of digit vector a[0:m], writing result to
 | 
						|
   z[0:m].  The digit vector a need not be normalized, but should not
 | 
						|
   be entirely zero.  a and z may point to the same digit vector. */
 | 
						|
 | 
						|
static void
 | 
						|
v_complement(digit *z, digit *a, Py_ssize_t m)
 | 
						|
{
 | 
						|
    Py_ssize_t i;
 | 
						|
    digit carry = 1;
 | 
						|
    for (i = 0; i < m; ++i) {
 | 
						|
        carry += a[i] ^ PyLong_MASK;
 | 
						|
        z[i] = carry & PyLong_MASK;
 | 
						|
        carry >>= PyLong_SHIFT;
 | 
						|
    }
 | 
						|
    assert(carry == 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Bitwise and/xor/or operations */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_bitwise(PyLongObject *a,
 | 
						|
             char op,  /* '&', '|', '^' */
 | 
						|
             PyLongObject *b)
 | 
						|
{
 | 
						|
    int nega, negb, negz;
 | 
						|
    Py_ssize_t size_a, size_b, size_z, i;
 | 
						|
    PyLongObject *z;
 | 
						|
 | 
						|
    /* Bitwise operations for negative numbers operate as though
 | 
						|
       on a two's complement representation.  So convert arguments
 | 
						|
       from sign-magnitude to two's complement, and convert the
 | 
						|
       result back to sign-magnitude at the end. */
 | 
						|
 | 
						|
    /* If a is negative, replace it by its two's complement. */
 | 
						|
    size_a = Py_ABS(Py_SIZE(a));
 | 
						|
    nega = Py_SIZE(a) < 0;
 | 
						|
    if (nega) {
 | 
						|
        z = _PyLong_New(size_a);
 | 
						|
        if (z == NULL)
 | 
						|
            return NULL;
 | 
						|
        v_complement(z->ob_digit, a->ob_digit, size_a);
 | 
						|
        a = z;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        /* Keep reference count consistent. */
 | 
						|
        Py_INCREF(a);
 | 
						|
 | 
						|
    /* Same for b. */
 | 
						|
    size_b = Py_ABS(Py_SIZE(b));
 | 
						|
    negb = Py_SIZE(b) < 0;
 | 
						|
    if (negb) {
 | 
						|
        z = _PyLong_New(size_b);
 | 
						|
        if (z == NULL) {
 | 
						|
            Py_DECREF(a);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        v_complement(z->ob_digit, b->ob_digit, size_b);
 | 
						|
        b = z;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        Py_INCREF(b);
 | 
						|
 | 
						|
    /* Swap a and b if necessary to ensure size_a >= size_b. */
 | 
						|
    if (size_a < size_b) {
 | 
						|
        z = a; a = b; b = z;
 | 
						|
        size_z = size_a; size_a = size_b; size_b = size_z;
 | 
						|
        negz = nega; nega = negb; negb = negz;
 | 
						|
    }
 | 
						|
 | 
						|
    /* JRH: The original logic here was to allocate the result value (z)
 | 
						|
       as the longer of the two operands.  However, there are some cases
 | 
						|
       where the result is guaranteed to be shorter than that: AND of two
 | 
						|
       positives, OR of two negatives: use the shorter number.  AND with
 | 
						|
       mixed signs: use the positive number.  OR with mixed signs: use the
 | 
						|
       negative number.
 | 
						|
    */
 | 
						|
    switch (op) {
 | 
						|
    case '^':
 | 
						|
        negz = nega ^ negb;
 | 
						|
        size_z = size_a;
 | 
						|
        break;
 | 
						|
    case '&':
 | 
						|
        negz = nega & negb;
 | 
						|
        size_z = negb ? size_a : size_b;
 | 
						|
        break;
 | 
						|
    case '|':
 | 
						|
        negz = nega | negb;
 | 
						|
        size_z = negb ? size_b : size_a;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        PyErr_BadArgument();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* We allow an extra digit if z is negative, to make sure that
 | 
						|
       the final two's complement of z doesn't overflow. */
 | 
						|
    z = _PyLong_New(size_z + negz);
 | 
						|
    if (z == NULL) {
 | 
						|
        Py_DECREF(a);
 | 
						|
        Py_DECREF(b);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compute digits for overlap of a and b. */
 | 
						|
    switch(op) {
 | 
						|
    case '&':
 | 
						|
        for (i = 0; i < size_b; ++i)
 | 
						|
            z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
 | 
						|
        break;
 | 
						|
    case '|':
 | 
						|
        for (i = 0; i < size_b; ++i)
 | 
						|
            z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
 | 
						|
        break;
 | 
						|
    case '^':
 | 
						|
        for (i = 0; i < size_b; ++i)
 | 
						|
            z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        PyErr_BadArgument();
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Copy any remaining digits of a, inverting if necessary. */
 | 
						|
    if (op == '^' && negb)
 | 
						|
        for (; i < size_z; ++i)
 | 
						|
            z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
 | 
						|
    else if (i < size_z)
 | 
						|
        memcpy(&z->ob_digit[i], &a->ob_digit[i],
 | 
						|
               (size_z-i)*sizeof(digit));
 | 
						|
 | 
						|
    /* Complement result if negative. */
 | 
						|
    if (negz) {
 | 
						|
        Py_SIZE(z) = -(Py_SIZE(z));
 | 
						|
        z->ob_digit[size_z] = PyLong_MASK;
 | 
						|
        v_complement(z->ob_digit, z->ob_digit, size_z+1);
 | 
						|
    }
 | 
						|
 | 
						|
    Py_DECREF(a);
 | 
						|
    Py_DECREF(b);
 | 
						|
    return (PyObject *)maybe_small_long(long_normalize(z));
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_and(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyObject *c;
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
    c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b);
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_xor(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyObject *c;
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
    c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b);
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_or(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyObject *c;
 | 
						|
    CHECK_BINOP(a, b);
 | 
						|
    c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b);
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_long(PyObject *v)
 | 
						|
{
 | 
						|
    if (PyLong_CheckExact(v))
 | 
						|
        Py_INCREF(v);
 | 
						|
    else
 | 
						|
        v = _PyLong_Copy((PyLongObject *)v);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_GCD(PyObject *aarg, PyObject *barg)
 | 
						|
{
 | 
						|
    PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
 | 
						|
    stwodigits x, y, q, s, t, c_carry, d_carry;
 | 
						|
    stwodigits A, B, C, D, T;
 | 
						|
    int nbits, k;
 | 
						|
    Py_ssize_t size_a, size_b, alloc_a, alloc_b;
 | 
						|
    digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
 | 
						|
 | 
						|
    a = (PyLongObject *)aarg;
 | 
						|
    b = (PyLongObject *)barg;
 | 
						|
    size_a = Py_SIZE(a);
 | 
						|
    size_b = Py_SIZE(b);
 | 
						|
    if (-2 <= size_a && size_a <= 2 && -2 <= size_b && size_b <= 2) {
 | 
						|
        Py_INCREF(a);
 | 
						|
        Py_INCREF(b);
 | 
						|
        goto simple;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Initial reduction: make sure that 0 <= b <= a. */
 | 
						|
    a = (PyLongObject *)long_abs(a);
 | 
						|
    if (a == NULL)
 | 
						|
        return NULL;
 | 
						|
    b = (PyLongObject *)long_abs(b);
 | 
						|
    if (b == NULL) {
 | 
						|
        Py_DECREF(a);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (long_compare(a, b) < 0) {
 | 
						|
        r = a;
 | 
						|
        a = b;
 | 
						|
        b = r;
 | 
						|
    }
 | 
						|
    /* We now own references to a and b */
 | 
						|
 | 
						|
    alloc_a = Py_SIZE(a);
 | 
						|
    alloc_b = Py_SIZE(b);
 | 
						|
    /* reduce until a fits into 2 digits */
 | 
						|
    while ((size_a = Py_SIZE(a)) > 2) {
 | 
						|
        nbits = bits_in_digit(a->ob_digit[size_a-1]);
 | 
						|
        /* extract top 2*PyLong_SHIFT bits of a into x, along with
 | 
						|
           corresponding bits of b into y */
 | 
						|
        size_b = Py_SIZE(b);
 | 
						|
        assert(size_b <= size_a);
 | 
						|
        if (size_b == 0) {
 | 
						|
            if (size_a < alloc_a) {
 | 
						|
                r = (PyLongObject *)_PyLong_Copy(a);
 | 
						|
                Py_DECREF(a);
 | 
						|
            }
 | 
						|
            else
 | 
						|
                r = a;
 | 
						|
            Py_DECREF(b);
 | 
						|
            Py_XDECREF(c);
 | 
						|
            Py_XDECREF(d);
 | 
						|
            return (PyObject *)r;
 | 
						|
        }
 | 
						|
        x = (((twodigits)a->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
 | 
						|
             ((twodigits)a->ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
 | 
						|
             (a->ob_digit[size_a-3] >> nbits));
 | 
						|
 | 
						|
        y = ((size_b >= size_a - 2 ? b->ob_digit[size_a-3] >> nbits : 0) |
 | 
						|
             (size_b >= size_a - 1 ? (twodigits)b->ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
 | 
						|
             (size_b >= size_a ? (twodigits)b->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
 | 
						|
 | 
						|
        /* inner loop of Lehmer's algorithm; A, B, C, D never grow
 | 
						|
           larger than PyLong_MASK during the algorithm. */
 | 
						|
        A = 1; B = 0; C = 0; D = 1;
 | 
						|
        for (k=0;; k++) {
 | 
						|
            if (y-C == 0)
 | 
						|
                break;
 | 
						|
            q = (x+(A-1))/(y-C);
 | 
						|
            s = B+q*D;
 | 
						|
            t = x-q*y;
 | 
						|
            if (s > t)
 | 
						|
                break;
 | 
						|
            x = y; y = t;
 | 
						|
            t = A+q*C; A = D; B = C; C = s; D = t;
 | 
						|
        }
 | 
						|
 | 
						|
        if (k == 0) {
 | 
						|
            /* no progress; do a Euclidean step */
 | 
						|
            if (l_divmod(a, b, NULL, &r) < 0)
 | 
						|
                goto error;
 | 
						|
            Py_DECREF(a);
 | 
						|
            a = b;
 | 
						|
            b = r;
 | 
						|
            alloc_a = alloc_b;
 | 
						|
            alloc_b = Py_SIZE(b);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
          a, b = A*b-B*a, D*a-C*b if k is odd
 | 
						|
          a, b = A*a-B*b, D*b-C*a if k is even
 | 
						|
        */
 | 
						|
        if (k&1) {
 | 
						|
            T = -A; A = -B; B = T;
 | 
						|
            T = -C; C = -D; D = T;
 | 
						|
        }
 | 
						|
        if (c != NULL)
 | 
						|
            Py_SIZE(c) = size_a;
 | 
						|
        else if (Py_REFCNT(a) == 1) {
 | 
						|
            Py_INCREF(a);
 | 
						|
            c = a;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            alloc_a = size_a;
 | 
						|
            c = _PyLong_New(size_a);
 | 
						|
            if (c == NULL)
 | 
						|
                goto error;
 | 
						|
        }
 | 
						|
 | 
						|
        if (d != NULL)
 | 
						|
            Py_SIZE(d) = size_a;
 | 
						|
        else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
 | 
						|
            Py_INCREF(b);
 | 
						|
            d = b;
 | 
						|
            Py_SIZE(d) = size_a;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            alloc_b = size_a;
 | 
						|
            d = _PyLong_New(size_a);
 | 
						|
            if (d == NULL)
 | 
						|
                goto error;
 | 
						|
        }
 | 
						|
        a_end = a->ob_digit + size_a;
 | 
						|
        b_end = b->ob_digit + size_b;
 | 
						|
 | 
						|
        /* compute new a and new b in parallel */
 | 
						|
        a_digit = a->ob_digit;
 | 
						|
        b_digit = b->ob_digit;
 | 
						|
        c_digit = c->ob_digit;
 | 
						|
        d_digit = d->ob_digit;
 | 
						|
        c_carry = 0;
 | 
						|
        d_carry = 0;
 | 
						|
        while (b_digit < b_end) {
 | 
						|
            c_carry += (A * *a_digit) - (B * *b_digit);
 | 
						|
            d_carry += (D * *b_digit++) - (C * *a_digit++);
 | 
						|
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
 | 
						|
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
 | 
						|
            c_carry >>= PyLong_SHIFT;
 | 
						|
            d_carry >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
        while (a_digit < a_end) {
 | 
						|
            c_carry += A * *a_digit;
 | 
						|
            d_carry -= C * *a_digit++;
 | 
						|
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
 | 
						|
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
 | 
						|
            c_carry >>= PyLong_SHIFT;
 | 
						|
            d_carry >>= PyLong_SHIFT;
 | 
						|
        }
 | 
						|
        assert(c_carry == 0);
 | 
						|
        assert(d_carry == 0);
 | 
						|
 | 
						|
        Py_INCREF(c);
 | 
						|
        Py_INCREF(d);
 | 
						|
        Py_DECREF(a);
 | 
						|
        Py_DECREF(b);
 | 
						|
        a = long_normalize(c);
 | 
						|
        b = long_normalize(d);
 | 
						|
    }
 | 
						|
    Py_XDECREF(c);
 | 
						|
    Py_XDECREF(d);
 | 
						|
 | 
						|
simple:
 | 
						|
    assert(Py_REFCNT(a) > 0);
 | 
						|
    assert(Py_REFCNT(b) > 0);
 | 
						|
/* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
 | 
						|
   undefined behaviour when LONG_MAX type is smaller than 60 bits */
 | 
						|
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | 
						|
    /* a fits into a long, so b must too */
 | 
						|
    x = PyLong_AsLong((PyObject *)a);
 | 
						|
    y = PyLong_AsLong((PyObject *)b);
 | 
						|
#elif defined(PY_LONG_LONG) && PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | 
						|
    x = PyLong_AsLongLong((PyObject *)a);
 | 
						|
    y = PyLong_AsLongLong((PyObject *)b);
 | 
						|
#else
 | 
						|
# error "_PyLong_GCD"
 | 
						|
#endif
 | 
						|
    x = Py_ABS(x);
 | 
						|
    y = Py_ABS(y);
 | 
						|
    Py_DECREF(a);
 | 
						|
    Py_DECREF(b);
 | 
						|
 | 
						|
    /* usual Euclidean algorithm for longs */
 | 
						|
    while (y != 0) {
 | 
						|
        t = y;
 | 
						|
        y = x % y;
 | 
						|
        x = t;
 | 
						|
    }
 | 
						|
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | 
						|
    return PyLong_FromLong(x);
 | 
						|
#elif defined(PY_LONG_LONG) && PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
 | 
						|
    return PyLong_FromLongLong(x);
 | 
						|
#else
 | 
						|
# error "_PyLong_GCD"
 | 
						|
#endif
 | 
						|
 | 
						|
error:
 | 
						|
    Py_DECREF(a);
 | 
						|
    Py_DECREF(b);
 | 
						|
    Py_XDECREF(c);
 | 
						|
    Py_XDECREF(d);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_float(PyObject *v)
 | 
						|
{
 | 
						|
    double result;
 | 
						|
    result = PyLong_AsDouble(v);
 | 
						|
    if (result == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(result);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
    PyObject *obase = NULL, *x = NULL;
 | 
						|
    Py_ssize_t base;
 | 
						|
    static char *kwlist[] = {"x", "base", 0};
 | 
						|
 | 
						|
    if (type != &PyLong_Type)
 | 
						|
        return long_subtype_new(type, args, kwds); /* Wimp out */
 | 
						|
    if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:int", kwlist,
 | 
						|
                                     &x, &obase))
 | 
						|
        return NULL;
 | 
						|
    if (x == NULL) {
 | 
						|
        if (obase != NULL) {
 | 
						|
            PyErr_SetString(PyExc_TypeError,
 | 
						|
                            "int() missing string argument");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        return PyLong_FromLong(0L);
 | 
						|
    }
 | 
						|
    if (obase == NULL)
 | 
						|
        return PyNumber_Long(x);
 | 
						|
 | 
						|
    base = PyNumber_AsSsize_t(obase, NULL);
 | 
						|
    if (base == -1 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    if ((base != 0 && base < 2) || base > 36) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "int() base must be >= 2 and <= 36");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PyUnicode_Check(x))
 | 
						|
        return PyLong_FromUnicodeObject(x, (int)base);
 | 
						|
    else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
 | 
						|
        char *string;
 | 
						|
        if (PyByteArray_Check(x))
 | 
						|
            string = PyByteArray_AS_STRING(x);
 | 
						|
        else
 | 
						|
            string = PyBytes_AS_STRING(x);
 | 
						|
        return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
                        "int() can't convert non-string with explicit base");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Wimpy, slow approach to tp_new calls for subtypes of int:
 | 
						|
   first create a regular int from whatever arguments we got,
 | 
						|
   then allocate a subtype instance and initialize it from
 | 
						|
   the regular int.  The regular int is then thrown away.
 | 
						|
*/
 | 
						|
static PyObject *
 | 
						|
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
    PyLongObject *tmp, *newobj;
 | 
						|
    Py_ssize_t i, n;
 | 
						|
 | 
						|
    assert(PyType_IsSubtype(type, &PyLong_Type));
 | 
						|
    tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
 | 
						|
    if (tmp == NULL)
 | 
						|
        return NULL;
 | 
						|
    assert(PyLong_Check(tmp));
 | 
						|
    n = Py_SIZE(tmp);
 | 
						|
    if (n < 0)
 | 
						|
        n = -n;
 | 
						|
    newobj = (PyLongObject *)type->tp_alloc(type, n);
 | 
						|
    if (newobj == NULL) {
 | 
						|
        Py_DECREF(tmp);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    assert(PyLong_Check(newobj));
 | 
						|
    Py_SIZE(newobj) = Py_SIZE(tmp);
 | 
						|
    for (i = 0; i < n; i++)
 | 
						|
        newobj->ob_digit[i] = tmp->ob_digit[i];
 | 
						|
    Py_DECREF(tmp);
 | 
						|
    return (PyObject *)newobj;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_getnewargs(PyLongObject *v)
 | 
						|
{
 | 
						|
    return Py_BuildValue("(N)", _PyLong_Copy(v));
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_get0(PyLongObject *v, void *context) {
 | 
						|
    return PyLong_FromLong(0L);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_get1(PyLongObject *v, void *context) {
 | 
						|
    return PyLong_FromLong(1L);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long__format__(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *format_spec;
 | 
						|
    _PyUnicodeWriter writer;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    _PyUnicodeWriter_Init(&writer);
 | 
						|
    ret = _PyLong_FormatAdvancedWriter(
 | 
						|
        &writer,
 | 
						|
        self,
 | 
						|
        format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
 | 
						|
    if (ret == -1) {
 | 
						|
        _PyUnicodeWriter_Dealloc(&writer);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return _PyUnicodeWriter_Finish(&writer);
 | 
						|
}
 | 
						|
 | 
						|
/* Return a pair (q, r) such that a = b * q + r, and
 | 
						|
   abs(r) <= abs(b)/2, with equality possible only if q is even.
 | 
						|
   In other words, q == a / b, rounded to the nearest integer using
 | 
						|
   round-half-to-even. */
 | 
						|
 | 
						|
PyObject *
 | 
						|
_PyLong_DivmodNear(PyObject *a, PyObject *b)
 | 
						|
{
 | 
						|
    PyLongObject *quo = NULL, *rem = NULL;
 | 
						|
    PyObject *one = NULL, *twice_rem, *result, *temp;
 | 
						|
    int cmp, quo_is_odd, quo_is_neg;
 | 
						|
 | 
						|
    /* Equivalent Python code:
 | 
						|
 | 
						|
       def divmod_near(a, b):
 | 
						|
           q, r = divmod(a, b)
 | 
						|
           # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
 | 
						|
           # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
 | 
						|
           # positive, 2 * r < b if b negative.
 | 
						|
           greater_than_half = 2*r > b if b > 0 else 2*r < b
 | 
						|
           exactly_half = 2*r == b
 | 
						|
           if greater_than_half or exactly_half and q % 2 == 1:
 | 
						|
               q += 1
 | 
						|
               r -= b
 | 
						|
           return q, r
 | 
						|
 | 
						|
    */
 | 
						|
    if (!PyLong_Check(a) || !PyLong_Check(b)) {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
                        "non-integer arguments in division");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Do a and b have different signs?  If so, quotient is negative. */
 | 
						|
    quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0);
 | 
						|
 | 
						|
    one = PyLong_FromLong(1L);
 | 
						|
    if (one == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
 | 
						|
        goto error;
 | 
						|
 | 
						|
    /* compare twice the remainder with the divisor, to see
 | 
						|
       if we need to adjust the quotient and remainder */
 | 
						|
    twice_rem = long_lshift((PyObject *)rem, one);
 | 
						|
    if (twice_rem == NULL)
 | 
						|
        goto error;
 | 
						|
    if (quo_is_neg) {
 | 
						|
        temp = long_neg((PyLongObject*)twice_rem);
 | 
						|
        Py_DECREF(twice_rem);
 | 
						|
        twice_rem = temp;
 | 
						|
        if (twice_rem == NULL)
 | 
						|
            goto error;
 | 
						|
    }
 | 
						|
    cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
 | 
						|
    Py_DECREF(twice_rem);
 | 
						|
 | 
						|
    quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0);
 | 
						|
    if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
 | 
						|
        /* fix up quotient */
 | 
						|
        if (quo_is_neg)
 | 
						|
            temp = long_sub(quo, (PyLongObject *)one);
 | 
						|
        else
 | 
						|
            temp = long_add(quo, (PyLongObject *)one);
 | 
						|
        Py_DECREF(quo);
 | 
						|
        quo = (PyLongObject *)temp;
 | 
						|
        if (quo == NULL)
 | 
						|
            goto error;
 | 
						|
        /* and remainder */
 | 
						|
        if (quo_is_neg)
 | 
						|
            temp = long_add(rem, (PyLongObject *)b);
 | 
						|
        else
 | 
						|
            temp = long_sub(rem, (PyLongObject *)b);
 | 
						|
        Py_DECREF(rem);
 | 
						|
        rem = (PyLongObject *)temp;
 | 
						|
        if (rem == NULL)
 | 
						|
            goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    result = PyTuple_New(2);
 | 
						|
    if (result == NULL)
 | 
						|
        goto error;
 | 
						|
 | 
						|
    /* PyTuple_SET_ITEM steals references */
 | 
						|
    PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
 | 
						|
    PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
 | 
						|
    Py_DECREF(one);
 | 
						|
    return result;
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_XDECREF(quo);
 | 
						|
    Py_XDECREF(rem);
 | 
						|
    Py_XDECREF(one);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_round(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *o_ndigits=NULL, *temp, *result, *ndigits;
 | 
						|
 | 
						|
    /* To round an integer m to the nearest 10**n (n positive), we make use of
 | 
						|
     * the divmod_near operation, defined by:
 | 
						|
     *
 | 
						|
     *   divmod_near(a, b) = (q, r)
 | 
						|
     *
 | 
						|
     * where q is the nearest integer to the quotient a / b (the
 | 
						|
     * nearest even integer in the case of a tie) and r == a - q * b.
 | 
						|
     * Hence q * b = a - r is the nearest multiple of b to a,
 | 
						|
     * preferring even multiples in the case of a tie.
 | 
						|
     *
 | 
						|
     * So the nearest multiple of 10**n to m is:
 | 
						|
     *
 | 
						|
     *   m - divmod_near(m, 10**n)[1].
 | 
						|
     */
 | 
						|
    if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
 | 
						|
        return NULL;
 | 
						|
    if (o_ndigits == NULL)
 | 
						|
        return long_long(self);
 | 
						|
 | 
						|
    ndigits = PyNumber_Index(o_ndigits);
 | 
						|
    if (ndigits == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
 | 
						|
    if (Py_SIZE(ndigits) >= 0) {
 | 
						|
        Py_DECREF(ndigits);
 | 
						|
        return long_long(self);
 | 
						|
    }
 | 
						|
 | 
						|
    /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
 | 
						|
    temp = long_neg((PyLongObject*)ndigits);
 | 
						|
    Py_DECREF(ndigits);
 | 
						|
    ndigits = temp;
 | 
						|
    if (ndigits == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    result = PyLong_FromLong(10L);
 | 
						|
    if (result == NULL) {
 | 
						|
        Py_DECREF(ndigits);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    temp = long_pow(result, ndigits, Py_None);
 | 
						|
    Py_DECREF(ndigits);
 | 
						|
    Py_DECREF(result);
 | 
						|
    result = temp;
 | 
						|
    if (result == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    temp = _PyLong_DivmodNear(self, result);
 | 
						|
    Py_DECREF(result);
 | 
						|
    result = temp;
 | 
						|
    if (result == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    temp = long_sub((PyLongObject *)self,
 | 
						|
                    (PyLongObject *)PyTuple_GET_ITEM(result, 1));
 | 
						|
    Py_DECREF(result);
 | 
						|
    result = temp;
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_sizeof(PyLongObject *v)
 | 
						|
{
 | 
						|
    Py_ssize_t res;
 | 
						|
 | 
						|
    res = offsetof(PyLongObject, ob_digit) + Py_ABS(Py_SIZE(v))*sizeof(digit);
 | 
						|
    return PyLong_FromSsize_t(res);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_bit_length(PyLongObject *v)
 | 
						|
{
 | 
						|
    PyLongObject *result, *x, *y;
 | 
						|
    Py_ssize_t ndigits, msd_bits = 0;
 | 
						|
    digit msd;
 | 
						|
 | 
						|
    assert(v != NULL);
 | 
						|
    assert(PyLong_Check(v));
 | 
						|
 | 
						|
    ndigits = Py_ABS(Py_SIZE(v));
 | 
						|
    if (ndigits == 0)
 | 
						|
        return PyLong_FromLong(0);
 | 
						|
 | 
						|
    msd = v->ob_digit[ndigits-1];
 | 
						|
    while (msd >= 32) {
 | 
						|
        msd_bits += 6;
 | 
						|
        msd >>= 6;
 | 
						|
    }
 | 
						|
    msd_bits += (long)(BitLengthTable[msd]);
 | 
						|
 | 
						|
    if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
 | 
						|
        return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
 | 
						|
 | 
						|
    /* expression above may overflow; use Python integers instead */
 | 
						|
    result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
 | 
						|
    if (result == NULL)
 | 
						|
        return NULL;
 | 
						|
    x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
 | 
						|
    if (x == NULL)
 | 
						|
        goto error;
 | 
						|
    y = (PyLongObject *)long_mul(result, x);
 | 
						|
    Py_DECREF(x);
 | 
						|
    if (y == NULL)
 | 
						|
        goto error;
 | 
						|
    Py_DECREF(result);
 | 
						|
    result = y;
 | 
						|
 | 
						|
    x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
 | 
						|
    if (x == NULL)
 | 
						|
        goto error;
 | 
						|
    y = (PyLongObject *)long_add(result, x);
 | 
						|
    Py_DECREF(x);
 | 
						|
    if (y == NULL)
 | 
						|
        goto error;
 | 
						|
    Py_DECREF(result);
 | 
						|
    result = y;
 | 
						|
 | 
						|
    return (PyObject *)result;
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_DECREF(result);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(long_bit_length_doc,
 | 
						|
"int.bit_length() -> int\n\
 | 
						|
\n\
 | 
						|
Number of bits necessary to represent self in binary.\n\
 | 
						|
>>> bin(37)\n\
 | 
						|
'0b100101'\n\
 | 
						|
>>> (37).bit_length()\n\
 | 
						|
6");
 | 
						|
 | 
						|
#if 0
 | 
						|
static PyObject *
 | 
						|
long_is_finite(PyObject *v)
 | 
						|
{
 | 
						|
    Py_RETURN_TRUE;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_to_bytes(PyLongObject *v, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
    PyObject *byteorder_str;
 | 
						|
    PyObject *is_signed_obj = NULL;
 | 
						|
    Py_ssize_t length;
 | 
						|
    int little_endian;
 | 
						|
    int is_signed;
 | 
						|
    PyObject *bytes;
 | 
						|
    static char *kwlist[] = {"length", "byteorder", "signed", NULL};
 | 
						|
 | 
						|
    if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist,
 | 
						|
                                     &length, &byteorder_str,
 | 
						|
                                     &is_signed_obj))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (args != NULL && Py_SIZE(args) > 2) {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
            "'signed' is a keyword-only argument");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little"))
 | 
						|
        little_endian = 1;
 | 
						|
    else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big"))
 | 
						|
        little_endian = 0;
 | 
						|
    else {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
            "byteorder must be either 'little' or 'big'");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_signed_obj != NULL) {
 | 
						|
        int cmp = PyObject_IsTrue(is_signed_obj);
 | 
						|
        if (cmp < 0)
 | 
						|
            return NULL;
 | 
						|
        is_signed = cmp ? 1 : 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* If the signed argument was omitted, use False as the
 | 
						|
           default. */
 | 
						|
        is_signed = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (length < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "length argument must be non-negative");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    bytes = PyBytes_FromStringAndSize(NULL, length);
 | 
						|
    if (bytes == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes),
 | 
						|
                            length, little_endian, is_signed) < 0) {
 | 
						|
        Py_DECREF(bytes);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return bytes;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(long_to_bytes_doc,
 | 
						|
"int.to_bytes(length, byteorder, *, signed=False) -> bytes\n\
 | 
						|
\n\
 | 
						|
Return an array of bytes representing an integer.\n\
 | 
						|
\n\
 | 
						|
The integer is represented using length bytes.  An OverflowError is\n\
 | 
						|
raised if the integer is not representable with the given number of\n\
 | 
						|
bytes.\n\
 | 
						|
\n\
 | 
						|
The byteorder argument determines the byte order used to represent the\n\
 | 
						|
integer.  If byteorder is 'big', the most significant byte is at the\n\
 | 
						|
beginning of the byte array.  If byteorder is 'little', the most\n\
 | 
						|
significant byte is at the end of the byte array.  To request the native\n\
 | 
						|
byte order of the host system, use `sys.byteorder' as the byte order value.\n\
 | 
						|
\n\
 | 
						|
The signed keyword-only argument determines whether two's complement is\n\
 | 
						|
used to represent the integer.  If signed is False and a negative integer\n\
 | 
						|
is given, an OverflowError is raised.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
long_from_bytes(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
    PyObject *byteorder_str;
 | 
						|
    PyObject *is_signed_obj = NULL;
 | 
						|
    int little_endian;
 | 
						|
    int is_signed;
 | 
						|
    PyObject *obj;
 | 
						|
    PyObject *bytes;
 | 
						|
    PyObject *long_obj;
 | 
						|
    static char *kwlist[] = {"bytes", "byteorder", "signed", NULL};
 | 
						|
 | 
						|
    if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist,
 | 
						|
                                     &obj, &byteorder_str,
 | 
						|
                                     &is_signed_obj))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (args != NULL && Py_SIZE(args) > 2) {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
            "'signed' is a keyword-only argument");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little"))
 | 
						|
        little_endian = 1;
 | 
						|
    else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big"))
 | 
						|
        little_endian = 0;
 | 
						|
    else {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
            "byteorder must be either 'little' or 'big'");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_signed_obj != NULL) {
 | 
						|
        int cmp = PyObject_IsTrue(is_signed_obj);
 | 
						|
        if (cmp < 0)
 | 
						|
            return NULL;
 | 
						|
        is_signed = cmp ? 1 : 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* If the signed argument was omitted, use False as the
 | 
						|
           default. */
 | 
						|
        is_signed = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    bytes = PyObject_Bytes(obj);
 | 
						|
    if (bytes == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    long_obj = _PyLong_FromByteArray(
 | 
						|
        (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
 | 
						|
        little_endian, is_signed);
 | 
						|
    Py_DECREF(bytes);
 | 
						|
 | 
						|
    /* If from_bytes() was used on subclass, allocate new subclass
 | 
						|
     * instance, initialize it with decoded int value and return it.
 | 
						|
     */
 | 
						|
    if (type != &PyLong_Type && PyType_IsSubtype(type, &PyLong_Type)) {
 | 
						|
        PyLongObject *newobj;
 | 
						|
        int i;
 | 
						|
        Py_ssize_t n = Py_ABS(Py_SIZE(long_obj));
 | 
						|
 | 
						|
        newobj = (PyLongObject *)type->tp_alloc(type, n);
 | 
						|
        if (newobj == NULL) {
 | 
						|
            Py_DECREF(long_obj);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        assert(PyLong_Check(newobj));
 | 
						|
        Py_SIZE(newobj) = Py_SIZE(long_obj);
 | 
						|
        for (i = 0; i < n; i++) {
 | 
						|
            newobj->ob_digit[i] =
 | 
						|
                ((PyLongObject *)long_obj)->ob_digit[i];
 | 
						|
        }
 | 
						|
        Py_DECREF(long_obj);
 | 
						|
        return (PyObject *)newobj;
 | 
						|
    }
 | 
						|
 | 
						|
    return long_obj;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(long_from_bytes_doc,
 | 
						|
"int.from_bytes(bytes, byteorder, *, signed=False) -> int\n\
 | 
						|
\n\
 | 
						|
Return the integer represented by the given array of bytes.\n\
 | 
						|
\n\
 | 
						|
The bytes argument must be a bytes-like object (e.g. bytes or bytearray).\n\
 | 
						|
\n\
 | 
						|
The byteorder argument determines the byte order used to represent the\n\
 | 
						|
integer.  If byteorder is 'big', the most significant byte is at the\n\
 | 
						|
beginning of the byte array.  If byteorder is 'little', the most\n\
 | 
						|
significant byte is at the end of the byte array.  To request the native\n\
 | 
						|
byte order of the host system, use `sys.byteorder' as the byte order value.\n\
 | 
						|
\n\
 | 
						|
The signed keyword-only argument indicates whether two's complement is\n\
 | 
						|
used to represent the integer.");
 | 
						|
 | 
						|
static PyMethodDef long_methods[] = {
 | 
						|
    {"conjugate",       (PyCFunction)long_long, METH_NOARGS,
 | 
						|
     "Returns self, the complex conjugate of any int."},
 | 
						|
    {"bit_length",      (PyCFunction)long_bit_length, METH_NOARGS,
 | 
						|
     long_bit_length_doc},
 | 
						|
#if 0
 | 
						|
    {"is_finite",       (PyCFunction)long_is_finite,    METH_NOARGS,
 | 
						|
     "Returns always True."},
 | 
						|
#endif
 | 
						|
    {"to_bytes",        (PyCFunction)long_to_bytes,
 | 
						|
     METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc},
 | 
						|
    {"from_bytes",      (PyCFunction)long_from_bytes,
 | 
						|
     METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc},
 | 
						|
    {"__trunc__",       (PyCFunction)long_long, METH_NOARGS,
 | 
						|
     "Truncating an Integral returns itself."},
 | 
						|
    {"__floor__",       (PyCFunction)long_long, METH_NOARGS,
 | 
						|
     "Flooring an Integral returns itself."},
 | 
						|
    {"__ceil__",        (PyCFunction)long_long, METH_NOARGS,
 | 
						|
     "Ceiling of an Integral returns itself."},
 | 
						|
    {"__round__",       (PyCFunction)long_round, METH_VARARGS,
 | 
						|
     "Rounding an Integral returns itself.\n"
 | 
						|
     "Rounding with an ndigits argument also returns an integer."},
 | 
						|
    {"__getnewargs__",          (PyCFunction)long_getnewargs,   METH_NOARGS},
 | 
						|
    {"__format__", (PyCFunction)long__format__, METH_VARARGS},
 | 
						|
    {"__sizeof__",      (PyCFunction)long_sizeof, METH_NOARGS,
 | 
						|
     "Returns size in memory, in bytes"},
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyGetSetDef long_getset[] = {
 | 
						|
    {"real",
 | 
						|
     (getter)long_long, (setter)NULL,
 | 
						|
     "the real part of a complex number",
 | 
						|
     NULL},
 | 
						|
    {"imag",
 | 
						|
     (getter)long_get0, (setter)NULL,
 | 
						|
     "the imaginary part of a complex number",
 | 
						|
     NULL},
 | 
						|
    {"numerator",
 | 
						|
     (getter)long_long, (setter)NULL,
 | 
						|
     "the numerator of a rational number in lowest terms",
 | 
						|
     NULL},
 | 
						|
    {"denominator",
 | 
						|
     (getter)long_get1, (setter)NULL,
 | 
						|
     "the denominator of a rational number in lowest terms",
 | 
						|
     NULL},
 | 
						|
    {NULL}  /* Sentinel */
 | 
						|
};
 | 
						|
 | 
						|
PyDoc_STRVAR(long_doc,
 | 
						|
"int(x=0) -> integer\n\
 | 
						|
int(x, base=10) -> integer\n\
 | 
						|
\n\
 | 
						|
Convert a number or string to an integer, or return 0 if no arguments\n\
 | 
						|
are given.  If x is a number, return x.__int__().  For floating point\n\
 | 
						|
numbers, this truncates towards zero.\n\
 | 
						|
\n\
 | 
						|
If x is not a number or if base is given, then x must be a string,\n\
 | 
						|
bytes, or bytearray instance representing an integer literal in the\n\
 | 
						|
given base.  The literal can be preceded by '+' or '-' and be surrounded\n\
 | 
						|
by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.\n\
 | 
						|
Base 0 means to interpret the base from the string as an integer literal.\n\
 | 
						|
>>> int('0b100', base=0)\n\
 | 
						|
4");
 | 
						|
 | 
						|
static PyNumberMethods long_as_number = {
 | 
						|
    (binaryfunc)long_add,       /*nb_add*/
 | 
						|
    (binaryfunc)long_sub,       /*nb_subtract*/
 | 
						|
    (binaryfunc)long_mul,       /*nb_multiply*/
 | 
						|
    long_mod,                   /*nb_remainder*/
 | 
						|
    long_divmod,                /*nb_divmod*/
 | 
						|
    long_pow,                   /*nb_power*/
 | 
						|
    (unaryfunc)long_neg,        /*nb_negative*/
 | 
						|
    (unaryfunc)long_long,       /*tp_positive*/
 | 
						|
    (unaryfunc)long_abs,        /*tp_absolute*/
 | 
						|
    (inquiry)long_bool,         /*tp_bool*/
 | 
						|
    (unaryfunc)long_invert,     /*nb_invert*/
 | 
						|
    long_lshift,                /*nb_lshift*/
 | 
						|
    (binaryfunc)long_rshift,    /*nb_rshift*/
 | 
						|
    long_and,                   /*nb_and*/
 | 
						|
    long_xor,                   /*nb_xor*/
 | 
						|
    long_or,                    /*nb_or*/
 | 
						|
    long_long,                  /*nb_int*/
 | 
						|
    0,                          /*nb_reserved*/
 | 
						|
    long_float,                 /*nb_float*/
 | 
						|
    0,                          /* nb_inplace_add */
 | 
						|
    0,                          /* nb_inplace_subtract */
 | 
						|
    0,                          /* nb_inplace_multiply */
 | 
						|
    0,                          /* nb_inplace_remainder */
 | 
						|
    0,                          /* nb_inplace_power */
 | 
						|
    0,                          /* nb_inplace_lshift */
 | 
						|
    0,                          /* nb_inplace_rshift */
 | 
						|
    0,                          /* nb_inplace_and */
 | 
						|
    0,                          /* nb_inplace_xor */
 | 
						|
    0,                          /* nb_inplace_or */
 | 
						|
    long_div,                   /* nb_floor_divide */
 | 
						|
    long_true_divide,           /* nb_true_divide */
 | 
						|
    0,                          /* nb_inplace_floor_divide */
 | 
						|
    0,                          /* nb_inplace_true_divide */
 | 
						|
    long_long,                  /* nb_index */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyLong_Type = {
 | 
						|
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
 | 
						|
    "int",                                      /* tp_name */
 | 
						|
    offsetof(PyLongObject, ob_digit),           /* tp_basicsize */
 | 
						|
    sizeof(digit),                              /* tp_itemsize */
 | 
						|
    long_dealloc,                               /* tp_dealloc */
 | 
						|
    0,                                          /* tp_print */
 | 
						|
    0,                                          /* tp_getattr */
 | 
						|
    0,                                          /* tp_setattr */
 | 
						|
    0,                                          /* tp_reserved */
 | 
						|
    long_to_decimal_string,                     /* tp_repr */
 | 
						|
    &long_as_number,                            /* tp_as_number */
 | 
						|
    0,                                          /* tp_as_sequence */
 | 
						|
    0,                                          /* tp_as_mapping */
 | 
						|
    (hashfunc)long_hash,                        /* tp_hash */
 | 
						|
    0,                                          /* tp_call */
 | 
						|
    long_to_decimal_string,                     /* tp_str */
 | 
						|
    PyObject_GenericGetAttr,                    /* tp_getattro */
 | 
						|
    0,                                          /* tp_setattro */
 | 
						|
    0,                                          /* tp_as_buffer */
 | 
						|
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
 | 
						|
        Py_TPFLAGS_LONG_SUBCLASS,               /* tp_flags */
 | 
						|
    long_doc,                                   /* tp_doc */
 | 
						|
    0,                                          /* tp_traverse */
 | 
						|
    0,                                          /* tp_clear */
 | 
						|
    long_richcompare,                           /* tp_richcompare */
 | 
						|
    0,                                          /* tp_weaklistoffset */
 | 
						|
    0,                                          /* tp_iter */
 | 
						|
    0,                                          /* tp_iternext */
 | 
						|
    long_methods,                               /* tp_methods */
 | 
						|
    0,                                          /* tp_members */
 | 
						|
    long_getset,                                /* tp_getset */
 | 
						|
    0,                                          /* tp_base */
 | 
						|
    0,                                          /* tp_dict */
 | 
						|
    0,                                          /* tp_descr_get */
 | 
						|
    0,                                          /* tp_descr_set */
 | 
						|
    0,                                          /* tp_dictoffset */
 | 
						|
    0,                                          /* tp_init */
 | 
						|
    0,                                          /* tp_alloc */
 | 
						|
    long_new,                                   /* tp_new */
 | 
						|
    PyObject_Del,                               /* tp_free */
 | 
						|
};
 | 
						|
 | 
						|
static PyTypeObject Int_InfoType;
 | 
						|
 | 
						|
PyDoc_STRVAR(int_info__doc__,
 | 
						|
"sys.int_info\n\
 | 
						|
\n\
 | 
						|
A struct sequence that holds information about Python's\n\
 | 
						|
internal representation of integers.  The attributes are read only.");
 | 
						|
 | 
						|
static PyStructSequence_Field int_info_fields[] = {
 | 
						|
    {"bits_per_digit", "size of a digit in bits"},
 | 
						|
    {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
 | 
						|
    {NULL, NULL}
 | 
						|
};
 | 
						|
 | 
						|
static PyStructSequence_Desc int_info_desc = {
 | 
						|
    "sys.int_info",   /* name */
 | 
						|
    int_info__doc__,  /* doc */
 | 
						|
    int_info_fields,  /* fields */
 | 
						|
    2                 /* number of fields */
 | 
						|
};
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyLong_GetInfo(void)
 | 
						|
{
 | 
						|
    PyObject* int_info;
 | 
						|
    int field = 0;
 | 
						|
    int_info = PyStructSequence_New(&Int_InfoType);
 | 
						|
    if (int_info == NULL)
 | 
						|
        return NULL;
 | 
						|
    PyStructSequence_SET_ITEM(int_info, field++,
 | 
						|
                              PyLong_FromLong(PyLong_SHIFT));
 | 
						|
    PyStructSequence_SET_ITEM(int_info, field++,
 | 
						|
                              PyLong_FromLong(sizeof(digit)));
 | 
						|
    if (PyErr_Occurred()) {
 | 
						|
        Py_CLEAR(int_info);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return int_info;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
_PyLong_Init(void)
 | 
						|
{
 | 
						|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | 
						|
    int ival, size;
 | 
						|
    PyLongObject *v = small_ints;
 | 
						|
 | 
						|
    for (ival = -NSMALLNEGINTS; ival <  NSMALLPOSINTS; ival++, v++) {
 | 
						|
        size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1);
 | 
						|
        if (Py_TYPE(v) == &PyLong_Type) {
 | 
						|
            /* The element is already initialized, most likely
 | 
						|
             * the Python interpreter was initialized before.
 | 
						|
             */
 | 
						|
            Py_ssize_t refcnt;
 | 
						|
            PyObject* op = (PyObject*)v;
 | 
						|
 | 
						|
            refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op);
 | 
						|
            _Py_NewReference(op);
 | 
						|
            /* _Py_NewReference sets the ref count to 1 but
 | 
						|
             * the ref count might be larger. Set the refcnt
 | 
						|
             * to the original refcnt + 1 */
 | 
						|
            Py_REFCNT(op) = refcnt + 1;
 | 
						|
            assert(Py_SIZE(op) == size);
 | 
						|
            assert(v->ob_digit[0] == (digit)abs(ival));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            (void)PyObject_INIT(v, &PyLong_Type);
 | 
						|
        }
 | 
						|
        Py_SIZE(v) = size;
 | 
						|
        v->ob_digit[0] = (digit)abs(ival);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* initialize int_info */
 | 
						|
    if (Int_InfoType.tp_name == NULL) {
 | 
						|
        if (PyStructSequence_InitType2(&Int_InfoType, &int_info_desc) < 0)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyLong_Fini(void)
 | 
						|
{
 | 
						|
    /* Integers are currently statically allocated. Py_DECREF is not
 | 
						|
       needed, but Python must forget about the reference or multiple
 | 
						|
       reinitializations will fail. */
 | 
						|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
 | 
						|
    int i;
 | 
						|
    PyLongObject *v = small_ints;
 | 
						|
    for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) {
 | 
						|
        _Py_DEC_REFTOTAL;
 | 
						|
        _Py_ForgetReference((PyObject*)v);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 |