mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 11:49:12 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1496 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1496 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
Basic statistics module.
 | 
						||
 | 
						||
This module provides functions for calculating statistics of data, including
 | 
						||
averages, variance, and standard deviation.
 | 
						||
 | 
						||
Calculating averages
 | 
						||
--------------------
 | 
						||
 | 
						||
==================  ==================================================
 | 
						||
Function            Description
 | 
						||
==================  ==================================================
 | 
						||
mean                Arithmetic mean (average) of data.
 | 
						||
fmean               Fast, floating point arithmetic mean.
 | 
						||
geometric_mean      Geometric mean of data.
 | 
						||
harmonic_mean       Harmonic mean of data.
 | 
						||
median              Median (middle value) of data.
 | 
						||
median_low          Low median of data.
 | 
						||
median_high         High median of data.
 | 
						||
median_grouped      Median, or 50th percentile, of grouped data.
 | 
						||
mode                Mode (most common value) of data.
 | 
						||
multimode           List of modes (most common values of data).
 | 
						||
quantiles           Divide data into intervals with equal probability.
 | 
						||
==================  ==================================================
 | 
						||
 | 
						||
Calculate the arithmetic mean ("the average") of data:
 | 
						||
 | 
						||
>>> mean([-1.0, 2.5, 3.25, 5.75])
 | 
						||
2.625
 | 
						||
 | 
						||
 | 
						||
Calculate the standard median of discrete data:
 | 
						||
 | 
						||
>>> median([2, 3, 4, 5])
 | 
						||
3.5
 | 
						||
 | 
						||
 | 
						||
Calculate the median, or 50th percentile, of data grouped into class intervals
 | 
						||
centred on the data values provided. E.g. if your data points are rounded to
 | 
						||
the nearest whole number:
 | 
						||
 | 
						||
>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
 | 
						||
2.8333333333...
 | 
						||
 | 
						||
This should be interpreted in this way: you have two data points in the class
 | 
						||
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
 | 
						||
the class interval 3.5-4.5. The median of these data points is 2.8333...
 | 
						||
 | 
						||
 | 
						||
Calculating variability or spread
 | 
						||
---------------------------------
 | 
						||
 | 
						||
==================  =============================================
 | 
						||
Function            Description
 | 
						||
==================  =============================================
 | 
						||
pvariance           Population variance of data.
 | 
						||
variance            Sample variance of data.
 | 
						||
pstdev              Population standard deviation of data.
 | 
						||
stdev               Sample standard deviation of data.
 | 
						||
==================  =============================================
 | 
						||
 | 
						||
Calculate the standard deviation of sample data:
 | 
						||
 | 
						||
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
 | 
						||
4.38961843444...
 | 
						||
 | 
						||
If you have previously calculated the mean, you can pass it as the optional
 | 
						||
second argument to the four "spread" functions to avoid recalculating it:
 | 
						||
 | 
						||
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
 | 
						||
>>> mu = mean(data)
 | 
						||
>>> pvariance(data, mu)
 | 
						||
2.5
 | 
						||
 | 
						||
 | 
						||
Statistics for relations between two inputs
 | 
						||
-------------------------------------------
 | 
						||
 | 
						||
==================  ====================================================
 | 
						||
Function            Description
 | 
						||
==================  ====================================================
 | 
						||
covariance          Sample covariance for two variables.
 | 
						||
correlation         Pearson's correlation coefficient for two variables.
 | 
						||
linear_regression   Intercept and slope for simple linear regression.
 | 
						||
==================  ====================================================
 | 
						||
 | 
						||
Calculate covariance, Pearson's correlation, and simple linear regression
 | 
						||
for two inputs:
 | 
						||
 | 
						||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | 
						||
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
 | 
						||
>>> covariance(x, y)
 | 
						||
0.75
 | 
						||
>>> correlation(x, y)  #doctest: +ELLIPSIS
 | 
						||
0.31622776601...
 | 
						||
>>> linear_regression(x, y)  #doctest:
 | 
						||
LinearRegression(slope=0.1, intercept=1.5)
 | 
						||
 | 
						||
 | 
						||
Exceptions
 | 
						||
----------
 | 
						||
 | 
						||
A single exception is defined: StatisticsError is a subclass of ValueError.
 | 
						||
 | 
						||
"""
 | 
						||
 | 
						||
__all__ = [
 | 
						||
    'NormalDist',
 | 
						||
    'StatisticsError',
 | 
						||
    'correlation',
 | 
						||
    'covariance',
 | 
						||
    'fmean',
 | 
						||
    'geometric_mean',
 | 
						||
    'harmonic_mean',
 | 
						||
    'linear_regression',
 | 
						||
    'mean',
 | 
						||
    'median',
 | 
						||
    'median_grouped',
 | 
						||
    'median_high',
 | 
						||
    'median_low',
 | 
						||
    'mode',
 | 
						||
    'multimode',
 | 
						||
    'pstdev',
 | 
						||
    'pvariance',
 | 
						||
    'quantiles',
 | 
						||
    'stdev',
 | 
						||
    'variance',
 | 
						||
]
 | 
						||
 | 
						||
import math
 | 
						||
import numbers
 | 
						||
import random
 | 
						||
import sys
 | 
						||
 | 
						||
from fractions import Fraction
 | 
						||
from decimal import Decimal
 | 
						||
from itertools import count, groupby, repeat
 | 
						||
from bisect import bisect_left, bisect_right
 | 
						||
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod
 | 
						||
from math import isfinite, isinf
 | 
						||
from functools import reduce
 | 
						||
from operator import itemgetter
 | 
						||
from collections import Counter, namedtuple, defaultdict
 | 
						||
 | 
						||
_SQRT2 = sqrt(2.0)
 | 
						||
 | 
						||
# === Exceptions ===
 | 
						||
 | 
						||
class StatisticsError(ValueError):
 | 
						||
    pass
 | 
						||
 | 
						||
 | 
						||
# === Private utilities ===
 | 
						||
 | 
						||
def _sum(data):
 | 
						||
    """_sum(data) -> (type, sum, count)
 | 
						||
 | 
						||
    Return a high-precision sum of the given numeric data as a fraction,
 | 
						||
    together with the type to be converted to and the count of items.
 | 
						||
 | 
						||
    Examples
 | 
						||
    --------
 | 
						||
 | 
						||
    >>> _sum([3, 2.25, 4.5, -0.5, 0.25])
 | 
						||
    (<class 'float'>, Fraction(19, 2), 5)
 | 
						||
 | 
						||
    Some sources of round-off error will be avoided:
 | 
						||
 | 
						||
    # Built-in sum returns zero.
 | 
						||
    >>> _sum([1e50, 1, -1e50] * 1000)
 | 
						||
    (<class 'float'>, Fraction(1000, 1), 3000)
 | 
						||
 | 
						||
    Fractions and Decimals are also supported:
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
 | 
						||
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
 | 
						||
    >>> _sum(data)
 | 
						||
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
 | 
						||
 | 
						||
    Mixed types are currently treated as an error, except that int is
 | 
						||
    allowed.
 | 
						||
    """
 | 
						||
    count = 0
 | 
						||
    types = set()
 | 
						||
    types_add = types.add
 | 
						||
    partials = {}
 | 
						||
    partials_get = partials.get
 | 
						||
    for typ, values in groupby(data, type):
 | 
						||
        types_add(typ)
 | 
						||
        for n, d in map(_exact_ratio, values):
 | 
						||
            count += 1
 | 
						||
            partials[d] = partials_get(d, 0) + n
 | 
						||
    if None in partials:
 | 
						||
        # The sum will be a NAN or INF. We can ignore all the finite
 | 
						||
        # partials, and just look at this special one.
 | 
						||
        total = partials[None]
 | 
						||
        assert not _isfinite(total)
 | 
						||
    else:
 | 
						||
        # Sum all the partial sums using builtin sum.
 | 
						||
        total = sum(Fraction(n, d) for d, n in partials.items())
 | 
						||
    T = reduce(_coerce, types, int)  # or raise TypeError
 | 
						||
    return (T, total, count)
 | 
						||
 | 
						||
 | 
						||
def _ss(data, c=None):
 | 
						||
    """Return the exact mean and sum of square deviations of sequence data.
 | 
						||
 | 
						||
    Calculations are done in a single pass, allowing the input to be an iterator.
 | 
						||
 | 
						||
    If given *c* is used the mean; otherwise, it is calculated from the data.
 | 
						||
    Use the *c* argument with care, as it can lead to garbage results.
 | 
						||
 | 
						||
    """
 | 
						||
    if c is not None:
 | 
						||
        T, ssd, count = _sum((d := x - c) * d for x in data)
 | 
						||
        return (T, ssd, c, count)
 | 
						||
    count = 0
 | 
						||
    types = set()
 | 
						||
    types_add = types.add
 | 
						||
    sx_partials = defaultdict(int)
 | 
						||
    sxx_partials = defaultdict(int)
 | 
						||
    for typ, values in groupby(data, type):
 | 
						||
        types_add(typ)
 | 
						||
        for n, d in map(_exact_ratio, values):
 | 
						||
            count += 1
 | 
						||
            sx_partials[d] += n
 | 
						||
            sxx_partials[d] += n * n
 | 
						||
    if not count:
 | 
						||
        ssd = c = Fraction(0)
 | 
						||
    elif None in sx_partials:
 | 
						||
        # The sum will be a NAN or INF. We can ignore all the finite
 | 
						||
        # partials, and just look at this special one.
 | 
						||
        ssd = c = sx_partials[None]
 | 
						||
        assert not _isfinite(ssd)
 | 
						||
    else:
 | 
						||
        sx = sum(Fraction(n, d) for d, n in sx_partials.items())
 | 
						||
        sxx = sum(Fraction(n, d*d) for d, n in sxx_partials.items())
 | 
						||
        # This formula has poor numeric properties for floats,
 | 
						||
        # but with fractions it is exact.
 | 
						||
        ssd = (count * sxx - sx * sx) / count
 | 
						||
        c = sx / count
 | 
						||
    T = reduce(_coerce, types, int)  # or raise TypeError
 | 
						||
    return (T, ssd, c, count)
 | 
						||
 | 
						||
 | 
						||
def _isfinite(x):
 | 
						||
    try:
 | 
						||
        return x.is_finite()  # Likely a Decimal.
 | 
						||
    except AttributeError:
 | 
						||
        return math.isfinite(x)  # Coerces to float first.
 | 
						||
 | 
						||
 | 
						||
def _coerce(T, S):
 | 
						||
    """Coerce types T and S to a common type, or raise TypeError.
 | 
						||
 | 
						||
    Coercion rules are currently an implementation detail. See the CoerceTest
 | 
						||
    test class in test_statistics for details.
 | 
						||
    """
 | 
						||
    # See http://bugs.python.org/issue24068.
 | 
						||
    assert T is not bool, "initial type T is bool"
 | 
						||
    # If the types are the same, no need to coerce anything. Put this
 | 
						||
    # first, so that the usual case (no coercion needed) happens as soon
 | 
						||
    # as possible.
 | 
						||
    if T is S:  return T
 | 
						||
    # Mixed int & other coerce to the other type.
 | 
						||
    if S is int or S is bool:  return T
 | 
						||
    if T is int:  return S
 | 
						||
    # If one is a (strict) subclass of the other, coerce to the subclass.
 | 
						||
    if issubclass(S, T):  return S
 | 
						||
    if issubclass(T, S):  return T
 | 
						||
    # Ints coerce to the other type.
 | 
						||
    if issubclass(T, int):  return S
 | 
						||
    if issubclass(S, int):  return T
 | 
						||
    # Mixed fraction & float coerces to float (or float subclass).
 | 
						||
    if issubclass(T, Fraction) and issubclass(S, float):
 | 
						||
        return S
 | 
						||
    if issubclass(T, float) and issubclass(S, Fraction):
 | 
						||
        return T
 | 
						||
    # Any other combination is disallowed.
 | 
						||
    msg = "don't know how to coerce %s and %s"
 | 
						||
    raise TypeError(msg % (T.__name__, S.__name__))
 | 
						||
 | 
						||
 | 
						||
def _exact_ratio(x):
 | 
						||
    """Return Real number x to exact (numerator, denominator) pair.
 | 
						||
 | 
						||
    >>> _exact_ratio(0.25)
 | 
						||
    (1, 4)
 | 
						||
 | 
						||
    x is expected to be an int, Fraction, Decimal or float.
 | 
						||
    """
 | 
						||
 | 
						||
    # XXX We should revisit whether using fractions to accumulate exact
 | 
						||
    # ratios is the right way to go.
 | 
						||
 | 
						||
    # The integer ratios for binary floats can have numerators or
 | 
						||
    # denominators with over 300 decimal digits.  The problem is more
 | 
						||
    # acute with decimal floats where the default decimal context
 | 
						||
    # supports a huge range of exponents from Emin=-999999 to
 | 
						||
    # Emax=999999.  When expanded with as_integer_ratio(), numbers like
 | 
						||
    # Decimal('3.14E+5000') and Decimal('3.14E-5000') have large
 | 
						||
    # numerators or denominators that will slow computation.
 | 
						||
 | 
						||
    # When the integer ratios are accumulated as fractions, the size
 | 
						||
    # grows to cover the full range from the smallest magnitude to the
 | 
						||
    # largest.  For example, Fraction(3.14E+300) + Fraction(3.14E-300),
 | 
						||
    # has a 616 digit numerator.  Likewise,
 | 
						||
    # Fraction(Decimal('3.14E+5000')) + Fraction(Decimal('3.14E-5000'))
 | 
						||
    # has 10,003 digit numerator.
 | 
						||
 | 
						||
    # This doesn't seem to have been problem in practice, but it is a
 | 
						||
    # potential pitfall.
 | 
						||
 | 
						||
    try:
 | 
						||
        return x.as_integer_ratio()
 | 
						||
    except AttributeError:
 | 
						||
        pass
 | 
						||
    except (OverflowError, ValueError):
 | 
						||
        # float NAN or INF.
 | 
						||
        assert not _isfinite(x)
 | 
						||
        return (x, None)
 | 
						||
    try:
 | 
						||
        # x may be an Integral ABC.
 | 
						||
        return (x.numerator, x.denominator)
 | 
						||
    except AttributeError:
 | 
						||
        msg = f"can't convert type '{type(x).__name__}' to numerator/denominator"
 | 
						||
        raise TypeError(msg)
 | 
						||
 | 
						||
 | 
						||
def _convert(value, T):
 | 
						||
    """Convert value to given numeric type T."""
 | 
						||
    if type(value) is T:
 | 
						||
        # This covers the cases where T is Fraction, or where value is
 | 
						||
        # a NAN or INF (Decimal or float).
 | 
						||
        return value
 | 
						||
    if issubclass(T, int) and value.denominator != 1:
 | 
						||
        T = float
 | 
						||
    try:
 | 
						||
        # FIXME: what do we do if this overflows?
 | 
						||
        return T(value)
 | 
						||
    except TypeError:
 | 
						||
        if issubclass(T, Decimal):
 | 
						||
            return T(value.numerator) / T(value.denominator)
 | 
						||
        else:
 | 
						||
            raise
 | 
						||
 | 
						||
 | 
						||
def _fail_neg(values, errmsg='negative value'):
 | 
						||
    """Iterate over values, failing if any are less than zero."""
 | 
						||
    for x in values:
 | 
						||
        if x < 0:
 | 
						||
            raise StatisticsError(errmsg)
 | 
						||
        yield x
 | 
						||
 | 
						||
 | 
						||
def _rank(data, /, *, key=None, reverse=False, ties='average', start=1) -> list[float]:
 | 
						||
    """Rank order a dataset. The lowest value has rank 1.
 | 
						||
 | 
						||
    Ties are averaged so that equal values receive the same rank:
 | 
						||
 | 
						||
        >>> data = [31, 56, 31, 25, 75, 18]
 | 
						||
        >>> _rank(data)
 | 
						||
        [3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
 | 
						||
 | 
						||
    The operation is idempotent:
 | 
						||
 | 
						||
        >>> _rank([3.5, 5.0, 3.5, 2.0, 6.0, 1.0])
 | 
						||
        [3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
 | 
						||
 | 
						||
    It is possible to rank the data in reverse order so that the
 | 
						||
    highest value has rank 1.  Also, a key-function can extract
 | 
						||
    the field to be ranked:
 | 
						||
 | 
						||
        >>> goals = [('eagles', 45), ('bears', 48), ('lions', 44)]
 | 
						||
        >>> _rank(goals, key=itemgetter(1), reverse=True)
 | 
						||
        [2.0, 1.0, 3.0]
 | 
						||
 | 
						||
    Ranks are conventionally numbered starting from one; however,
 | 
						||
    setting *start* to zero allows the ranks to be used as array indices:
 | 
						||
 | 
						||
        >>> prize = ['Gold', 'Silver', 'Bronze', 'Certificate']
 | 
						||
        >>> scores = [8.1, 7.3, 9.4, 8.3]
 | 
						||
        >>> [prize[int(i)] for i in _rank(scores, start=0, reverse=True)]
 | 
						||
        ['Bronze', 'Certificate', 'Gold', 'Silver']
 | 
						||
 | 
						||
    """
 | 
						||
    # If this function becomes public at some point, more thought
 | 
						||
    # needs to be given to the signature.  A list of ints is
 | 
						||
    # plausible when ties is "min" or "max".  When ties is "average",
 | 
						||
    # either list[float] or list[Fraction] is plausible.
 | 
						||
 | 
						||
    # Default handling of ties matches scipy.stats.mstats.spearmanr.
 | 
						||
    if ties != 'average':
 | 
						||
        raise ValueError(f'Unknown tie resolution method: {ties!r}')
 | 
						||
    if key is not None:
 | 
						||
        data = map(key, data)
 | 
						||
    val_pos = sorted(zip(data, count()), reverse=reverse)
 | 
						||
    i = start - 1
 | 
						||
    result = [0] * len(val_pos)
 | 
						||
    for _, g in groupby(val_pos, key=itemgetter(0)):
 | 
						||
        group = list(g)
 | 
						||
        size = len(group)
 | 
						||
        rank = i + (size + 1) / 2
 | 
						||
        for value, orig_pos in group:
 | 
						||
            result[orig_pos] = rank
 | 
						||
        i += size
 | 
						||
    return result
 | 
						||
 | 
						||
 | 
						||
def _integer_sqrt_of_frac_rto(n: int, m: int) -> int:
 | 
						||
    """Square root of n/m, rounded to the nearest integer using round-to-odd."""
 | 
						||
    # Reference: https://www.lri.fr/~melquion/doc/05-imacs17_1-expose.pdf
 | 
						||
    a = math.isqrt(n // m)
 | 
						||
    return a | (a*a*m != n)
 | 
						||
 | 
						||
 | 
						||
# For 53 bit precision floats, the bit width used in
 | 
						||
# _float_sqrt_of_frac() is 109.
 | 
						||
_sqrt_bit_width: int = 2 * sys.float_info.mant_dig + 3
 | 
						||
 | 
						||
 | 
						||
def _float_sqrt_of_frac(n: int, m: int) -> float:
 | 
						||
    """Square root of n/m as a float, correctly rounded."""
 | 
						||
    # See principle and proof sketch at: https://bugs.python.org/msg407078
 | 
						||
    q = (n.bit_length() - m.bit_length() - _sqrt_bit_width) // 2
 | 
						||
    if q >= 0:
 | 
						||
        numerator = _integer_sqrt_of_frac_rto(n, m << 2 * q) << q
 | 
						||
        denominator = 1
 | 
						||
    else:
 | 
						||
        numerator = _integer_sqrt_of_frac_rto(n << -2 * q, m)
 | 
						||
        denominator = 1 << -q
 | 
						||
    return numerator / denominator   # Convert to float
 | 
						||
 | 
						||
 | 
						||
def _decimal_sqrt_of_frac(n: int, m: int) -> Decimal:
 | 
						||
    """Square root of n/m as a Decimal, correctly rounded."""
 | 
						||
    # Premise:  For decimal, computing (n/m).sqrt() can be off
 | 
						||
    #           by 1 ulp from the correctly rounded result.
 | 
						||
    # Method:   Check the result, moving up or down a step if needed.
 | 
						||
    if n <= 0:
 | 
						||
        if not n:
 | 
						||
            return Decimal('0.0')
 | 
						||
        n, m = -n, -m
 | 
						||
 | 
						||
    root = (Decimal(n) / Decimal(m)).sqrt()
 | 
						||
    nr, dr = root.as_integer_ratio()
 | 
						||
 | 
						||
    plus = root.next_plus()
 | 
						||
    np, dp = plus.as_integer_ratio()
 | 
						||
    # test: n / m > ((root + plus) / 2) ** 2
 | 
						||
    if 4 * n * (dr*dp)**2 > m * (dr*np + dp*nr)**2:
 | 
						||
        return plus
 | 
						||
 | 
						||
    minus = root.next_minus()
 | 
						||
    nm, dm = minus.as_integer_ratio()
 | 
						||
    # test: n / m < ((root + minus) / 2) ** 2
 | 
						||
    if 4 * n * (dr*dm)**2 < m * (dr*nm + dm*nr)**2:
 | 
						||
        return minus
 | 
						||
 | 
						||
    return root
 | 
						||
 | 
						||
 | 
						||
# === Measures of central tendency (averages) ===
 | 
						||
 | 
						||
def mean(data):
 | 
						||
    """Return the sample arithmetic mean of data.
 | 
						||
 | 
						||
    >>> mean([1, 2, 3, 4, 4])
 | 
						||
    2.8
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
 | 
						||
    Fraction(13, 21)
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
 | 
						||
    Decimal('0.5625')
 | 
						||
 | 
						||
    If ``data`` is empty, StatisticsError will be raised.
 | 
						||
    """
 | 
						||
    T, total, n = _sum(data)
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('mean requires at least one data point')
 | 
						||
    return _convert(total / n, T)
 | 
						||
 | 
						||
 | 
						||
def fmean(data, weights=None):
 | 
						||
    """Convert data to floats and compute the arithmetic mean.
 | 
						||
 | 
						||
    This runs faster than the mean() function and it always returns a float.
 | 
						||
    If the input dataset is empty, it raises a StatisticsError.
 | 
						||
 | 
						||
    >>> fmean([3.5, 4.0, 5.25])
 | 
						||
    4.25
 | 
						||
    """
 | 
						||
    if weights is None:
 | 
						||
        try:
 | 
						||
            n = len(data)
 | 
						||
        except TypeError:
 | 
						||
            # Handle iterators that do not define __len__().
 | 
						||
            n = 0
 | 
						||
            def count(iterable):
 | 
						||
                nonlocal n
 | 
						||
                for n, x in enumerate(iterable, start=1):
 | 
						||
                    yield x
 | 
						||
            data = count(data)
 | 
						||
        total = fsum(data)
 | 
						||
        if not n:
 | 
						||
            raise StatisticsError('fmean requires at least one data point')
 | 
						||
        return total / n
 | 
						||
    if not isinstance(weights, (list, tuple)):
 | 
						||
        weights = list(weights)
 | 
						||
    try:
 | 
						||
        num = sumprod(data, weights)
 | 
						||
    except ValueError:
 | 
						||
        raise StatisticsError('data and weights must be the same length')
 | 
						||
    den = fsum(weights)
 | 
						||
    if not den:
 | 
						||
        raise StatisticsError('sum of weights must be non-zero')
 | 
						||
    return num / den
 | 
						||
 | 
						||
 | 
						||
def geometric_mean(data):
 | 
						||
    """Convert data to floats and compute the geometric mean.
 | 
						||
 | 
						||
    Raises a StatisticsError if the input dataset is empty
 | 
						||
    or if it contains a negative value.
 | 
						||
 | 
						||
    Returns zero if the product of inputs is zero.
 | 
						||
 | 
						||
    No special efforts are made to achieve exact results.
 | 
						||
    (However, this may change in the future.)
 | 
						||
 | 
						||
    >>> round(geometric_mean([54, 24, 36]), 9)
 | 
						||
    36.0
 | 
						||
    """
 | 
						||
    n = 0
 | 
						||
    found_zero = False
 | 
						||
    def count_positive(iterable):
 | 
						||
        nonlocal n, found_zero
 | 
						||
        for n, x in enumerate(iterable, start=1):
 | 
						||
            if x > 0.0 or math.isnan(x):
 | 
						||
                yield x
 | 
						||
            elif x == 0.0:
 | 
						||
                found_zero = True
 | 
						||
            else:
 | 
						||
                raise StatisticsError('No negative inputs allowed', x)
 | 
						||
    total = fsum(map(log, count_positive(data)))
 | 
						||
    if not n:
 | 
						||
        raise StatisticsError('Must have a non-empty dataset')
 | 
						||
    if math.isnan(total):
 | 
						||
        return math.nan
 | 
						||
    if found_zero:
 | 
						||
        return math.nan if total == math.inf else 0.0
 | 
						||
    return exp(total / n)
 | 
						||
 | 
						||
 | 
						||
def harmonic_mean(data, weights=None):
 | 
						||
    """Return the harmonic mean of data.
 | 
						||
 | 
						||
    The harmonic mean is the reciprocal of the arithmetic mean of the
 | 
						||
    reciprocals of the data.  It can be used for averaging ratios or
 | 
						||
    rates, for example speeds.
 | 
						||
 | 
						||
    Suppose a car travels 40 km/hr for 5 km and then speeds-up to
 | 
						||
    60 km/hr for another 5 km. What is the average speed?
 | 
						||
 | 
						||
        >>> harmonic_mean([40, 60])
 | 
						||
        48.0
 | 
						||
 | 
						||
    Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
 | 
						||
    speeds-up to 60 km/hr for the remaining 30 km of the journey. What
 | 
						||
    is the average speed?
 | 
						||
 | 
						||
        >>> harmonic_mean([40, 60], weights=[5, 30])
 | 
						||
        56.0
 | 
						||
 | 
						||
    If ``data`` is empty, or any element is less than zero,
 | 
						||
    ``harmonic_mean`` will raise ``StatisticsError``.
 | 
						||
    """
 | 
						||
    if iter(data) is data:
 | 
						||
        data = list(data)
 | 
						||
    errmsg = 'harmonic mean does not support negative values'
 | 
						||
    n = len(data)
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('harmonic_mean requires at least one data point')
 | 
						||
    elif n == 1 and weights is None:
 | 
						||
        x = data[0]
 | 
						||
        if isinstance(x, (numbers.Real, Decimal)):
 | 
						||
            if x < 0:
 | 
						||
                raise StatisticsError(errmsg)
 | 
						||
            return x
 | 
						||
        else:
 | 
						||
            raise TypeError('unsupported type')
 | 
						||
    if weights is None:
 | 
						||
        weights = repeat(1, n)
 | 
						||
        sum_weights = n
 | 
						||
    else:
 | 
						||
        if iter(weights) is weights:
 | 
						||
            weights = list(weights)
 | 
						||
        if len(weights) != n:
 | 
						||
            raise StatisticsError('Number of weights does not match data size')
 | 
						||
        _, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg))
 | 
						||
    try:
 | 
						||
        data = _fail_neg(data, errmsg)
 | 
						||
        T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data))
 | 
						||
    except ZeroDivisionError:
 | 
						||
        return 0
 | 
						||
    if total <= 0:
 | 
						||
        raise StatisticsError('Weighted sum must be positive')
 | 
						||
    return _convert(sum_weights / total, T)
 | 
						||
 | 
						||
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
 | 
						||
def median(data):
 | 
						||
    """Return the median (middle value) of numeric data.
 | 
						||
 | 
						||
    When the number of data points is odd, return the middle data point.
 | 
						||
    When the number of data points is even, the median is interpolated by
 | 
						||
    taking the average of the two middle values:
 | 
						||
 | 
						||
    >>> median([1, 3, 5])
 | 
						||
    3
 | 
						||
    >>> median([1, 3, 5, 7])
 | 
						||
    4.0
 | 
						||
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if n == 0:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
    if n % 2 == 1:
 | 
						||
        return data[n // 2]
 | 
						||
    else:
 | 
						||
        i = n // 2
 | 
						||
        return (data[i - 1] + data[i]) / 2
 | 
						||
 | 
						||
 | 
						||
def median_low(data):
 | 
						||
    """Return the low median of numeric data.
 | 
						||
 | 
						||
    When the number of data points is odd, the middle value is returned.
 | 
						||
    When it is even, the smaller of the two middle values is returned.
 | 
						||
 | 
						||
    >>> median_low([1, 3, 5])
 | 
						||
    3
 | 
						||
    >>> median_low([1, 3, 5, 7])
 | 
						||
    3
 | 
						||
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if n == 0:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
    if n % 2 == 1:
 | 
						||
        return data[n // 2]
 | 
						||
    else:
 | 
						||
        return data[n // 2 - 1]
 | 
						||
 | 
						||
 | 
						||
def median_high(data):
 | 
						||
    """Return the high median of data.
 | 
						||
 | 
						||
    When the number of data points is odd, the middle value is returned.
 | 
						||
    When it is even, the larger of the two middle values is returned.
 | 
						||
 | 
						||
    >>> median_high([1, 3, 5])
 | 
						||
    3
 | 
						||
    >>> median_high([1, 3, 5, 7])
 | 
						||
    5
 | 
						||
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if n == 0:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
    return data[n // 2]
 | 
						||
 | 
						||
 | 
						||
def median_grouped(data, interval=1.0):
 | 
						||
    """Estimates the median for numeric data binned around the midpoints
 | 
						||
    of consecutive, fixed-width intervals.
 | 
						||
 | 
						||
    The *data* can be any iterable of numeric data with each value being
 | 
						||
    exactly the midpoint of a bin.  At least one value must be present.
 | 
						||
 | 
						||
    The *interval* is width of each bin.
 | 
						||
 | 
						||
    For example, demographic information may have been summarized into
 | 
						||
    consecutive ten-year age groups with each group being represented
 | 
						||
    by the 5-year midpoints of the intervals:
 | 
						||
 | 
						||
        >>> demographics = Counter({
 | 
						||
        ...    25: 172,   # 20 to 30 years old
 | 
						||
        ...    35: 484,   # 30 to 40 years old
 | 
						||
        ...    45: 387,   # 40 to 50 years old
 | 
						||
        ...    55:  22,   # 50 to 60 years old
 | 
						||
        ...    65:   6,   # 60 to 70 years old
 | 
						||
        ... })
 | 
						||
 | 
						||
    The 50th percentile (median) is the 536th person out of the 1071
 | 
						||
    member cohort.  That person is in the 30 to 40 year old age group.
 | 
						||
 | 
						||
    The regular median() function would assume that everyone in the
 | 
						||
    tricenarian age group was exactly 35 years old.  A more tenable
 | 
						||
    assumption is that the 484 members of that age group are evenly
 | 
						||
    distributed between 30 and 40.  For that, we use median_grouped().
 | 
						||
 | 
						||
        >>> data = list(demographics.elements())
 | 
						||
        >>> median(data)
 | 
						||
        35
 | 
						||
        >>> round(median_grouped(data, interval=10), 1)
 | 
						||
        37.5
 | 
						||
 | 
						||
    The caller is responsible for making sure the data points are separated
 | 
						||
    by exact multiples of *interval*.  This is essential for getting a
 | 
						||
    correct result.  The function does not check this precondition.
 | 
						||
 | 
						||
    Inputs may be any numeric type that can be coerced to a float during
 | 
						||
    the interpolation step.
 | 
						||
 | 
						||
    """
 | 
						||
    data = sorted(data)
 | 
						||
    n = len(data)
 | 
						||
    if not n:
 | 
						||
        raise StatisticsError("no median for empty data")
 | 
						||
 | 
						||
    # Find the value at the midpoint. Remember this corresponds to the
 | 
						||
    # midpoint of the class interval.
 | 
						||
    x = data[n // 2]
 | 
						||
 | 
						||
    # Using O(log n) bisection, find where all the x values occur in the data.
 | 
						||
    # All x will lie within data[i:j].
 | 
						||
    i = bisect_left(data, x)
 | 
						||
    j = bisect_right(data, x, lo=i)
 | 
						||
 | 
						||
    # Coerce to floats, raising a TypeError if not possible
 | 
						||
    try:
 | 
						||
        interval = float(interval)
 | 
						||
        x = float(x)
 | 
						||
    except ValueError:
 | 
						||
        raise TypeError(f'Value cannot be converted to a float')
 | 
						||
 | 
						||
    # Interpolate the median using the formula found at:
 | 
						||
    # https://www.cuemath.com/data/median-of-grouped-data/
 | 
						||
    L = x - interval / 2.0    # Lower limit of the median interval
 | 
						||
    cf = i                    # Cumulative frequency of the preceding interval
 | 
						||
    f = j - i                 # Number of elements in the median internal
 | 
						||
    return L + interval * (n / 2 - cf) / f
 | 
						||
 | 
						||
 | 
						||
def mode(data):
 | 
						||
    """Return the most common data point from discrete or nominal data.
 | 
						||
 | 
						||
    ``mode`` assumes discrete data, and returns a single value. This is the
 | 
						||
    standard treatment of the mode as commonly taught in schools:
 | 
						||
 | 
						||
        >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
 | 
						||
        3
 | 
						||
 | 
						||
    This also works with nominal (non-numeric) data:
 | 
						||
 | 
						||
        >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
 | 
						||
        'red'
 | 
						||
 | 
						||
    If there are multiple modes with same frequency, return the first one
 | 
						||
    encountered:
 | 
						||
 | 
						||
        >>> mode(['red', 'red', 'green', 'blue', 'blue'])
 | 
						||
        'red'
 | 
						||
 | 
						||
    If *data* is empty, ``mode``, raises StatisticsError.
 | 
						||
 | 
						||
    """
 | 
						||
    pairs = Counter(iter(data)).most_common(1)
 | 
						||
    try:
 | 
						||
        return pairs[0][0]
 | 
						||
    except IndexError:
 | 
						||
        raise StatisticsError('no mode for empty data') from None
 | 
						||
 | 
						||
 | 
						||
def multimode(data):
 | 
						||
    """Return a list of the most frequently occurring values.
 | 
						||
 | 
						||
    Will return more than one result if there are multiple modes
 | 
						||
    or an empty list if *data* is empty.
 | 
						||
 | 
						||
    >>> multimode('aabbbbbbbbcc')
 | 
						||
    ['b']
 | 
						||
    >>> multimode('aabbbbccddddeeffffgg')
 | 
						||
    ['b', 'd', 'f']
 | 
						||
    >>> multimode('')
 | 
						||
    []
 | 
						||
    """
 | 
						||
    counts = Counter(iter(data))
 | 
						||
    if not counts:
 | 
						||
        return []
 | 
						||
    maxcount = max(counts.values())
 | 
						||
    return [value for value, count in counts.items() if count == maxcount]
 | 
						||
 | 
						||
 | 
						||
# Notes on methods for computing quantiles
 | 
						||
# ----------------------------------------
 | 
						||
#
 | 
						||
# There is no one perfect way to compute quantiles.  Here we offer
 | 
						||
# two methods that serve common needs.  Most other packages
 | 
						||
# surveyed offered at least one or both of these two, making them
 | 
						||
# "standard" in the sense of "widely-adopted and reproducible".
 | 
						||
# They are also easy to explain, easy to compute manually, and have
 | 
						||
# straight-forward interpretations that aren't surprising.
 | 
						||
 | 
						||
# The default method is known as "R6", "PERCENTILE.EXC", or "expected
 | 
						||
# value of rank order statistics". The alternative method is known as
 | 
						||
# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
 | 
						||
 | 
						||
# For sample data where there is a positive probability for values
 | 
						||
# beyond the range of the data, the R6 exclusive method is a
 | 
						||
# reasonable choice.  Consider a random sample of nine values from a
 | 
						||
# population with a uniform distribution from 0.0 to 1.0.  The
 | 
						||
# distribution of the third ranked sample point is described by
 | 
						||
# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
 | 
						||
# mean=0.300.  Only the latter (which corresponds with R6) gives the
 | 
						||
# desired cut point with 30% of the population falling below that
 | 
						||
# value, making it comparable to a result from an inv_cdf() function.
 | 
						||
# The R6 exclusive method is also idempotent.
 | 
						||
 | 
						||
# For describing population data where the end points are known to
 | 
						||
# be included in the data, the R7 inclusive method is a reasonable
 | 
						||
# choice.  Instead of the mean, it uses the mode of the beta
 | 
						||
# distribution for the interior points.  Per Hyndman & Fan, "One nice
 | 
						||
# property is that the vertices of Q7(p) divide the range into n - 1
 | 
						||
# intervals, and exactly 100p% of the intervals lie to the left of
 | 
						||
# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
 | 
						||
 | 
						||
# If needed, other methods could be added.  However, for now, the
 | 
						||
# position is that fewer options make for easier choices and that
 | 
						||
# external packages can be used for anything more advanced.
 | 
						||
 | 
						||
def quantiles(data, *, n=4, method='exclusive'):
 | 
						||
    """Divide *data* into *n* continuous intervals with equal probability.
 | 
						||
 | 
						||
    Returns a list of (n - 1) cut points separating the intervals.
 | 
						||
 | 
						||
    Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | 
						||
    Set *n* to 100 for percentiles which gives the 99 cuts points that
 | 
						||
    separate *data* in to 100 equal sized groups.
 | 
						||
 | 
						||
    The *data* can be any iterable containing sample.
 | 
						||
    The cut points are linearly interpolated between data points.
 | 
						||
 | 
						||
    If *method* is set to *inclusive*, *data* is treated as population
 | 
						||
    data.  The minimum value is treated as the 0th percentile and the
 | 
						||
    maximum value is treated as the 100th percentile.
 | 
						||
    """
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('n must be at least 1')
 | 
						||
    data = sorted(data)
 | 
						||
    ld = len(data)
 | 
						||
    if ld < 2:
 | 
						||
        if ld == 1:
 | 
						||
            return data * (n - 1)
 | 
						||
        raise StatisticsError('must have at least one data point')
 | 
						||
    if method == 'inclusive':
 | 
						||
        m = ld - 1
 | 
						||
        result = []
 | 
						||
        for i in range(1, n):
 | 
						||
            j, delta = divmod(i * m, n)
 | 
						||
            interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
 | 
						||
            result.append(interpolated)
 | 
						||
        return result
 | 
						||
    if method == 'exclusive':
 | 
						||
        m = ld + 1
 | 
						||
        result = []
 | 
						||
        for i in range(1, n):
 | 
						||
            j = i * m // n                               # rescale i to m/n
 | 
						||
            j = 1 if j < 1 else ld-1 if j > ld-1 else j  # clamp to 1 .. ld-1
 | 
						||
            delta = i*m - j*n                            # exact integer math
 | 
						||
            interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
 | 
						||
            result.append(interpolated)
 | 
						||
        return result
 | 
						||
    raise ValueError(f'Unknown method: {method!r}')
 | 
						||
 | 
						||
 | 
						||
# === Measures of spread ===
 | 
						||
 | 
						||
# See http://mathworld.wolfram.com/Variance.html
 | 
						||
#     http://mathworld.wolfram.com/SampleVariance.html
 | 
						||
 | 
						||
 | 
						||
def variance(data, xbar=None):
 | 
						||
    """Return the sample variance of data.
 | 
						||
 | 
						||
    data should be an iterable of Real-valued numbers, with at least two
 | 
						||
    values. The optional argument xbar, if given, should be the mean of
 | 
						||
    the data. If it is missing or None, the mean is automatically calculated.
 | 
						||
 | 
						||
    Use this function when your data is a sample from a population. To
 | 
						||
    calculate the variance from the entire population, see ``pvariance``.
 | 
						||
 | 
						||
    Examples:
 | 
						||
 | 
						||
    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
 | 
						||
    >>> variance(data)
 | 
						||
    1.3720238095238095
 | 
						||
 | 
						||
    If you have already calculated the mean of your data, you can pass it as
 | 
						||
    the optional second argument ``xbar`` to avoid recalculating it:
 | 
						||
 | 
						||
    >>> m = mean(data)
 | 
						||
    >>> variance(data, m)
 | 
						||
    1.3720238095238095
 | 
						||
 | 
						||
    This function does not check that ``xbar`` is actually the mean of
 | 
						||
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
 | 
						||
    impossible results.
 | 
						||
 | 
						||
    Decimals and Fractions are supported:
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | 
						||
    Decimal('31.01875')
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
 | 
						||
    Fraction(67, 108)
 | 
						||
 | 
						||
    """
 | 
						||
    T, ss, c, n = _ss(data, xbar)
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('variance requires at least two data points')
 | 
						||
    return _convert(ss / (n - 1), T)
 | 
						||
 | 
						||
 | 
						||
def pvariance(data, mu=None):
 | 
						||
    """Return the population variance of ``data``.
 | 
						||
 | 
						||
    data should be a sequence or iterable of Real-valued numbers, with at least one
 | 
						||
    value. The optional argument mu, if given, should be the mean of
 | 
						||
    the data. If it is missing or None, the mean is automatically calculated.
 | 
						||
 | 
						||
    Use this function to calculate the variance from the entire population.
 | 
						||
    To estimate the variance from a sample, the ``variance`` function is
 | 
						||
    usually a better choice.
 | 
						||
 | 
						||
    Examples:
 | 
						||
 | 
						||
    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
 | 
						||
    >>> pvariance(data)
 | 
						||
    1.25
 | 
						||
 | 
						||
    If you have already calculated the mean of the data, you can pass it as
 | 
						||
    the optional second argument to avoid recalculating it:
 | 
						||
 | 
						||
    >>> mu = mean(data)
 | 
						||
    >>> pvariance(data, mu)
 | 
						||
    1.25
 | 
						||
 | 
						||
    Decimals and Fractions are supported:
 | 
						||
 | 
						||
    >>> from decimal import Decimal as D
 | 
						||
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
 | 
						||
    Decimal('24.815')
 | 
						||
 | 
						||
    >>> from fractions import Fraction as F
 | 
						||
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
 | 
						||
    Fraction(13, 72)
 | 
						||
 | 
						||
    """
 | 
						||
    T, ss, c, n = _ss(data, mu)
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('pvariance requires at least one data point')
 | 
						||
    return _convert(ss / n, T)
 | 
						||
 | 
						||
 | 
						||
def stdev(data, xbar=None):
 | 
						||
    """Return the square root of the sample variance.
 | 
						||
 | 
						||
    See ``variance`` for arguments and other details.
 | 
						||
 | 
						||
    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | 
						||
    1.0810874155219827
 | 
						||
 | 
						||
    """
 | 
						||
    T, ss, c, n = _ss(data, xbar)
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('stdev requires at least two data points')
 | 
						||
    mss = ss / (n - 1)
 | 
						||
    if issubclass(T, Decimal):
 | 
						||
        return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
 | 
						||
    return _float_sqrt_of_frac(mss.numerator, mss.denominator)
 | 
						||
 | 
						||
 | 
						||
def pstdev(data, mu=None):
 | 
						||
    """Return the square root of the population variance.
 | 
						||
 | 
						||
    See ``pvariance`` for arguments and other details.
 | 
						||
 | 
						||
    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
 | 
						||
    0.986893273527251
 | 
						||
 | 
						||
    """
 | 
						||
    T, ss, c, n = _ss(data, mu)
 | 
						||
    if n < 1:
 | 
						||
        raise StatisticsError('pstdev requires at least one data point')
 | 
						||
    mss = ss / n
 | 
						||
    if issubclass(T, Decimal):
 | 
						||
        return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
 | 
						||
    return _float_sqrt_of_frac(mss.numerator, mss.denominator)
 | 
						||
 | 
						||
 | 
						||
def _mean_stdev(data):
 | 
						||
    """In one pass, compute the mean and sample standard deviation as floats."""
 | 
						||
    T, ss, xbar, n = _ss(data)
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('stdev requires at least two data points')
 | 
						||
    mss = ss / (n - 1)
 | 
						||
    try:
 | 
						||
        return float(xbar), _float_sqrt_of_frac(mss.numerator, mss.denominator)
 | 
						||
    except AttributeError:
 | 
						||
        # Handle Nans and Infs gracefully
 | 
						||
        return float(xbar), float(xbar) / float(ss)
 | 
						||
 | 
						||
def _sqrtprod(x: float, y: float) -> float:
 | 
						||
    "Return sqrt(x * y) computed with improved accuracy and without overflow/underflow."
 | 
						||
    h = sqrt(x * y)
 | 
						||
    if not isfinite(h):
 | 
						||
        if isinf(h) and not isinf(x) and not isinf(y):
 | 
						||
            # Finite inputs overflowed, so scale down, and recompute.
 | 
						||
            scale = 2.0 ** -512  # sqrt(1 / sys.float_info.max)
 | 
						||
            return _sqrtprod(scale * x, scale * y) / scale
 | 
						||
        return h
 | 
						||
    if not h:
 | 
						||
        if x and y:
 | 
						||
            # Non-zero inputs underflowed, so scale up, and recompute.
 | 
						||
            # Scale:  1 / sqrt(sys.float_info.min * sys.float_info.epsilon)
 | 
						||
            scale = 2.0 ** 537
 | 
						||
            return _sqrtprod(scale * x, scale * y) / scale
 | 
						||
        return h
 | 
						||
    # Improve accuracy with a differential correction.
 | 
						||
    # https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
 | 
						||
    d = sumprod((x, h), (y, -h))
 | 
						||
    return h + d / (2.0 * h)
 | 
						||
 | 
						||
 | 
						||
# === Statistics for relations between two inputs ===
 | 
						||
 | 
						||
# See https://en.wikipedia.org/wiki/Covariance
 | 
						||
#     https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
 | 
						||
#     https://en.wikipedia.org/wiki/Simple_linear_regression
 | 
						||
 | 
						||
 | 
						||
def covariance(x, y, /):
 | 
						||
    """Covariance
 | 
						||
 | 
						||
    Return the sample covariance of two inputs *x* and *y*. Covariance
 | 
						||
    is a measure of the joint variability of two inputs.
 | 
						||
 | 
						||
    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | 
						||
    >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
 | 
						||
    >>> covariance(x, y)
 | 
						||
    0.75
 | 
						||
    >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
 | 
						||
    >>> covariance(x, z)
 | 
						||
    -7.5
 | 
						||
    >>> covariance(z, x)
 | 
						||
    -7.5
 | 
						||
 | 
						||
    """
 | 
						||
    n = len(x)
 | 
						||
    if len(y) != n:
 | 
						||
        raise StatisticsError('covariance requires that both inputs have same number of data points')
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('covariance requires at least two data points')
 | 
						||
    xbar = fsum(x) / n
 | 
						||
    ybar = fsum(y) / n
 | 
						||
    sxy = sumprod((xi - xbar for xi in x), (yi - ybar for yi in y))
 | 
						||
    return sxy / (n - 1)
 | 
						||
 | 
						||
 | 
						||
def correlation(x, y, /, *, method='linear'):
 | 
						||
    """Pearson's correlation coefficient
 | 
						||
 | 
						||
    Return the Pearson's correlation coefficient for two inputs. Pearson's
 | 
						||
    correlation coefficient *r* takes values between -1 and +1. It measures
 | 
						||
    the strength and direction of a linear relationship.
 | 
						||
 | 
						||
    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
 | 
						||
    >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
 | 
						||
    >>> correlation(x, x)
 | 
						||
    1.0
 | 
						||
    >>> correlation(x, y)
 | 
						||
    -1.0
 | 
						||
 | 
						||
    If *method* is "ranked", computes Spearman's rank correlation coefficient
 | 
						||
    for two inputs.  The data is replaced by ranks.  Ties are averaged
 | 
						||
    so that equal values receive the same rank.  The resulting coefficient
 | 
						||
    measures the strength of a monotonic relationship.
 | 
						||
 | 
						||
    Spearman's rank correlation coefficient is appropriate for ordinal
 | 
						||
    data or for continuous data that doesn't meet the linear proportion
 | 
						||
    requirement for Pearson's correlation coefficient.
 | 
						||
    """
 | 
						||
    n = len(x)
 | 
						||
    if len(y) != n:
 | 
						||
        raise StatisticsError('correlation requires that both inputs have same number of data points')
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('correlation requires at least two data points')
 | 
						||
    if method not in {'linear', 'ranked'}:
 | 
						||
        raise ValueError(f'Unknown method: {method!r}')
 | 
						||
    if method == 'ranked':
 | 
						||
        start = (n - 1) / -2            # Center rankings around zero
 | 
						||
        x = _rank(x, start=start)
 | 
						||
        y = _rank(y, start=start)
 | 
						||
    else:
 | 
						||
        xbar = fsum(x) / n
 | 
						||
        ybar = fsum(y) / n
 | 
						||
        x = [xi - xbar for xi in x]
 | 
						||
        y = [yi - ybar for yi in y]
 | 
						||
    sxy = sumprod(x, y)
 | 
						||
    sxx = sumprod(x, x)
 | 
						||
    syy = sumprod(y, y)
 | 
						||
    try:
 | 
						||
        return sxy / _sqrtprod(sxx, syy)
 | 
						||
    except ZeroDivisionError:
 | 
						||
        raise StatisticsError('at least one of the inputs is constant')
 | 
						||
 | 
						||
 | 
						||
LinearRegression = namedtuple('LinearRegression', ('slope', 'intercept'))
 | 
						||
 | 
						||
 | 
						||
def linear_regression(x, y, /, *, proportional=False):
 | 
						||
    """Slope and intercept for simple linear regression.
 | 
						||
 | 
						||
    Return the slope and intercept of simple linear regression
 | 
						||
    parameters estimated using ordinary least squares. Simple linear
 | 
						||
    regression describes relationship between an independent variable
 | 
						||
    *x* and a dependent variable *y* in terms of a linear function:
 | 
						||
 | 
						||
        y = slope * x + intercept + noise
 | 
						||
 | 
						||
    where *slope* and *intercept* are the regression parameters that are
 | 
						||
    estimated, and noise represents the variability of the data that was
 | 
						||
    not explained by the linear regression (it is equal to the
 | 
						||
    difference between predicted and actual values of the dependent
 | 
						||
    variable).
 | 
						||
 | 
						||
    The parameters are returned as a named tuple.
 | 
						||
 | 
						||
    >>> x = [1, 2, 3, 4, 5]
 | 
						||
    >>> noise = NormalDist().samples(5, seed=42)
 | 
						||
    >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
 | 
						||
    >>> linear_regression(x, y)  #doctest: +ELLIPSIS
 | 
						||
    LinearRegression(slope=3.17495..., intercept=1.00925...)
 | 
						||
 | 
						||
    If *proportional* is true, the independent variable *x* and the
 | 
						||
    dependent variable *y* are assumed to be directly proportional.
 | 
						||
    The data is fit to a line passing through the origin.
 | 
						||
 | 
						||
    Since the *intercept* will always be 0.0, the underlying linear
 | 
						||
    function simplifies to:
 | 
						||
 | 
						||
        y = slope * x + noise
 | 
						||
 | 
						||
    >>> y = [3 * x[i] + noise[i] for i in range(5)]
 | 
						||
    >>> linear_regression(x, y, proportional=True)  #doctest: +ELLIPSIS
 | 
						||
    LinearRegression(slope=2.90475..., intercept=0.0)
 | 
						||
 | 
						||
    """
 | 
						||
    n = len(x)
 | 
						||
    if len(y) != n:
 | 
						||
        raise StatisticsError('linear regression requires that both inputs have same number of data points')
 | 
						||
    if n < 2:
 | 
						||
        raise StatisticsError('linear regression requires at least two data points')
 | 
						||
    if not proportional:
 | 
						||
        xbar = fsum(x) / n
 | 
						||
        ybar = fsum(y) / n
 | 
						||
        x = [xi - xbar for xi in x]  # List because used three times below
 | 
						||
        y = (yi - ybar for yi in y)  # Generator because only used once below
 | 
						||
    sxy = sumprod(x, y) + 0.0        # Add zero to coerce result to a float
 | 
						||
    sxx = sumprod(x, x)
 | 
						||
    try:
 | 
						||
        slope = sxy / sxx   # equivalent to:  covariance(x, y) / variance(x)
 | 
						||
    except ZeroDivisionError:
 | 
						||
        raise StatisticsError('x is constant')
 | 
						||
    intercept = 0.0 if proportional else ybar - slope * xbar
 | 
						||
    return LinearRegression(slope=slope, intercept=intercept)
 | 
						||
 | 
						||
 | 
						||
## Normal Distribution #####################################################
 | 
						||
 | 
						||
 | 
						||
def _normal_dist_inv_cdf(p, mu, sigma):
 | 
						||
    # There is no closed-form solution to the inverse CDF for the normal
 | 
						||
    # distribution, so we use a rational approximation instead:
 | 
						||
    # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
 | 
						||
    # Normal Distribution".  Applied Statistics. Blackwell Publishing. 37
 | 
						||
    # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
 | 
						||
    q = p - 0.5
 | 
						||
    if fabs(q) <= 0.425:
 | 
						||
        r = 0.180625 - q * q
 | 
						||
        # Hash sum: 55.88319_28806_14901_4439
 | 
						||
        num = (((((((2.50908_09287_30122_6727e+3 * r +
 | 
						||
                     3.34305_75583_58812_8105e+4) * r +
 | 
						||
                     6.72657_70927_00870_0853e+4) * r +
 | 
						||
                     4.59219_53931_54987_1457e+4) * r +
 | 
						||
                     1.37316_93765_50946_1125e+4) * r +
 | 
						||
                     1.97159_09503_06551_4427e+3) * r +
 | 
						||
                     1.33141_66789_17843_7745e+2) * r +
 | 
						||
                     3.38713_28727_96366_6080e+0) * q
 | 
						||
        den = (((((((5.22649_52788_52854_5610e+3 * r +
 | 
						||
                     2.87290_85735_72194_2674e+4) * r +
 | 
						||
                     3.93078_95800_09271_0610e+4) * r +
 | 
						||
                     2.12137_94301_58659_5867e+4) * r +
 | 
						||
                     5.39419_60214_24751_1077e+3) * r +
 | 
						||
                     6.87187_00749_20579_0830e+2) * r +
 | 
						||
                     4.23133_30701_60091_1252e+1) * r +
 | 
						||
                     1.0)
 | 
						||
        x = num / den
 | 
						||
        return mu + (x * sigma)
 | 
						||
    r = p if q <= 0.0 else 1.0 - p
 | 
						||
    r = sqrt(-log(r))
 | 
						||
    if r <= 5.0:
 | 
						||
        r = r - 1.6
 | 
						||
        # Hash sum: 49.33206_50330_16102_89036
 | 
						||
        num = (((((((7.74545_01427_83414_07640e-4 * r +
 | 
						||
                     2.27238_44989_26918_45833e-2) * r +
 | 
						||
                     2.41780_72517_74506_11770e-1) * r +
 | 
						||
                     1.27045_82524_52368_38258e+0) * r +
 | 
						||
                     3.64784_83247_63204_60504e+0) * r +
 | 
						||
                     5.76949_72214_60691_40550e+0) * r +
 | 
						||
                     4.63033_78461_56545_29590e+0) * r +
 | 
						||
                     1.42343_71107_49683_57734e+0)
 | 
						||
        den = (((((((1.05075_00716_44416_84324e-9 * r +
 | 
						||
                     5.47593_80849_95344_94600e-4) * r +
 | 
						||
                     1.51986_66563_61645_71966e-2) * r +
 | 
						||
                     1.48103_97642_74800_74590e-1) * r +
 | 
						||
                     6.89767_33498_51000_04550e-1) * r +
 | 
						||
                     1.67638_48301_83803_84940e+0) * r +
 | 
						||
                     2.05319_16266_37758_82187e+0) * r +
 | 
						||
                     1.0)
 | 
						||
    else:
 | 
						||
        r = r - 5.0
 | 
						||
        # Hash sum: 47.52583_31754_92896_71629
 | 
						||
        num = (((((((2.01033_43992_92288_13265e-7 * r +
 | 
						||
                     2.71155_55687_43487_57815e-5) * r +
 | 
						||
                     1.24266_09473_88078_43860e-3) * r +
 | 
						||
                     2.65321_89526_57612_30930e-2) * r +
 | 
						||
                     2.96560_57182_85048_91230e-1) * r +
 | 
						||
                     1.78482_65399_17291_33580e+0) * r +
 | 
						||
                     5.46378_49111_64114_36990e+0) * r +
 | 
						||
                     6.65790_46435_01103_77720e+0)
 | 
						||
        den = (((((((2.04426_31033_89939_78564e-15 * r +
 | 
						||
                     1.42151_17583_16445_88870e-7) * r +
 | 
						||
                     1.84631_83175_10054_68180e-5) * r +
 | 
						||
                     7.86869_13114_56132_59100e-4) * r +
 | 
						||
                     1.48753_61290_85061_48525e-2) * r +
 | 
						||
                     1.36929_88092_27358_05310e-1) * r +
 | 
						||
                     5.99832_20655_58879_37690e-1) * r +
 | 
						||
                     1.0)
 | 
						||
    x = num / den
 | 
						||
    if q < 0.0:
 | 
						||
        x = -x
 | 
						||
    return mu + (x * sigma)
 | 
						||
 | 
						||
 | 
						||
# If available, use C implementation
 | 
						||
try:
 | 
						||
    from _statistics import _normal_dist_inv_cdf
 | 
						||
except ImportError:
 | 
						||
    pass
 | 
						||
 | 
						||
 | 
						||
class NormalDist:
 | 
						||
    "Normal distribution of a random variable"
 | 
						||
    # https://en.wikipedia.org/wiki/Normal_distribution
 | 
						||
    # https://en.wikipedia.org/wiki/Variance#Properties
 | 
						||
 | 
						||
    __slots__ = {
 | 
						||
        '_mu': 'Arithmetic mean of a normal distribution',
 | 
						||
        '_sigma': 'Standard deviation of a normal distribution',
 | 
						||
    }
 | 
						||
 | 
						||
    def __init__(self, mu=0.0, sigma=1.0):
 | 
						||
        "NormalDist where mu is the mean and sigma is the standard deviation."
 | 
						||
        if sigma < 0.0:
 | 
						||
            raise StatisticsError('sigma must be non-negative')
 | 
						||
        self._mu = float(mu)
 | 
						||
        self._sigma = float(sigma)
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def from_samples(cls, data):
 | 
						||
        "Make a normal distribution instance from sample data."
 | 
						||
        return cls(*_mean_stdev(data))
 | 
						||
 | 
						||
    def samples(self, n, *, seed=None):
 | 
						||
        "Generate *n* samples for a given mean and standard deviation."
 | 
						||
        rnd = random.random if seed is None else random.Random(seed).random
 | 
						||
        inv_cdf = _normal_dist_inv_cdf
 | 
						||
        mu = self._mu
 | 
						||
        sigma = self._sigma
 | 
						||
        return [inv_cdf(rnd(), mu, sigma) for _ in repeat(None, n)]
 | 
						||
 | 
						||
    def pdf(self, x):
 | 
						||
        "Probability density function.  P(x <= X < x+dx) / dx"
 | 
						||
        variance = self._sigma * self._sigma
 | 
						||
        if not variance:
 | 
						||
            raise StatisticsError('pdf() not defined when sigma is zero')
 | 
						||
        diff = x - self._mu
 | 
						||
        return exp(diff * diff / (-2.0 * variance)) / sqrt(tau * variance)
 | 
						||
 | 
						||
    def cdf(self, x):
 | 
						||
        "Cumulative distribution function.  P(X <= x)"
 | 
						||
        if not self._sigma:
 | 
						||
            raise StatisticsError('cdf() not defined when sigma is zero')
 | 
						||
        return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * _SQRT2)))
 | 
						||
 | 
						||
    def inv_cdf(self, p):
 | 
						||
        """Inverse cumulative distribution function.  x : P(X <= x) = p
 | 
						||
 | 
						||
        Finds the value of the random variable such that the probability of
 | 
						||
        the variable being less than or equal to that value equals the given
 | 
						||
        probability.
 | 
						||
 | 
						||
        This function is also called the percent point function or quantile
 | 
						||
        function.
 | 
						||
        """
 | 
						||
        if p <= 0.0 or p >= 1.0:
 | 
						||
            raise StatisticsError('p must be in the range 0.0 < p < 1.0')
 | 
						||
        return _normal_dist_inv_cdf(p, self._mu, self._sigma)
 | 
						||
 | 
						||
    def quantiles(self, n=4):
 | 
						||
        """Divide into *n* continuous intervals with equal probability.
 | 
						||
 | 
						||
        Returns a list of (n - 1) cut points separating the intervals.
 | 
						||
 | 
						||
        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
 | 
						||
        Set *n* to 100 for percentiles which gives the 99 cuts points that
 | 
						||
        separate the normal distribution in to 100 equal sized groups.
 | 
						||
        """
 | 
						||
        return [self.inv_cdf(i / n) for i in range(1, n)]
 | 
						||
 | 
						||
    def overlap(self, other):
 | 
						||
        """Compute the overlapping coefficient (OVL) between two normal distributions.
 | 
						||
 | 
						||
        Measures the agreement between two normal probability distributions.
 | 
						||
        Returns a value between 0.0 and 1.0 giving the overlapping area in
 | 
						||
        the two underlying probability density functions.
 | 
						||
 | 
						||
            >>> N1 = NormalDist(2.4, 1.6)
 | 
						||
            >>> N2 = NormalDist(3.2, 2.0)
 | 
						||
            >>> N1.overlap(N2)
 | 
						||
            0.8035050657330205
 | 
						||
        """
 | 
						||
        # See: "The overlapping coefficient as a measure of agreement between
 | 
						||
        # probability distributions and point estimation of the overlap of two
 | 
						||
        # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
 | 
						||
        # http://dx.doi.org/10.1080/03610928908830127
 | 
						||
        if not isinstance(other, NormalDist):
 | 
						||
            raise TypeError('Expected another NormalDist instance')
 | 
						||
        X, Y = self, other
 | 
						||
        if (Y._sigma, Y._mu) < (X._sigma, X._mu):  # sort to assure commutativity
 | 
						||
            X, Y = Y, X
 | 
						||
        X_var, Y_var = X.variance, Y.variance
 | 
						||
        if not X_var or not Y_var:
 | 
						||
            raise StatisticsError('overlap() not defined when sigma is zero')
 | 
						||
        dv = Y_var - X_var
 | 
						||
        dm = fabs(Y._mu - X._mu)
 | 
						||
        if not dv:
 | 
						||
            return 1.0 - erf(dm / (2.0 * X._sigma * _SQRT2))
 | 
						||
        a = X._mu * Y_var - Y._mu * X_var
 | 
						||
        b = X._sigma * Y._sigma * sqrt(dm * dm + dv * log(Y_var / X_var))
 | 
						||
        x1 = (a + b) / dv
 | 
						||
        x2 = (a - b) / dv
 | 
						||
        return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
 | 
						||
 | 
						||
    def zscore(self, x):
 | 
						||
        """Compute the Standard Score.  (x - mean) / stdev
 | 
						||
 | 
						||
        Describes *x* in terms of the number of standard deviations
 | 
						||
        above or below the mean of the normal distribution.
 | 
						||
        """
 | 
						||
        # https://www.statisticshowto.com/probability-and-statistics/z-score/
 | 
						||
        if not self._sigma:
 | 
						||
            raise StatisticsError('zscore() not defined when sigma is zero')
 | 
						||
        return (x - self._mu) / self._sigma
 | 
						||
 | 
						||
    @property
 | 
						||
    def mean(self):
 | 
						||
        "Arithmetic mean of the normal distribution."
 | 
						||
        return self._mu
 | 
						||
 | 
						||
    @property
 | 
						||
    def median(self):
 | 
						||
        "Return the median of the normal distribution"
 | 
						||
        return self._mu
 | 
						||
 | 
						||
    @property
 | 
						||
    def mode(self):
 | 
						||
        """Return the mode of the normal distribution
 | 
						||
 | 
						||
        The mode is the value x where which the probability density
 | 
						||
        function (pdf) takes its maximum value.
 | 
						||
        """
 | 
						||
        return self._mu
 | 
						||
 | 
						||
    @property
 | 
						||
    def stdev(self):
 | 
						||
        "Standard deviation of the normal distribution."
 | 
						||
        return self._sigma
 | 
						||
 | 
						||
    @property
 | 
						||
    def variance(self):
 | 
						||
        "Square of the standard deviation."
 | 
						||
        return self._sigma * self._sigma
 | 
						||
 | 
						||
    def __add__(x1, x2):
 | 
						||
        """Add a constant or another NormalDist instance.
 | 
						||
 | 
						||
        If *other* is a constant, translate mu by the constant,
 | 
						||
        leaving sigma unchanged.
 | 
						||
 | 
						||
        If *other* is a NormalDist, add both the means and the variances.
 | 
						||
        Mathematically, this works only if the two distributions are
 | 
						||
        independent or if they are jointly normally distributed.
 | 
						||
        """
 | 
						||
        if isinstance(x2, NormalDist):
 | 
						||
            return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
 | 
						||
        return NormalDist(x1._mu + x2, x1._sigma)
 | 
						||
 | 
						||
    def __sub__(x1, x2):
 | 
						||
        """Subtract a constant or another NormalDist instance.
 | 
						||
 | 
						||
        If *other* is a constant, translate by the constant mu,
 | 
						||
        leaving sigma unchanged.
 | 
						||
 | 
						||
        If *other* is a NormalDist, subtract the means and add the variances.
 | 
						||
        Mathematically, this works only if the two distributions are
 | 
						||
        independent or if they are jointly normally distributed.
 | 
						||
        """
 | 
						||
        if isinstance(x2, NormalDist):
 | 
						||
            return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
 | 
						||
        return NormalDist(x1._mu - x2, x1._sigma)
 | 
						||
 | 
						||
    def __mul__(x1, x2):
 | 
						||
        """Multiply both mu and sigma by a constant.
 | 
						||
 | 
						||
        Used for rescaling, perhaps to change measurement units.
 | 
						||
        Sigma is scaled with the absolute value of the constant.
 | 
						||
        """
 | 
						||
        return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
 | 
						||
 | 
						||
    def __truediv__(x1, x2):
 | 
						||
        """Divide both mu and sigma by a constant.
 | 
						||
 | 
						||
        Used for rescaling, perhaps to change measurement units.
 | 
						||
        Sigma is scaled with the absolute value of the constant.
 | 
						||
        """
 | 
						||
        return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
 | 
						||
 | 
						||
    def __pos__(x1):
 | 
						||
        "Return a copy of the instance."
 | 
						||
        return NormalDist(x1._mu, x1._sigma)
 | 
						||
 | 
						||
    def __neg__(x1):
 | 
						||
        "Negates mu while keeping sigma the same."
 | 
						||
        return NormalDist(-x1._mu, x1._sigma)
 | 
						||
 | 
						||
    __radd__ = __add__
 | 
						||
 | 
						||
    def __rsub__(x1, x2):
 | 
						||
        "Subtract a NormalDist from a constant or another NormalDist."
 | 
						||
        return -(x1 - x2)
 | 
						||
 | 
						||
    __rmul__ = __mul__
 | 
						||
 | 
						||
    def __eq__(x1, x2):
 | 
						||
        "Two NormalDist objects are equal if their mu and sigma are both equal."
 | 
						||
        if not isinstance(x2, NormalDist):
 | 
						||
            return NotImplemented
 | 
						||
        return x1._mu == x2._mu and x1._sigma == x2._sigma
 | 
						||
 | 
						||
    def __hash__(self):
 | 
						||
        "NormalDist objects hash equal if their mu and sigma are both equal."
 | 
						||
        return hash((self._mu, self._sigma))
 | 
						||
 | 
						||
    def __repr__(self):
 | 
						||
        return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
 | 
						||
 | 
						||
    def __getstate__(self):
 | 
						||
        return self._mu, self._sigma
 | 
						||
 | 
						||
    def __setstate__(self, state):
 | 
						||
        self._mu, self._sigma = state
 |