mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 10:26:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3061 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			3061 lines
		
	
	
	
		
			120 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """Test suite for statistics module, including helper NumericTestCase and
 | |
| approx_equal function.
 | |
| 
 | |
| """
 | |
| 
 | |
| import bisect
 | |
| import collections
 | |
| import collections.abc
 | |
| import copy
 | |
| import decimal
 | |
| import doctest
 | |
| import itertools
 | |
| import math
 | |
| import pickle
 | |
| import random
 | |
| import sys
 | |
| import unittest
 | |
| from test import support
 | |
| from test.support import import_helper, requires_IEEE_754
 | |
| 
 | |
| from decimal import Decimal
 | |
| from fractions import Fraction
 | |
| 
 | |
| 
 | |
| # Module to be tested.
 | |
| import statistics
 | |
| 
 | |
| 
 | |
| # === Helper functions and class ===
 | |
| 
 | |
| def sign(x):
 | |
|     """Return -1.0 for negatives, including -0.0, otherwise +1.0."""
 | |
|     return math.copysign(1, x)
 | |
| 
 | |
| def _nan_equal(a, b):
 | |
|     """Return True if a and b are both the same kind of NAN.
 | |
| 
 | |
|     >>> _nan_equal(Decimal('NAN'), Decimal('NAN'))
 | |
|     True
 | |
|     >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN'))
 | |
|     True
 | |
|     >>> _nan_equal(Decimal('NAN'), Decimal('sNAN'))
 | |
|     False
 | |
|     >>> _nan_equal(Decimal(42), Decimal('NAN'))
 | |
|     False
 | |
| 
 | |
|     >>> _nan_equal(float('NAN'), float('NAN'))
 | |
|     True
 | |
|     >>> _nan_equal(float('NAN'), 0.5)
 | |
|     False
 | |
| 
 | |
|     >>> _nan_equal(float('NAN'), Decimal('NAN'))
 | |
|     False
 | |
| 
 | |
|     NAN payloads are not compared.
 | |
|     """
 | |
|     if type(a) is not type(b):
 | |
|         return False
 | |
|     if isinstance(a, float):
 | |
|         return math.isnan(a) and math.isnan(b)
 | |
|     aexp = a.as_tuple()[2]
 | |
|     bexp = b.as_tuple()[2]
 | |
|     return (aexp == bexp) and (aexp in ('n', 'N'))  # Both NAN or both sNAN.
 | |
| 
 | |
| 
 | |
| def _calc_errors(actual, expected):
 | |
|     """Return the absolute and relative errors between two numbers.
 | |
| 
 | |
|     >>> _calc_errors(100, 75)
 | |
|     (25, 0.25)
 | |
|     >>> _calc_errors(100, 100)
 | |
|     (0, 0.0)
 | |
| 
 | |
|     Returns the (absolute error, relative error) between the two arguments.
 | |
|     """
 | |
|     base = max(abs(actual), abs(expected))
 | |
|     abs_err = abs(actual - expected)
 | |
|     rel_err = abs_err/base if base else float('inf')
 | |
|     return (abs_err, rel_err)
 | |
| 
 | |
| 
 | |
| def approx_equal(x, y, tol=1e-12, rel=1e-7):
 | |
|     """approx_equal(x, y [, tol [, rel]]) => True|False
 | |
| 
 | |
|     Return True if numbers x and y are approximately equal, to within some
 | |
|     margin of error, otherwise return False. Numbers which compare equal
 | |
|     will also compare approximately equal.
 | |
| 
 | |
|     x is approximately equal to y if the difference between them is less than
 | |
|     an absolute error tol or a relative error rel, whichever is bigger.
 | |
| 
 | |
|     If given, both tol and rel must be finite, non-negative numbers. If not
 | |
|     given, default values are tol=1e-12 and rel=1e-7.
 | |
| 
 | |
|     >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
 | |
|     True
 | |
|     >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
 | |
|     False
 | |
| 
 | |
|     Absolute error is defined as abs(x-y); if that is less than or equal to
 | |
|     tol, x and y are considered approximately equal.
 | |
| 
 | |
|     Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
 | |
|     smaller, provided x or y are not zero. If that figure is less than or
 | |
|     equal to rel, x and y are considered approximately equal.
 | |
| 
 | |
|     Complex numbers are not directly supported. If you wish to compare to
 | |
|     complex numbers, extract their real and imaginary parts and compare them
 | |
|     individually.
 | |
| 
 | |
|     NANs always compare unequal, even with themselves. Infinities compare
 | |
|     approximately equal if they have the same sign (both positive or both
 | |
|     negative). Infinities with different signs compare unequal; so do
 | |
|     comparisons of infinities with finite numbers.
 | |
|     """
 | |
|     if tol < 0 or rel < 0:
 | |
|         raise ValueError('error tolerances must be non-negative')
 | |
|     # NANs are never equal to anything, approximately or otherwise.
 | |
|     if math.isnan(x) or math.isnan(y):
 | |
|         return False
 | |
|     # Numbers which compare equal also compare approximately equal.
 | |
|     if x == y:
 | |
|         # This includes the case of two infinities with the same sign.
 | |
|         return True
 | |
|     if math.isinf(x) or math.isinf(y):
 | |
|         # This includes the case of two infinities of opposite sign, or
 | |
|         # one infinity and one finite number.
 | |
|         return False
 | |
|     # Two finite numbers.
 | |
|     actual_error = abs(x - y)
 | |
|     allowed_error = max(tol, rel*max(abs(x), abs(y)))
 | |
|     return actual_error <= allowed_error
 | |
| 
 | |
| 
 | |
| # This class exists only as somewhere to stick a docstring containing
 | |
| # doctests. The following docstring and tests were originally in a separate
 | |
| # module. Now that it has been merged in here, I need somewhere to hang the.
 | |
| # docstring. Ultimately, this class will die, and the information below will
 | |
| # either become redundant, or be moved into more appropriate places.
 | |
| class _DoNothing:
 | |
|     """
 | |
|     When doing numeric work, especially with floats, exact equality is often
 | |
|     not what you want. Due to round-off error, it is often a bad idea to try
 | |
|     to compare floats with equality. Instead the usual procedure is to test
 | |
|     them with some (hopefully small!) allowance for error.
 | |
| 
 | |
|     The ``approx_equal`` function allows you to specify either an absolute
 | |
|     error tolerance, or a relative error, or both.
 | |
| 
 | |
|     Absolute error tolerances are simple, but you need to know the magnitude
 | |
|     of the quantities being compared:
 | |
| 
 | |
|     >>> approx_equal(12.345, 12.346, tol=1e-3)
 | |
|     True
 | |
|     >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small.
 | |
|     False
 | |
| 
 | |
|     Relative errors are more suitable when the values you are comparing can
 | |
|     vary in magnitude:
 | |
| 
 | |
|     >>> approx_equal(12.345, 12.346, rel=1e-4)
 | |
|     True
 | |
|     >>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
 | |
|     True
 | |
| 
 | |
|     but a naive implementation of relative error testing can run into trouble
 | |
|     around zero.
 | |
| 
 | |
|     If you supply both an absolute tolerance and a relative error, the
 | |
|     comparison succeeds if either individual test succeeds:
 | |
| 
 | |
|     >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     pass
 | |
| 
 | |
| 
 | |
| 
 | |
| # We prefer this for testing numeric values that may not be exactly equal,
 | |
| # and avoid using TestCase.assertAlmostEqual, because it sucks :-)
 | |
| 
 | |
| py_statistics = import_helper.import_fresh_module('statistics',
 | |
|                                                   blocked=['_statistics'])
 | |
| c_statistics = import_helper.import_fresh_module('statistics',
 | |
|                                                  fresh=['_statistics'])
 | |
| 
 | |
| 
 | |
| class TestModules(unittest.TestCase):
 | |
|     func_names = ['_normal_dist_inv_cdf']
 | |
| 
 | |
|     def test_py_functions(self):
 | |
|         for fname in self.func_names:
 | |
|             self.assertEqual(getattr(py_statistics, fname).__module__, 'statistics')
 | |
| 
 | |
|     @unittest.skipUnless(c_statistics, 'requires _statistics')
 | |
|     def test_c_functions(self):
 | |
|         for fname in self.func_names:
 | |
|             self.assertEqual(getattr(c_statistics, fname).__module__, '_statistics')
 | |
| 
 | |
| 
 | |
| class NumericTestCase(unittest.TestCase):
 | |
|     """Unit test class for numeric work.
 | |
| 
 | |
|     This subclasses TestCase. In addition to the standard method
 | |
|     ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided.
 | |
|     """
 | |
|     # By default, we expect exact equality, unless overridden.
 | |
|     tol = rel = 0
 | |
| 
 | |
|     def assertApproxEqual(
 | |
|             self, first, second, tol=None, rel=None, msg=None
 | |
|             ):
 | |
|         """Test passes if ``first`` and ``second`` are approximately equal.
 | |
| 
 | |
|         This test passes if ``first`` and ``second`` are equal to
 | |
|         within ``tol``, an absolute error, or ``rel``, a relative error.
 | |
| 
 | |
|         If either ``tol`` or ``rel`` are None or not given, they default to
 | |
|         test attributes of the same name (by default, 0).
 | |
| 
 | |
|         The objects may be either numbers, or sequences of numbers. Sequences
 | |
|         are tested element-by-element.
 | |
| 
 | |
|         >>> class MyTest(NumericTestCase):
 | |
|         ...     def test_number(self):
 | |
|         ...         x = 1.0/6
 | |
|         ...         y = sum([x]*6)
 | |
|         ...         self.assertApproxEqual(y, 1.0, tol=1e-15)
 | |
|         ...     def test_sequence(self):
 | |
|         ...         a = [1.001, 1.001e-10, 1.001e10]
 | |
|         ...         b = [1.0, 1e-10, 1e10]
 | |
|         ...         self.assertApproxEqual(a, b, rel=1e-3)
 | |
|         ...
 | |
|         >>> import unittest
 | |
|         >>> from io import StringIO  # Suppress test runner output.
 | |
|         >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
 | |
|         >>> unittest.TextTestRunner(stream=StringIO()).run(suite)
 | |
|         <unittest.runner.TextTestResult run=2 errors=0 failures=0>
 | |
| 
 | |
|         """
 | |
|         if tol is None:
 | |
|             tol = self.tol
 | |
|         if rel is None:
 | |
|             rel = self.rel
 | |
|         if (
 | |
|                 isinstance(first, collections.abc.Sequence) and
 | |
|                 isinstance(second, collections.abc.Sequence)
 | |
|             ):
 | |
|             check = self._check_approx_seq
 | |
|         else:
 | |
|             check = self._check_approx_num
 | |
|         check(first, second, tol, rel, msg)
 | |
| 
 | |
|     def _check_approx_seq(self, first, second, tol, rel, msg):
 | |
|         if len(first) != len(second):
 | |
|             standardMsg = (
 | |
|                 "sequences differ in length: %d items != %d items"
 | |
|                 % (len(first), len(second))
 | |
|                 )
 | |
|             msg = self._formatMessage(msg, standardMsg)
 | |
|             raise self.failureException(msg)
 | |
|         for i, (a,e) in enumerate(zip(first, second)):
 | |
|             self._check_approx_num(a, e, tol, rel, msg, i)
 | |
| 
 | |
|     def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
 | |
|         if approx_equal(first, second, tol, rel):
 | |
|             # Test passes. Return early, we are done.
 | |
|             return None
 | |
|         # Otherwise we failed.
 | |
|         standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
 | |
|         msg = self._formatMessage(msg, standardMsg)
 | |
|         raise self.failureException(msg)
 | |
| 
 | |
|     @staticmethod
 | |
|     def _make_std_err_msg(first, second, tol, rel, idx):
 | |
|         # Create the standard error message for approx_equal failures.
 | |
|         assert first != second
 | |
|         template = (
 | |
|             '  %r != %r\n'
 | |
|             '  values differ by more than tol=%r and rel=%r\n'
 | |
|             '  -> absolute error = %r\n'
 | |
|             '  -> relative error = %r'
 | |
|             )
 | |
|         if idx is not None:
 | |
|             header = 'numeric sequences first differ at index %d.\n' % idx
 | |
|             template = header + template
 | |
|         # Calculate actual errors:
 | |
|         abs_err, rel_err = _calc_errors(first, second)
 | |
|         return template % (first, second, tol, rel, abs_err, rel_err)
 | |
| 
 | |
| 
 | |
| # ========================
 | |
| # === Test the helpers ===
 | |
| # ========================
 | |
| 
 | |
| class TestSign(unittest.TestCase):
 | |
|     """Test that the helper function sign() works correctly."""
 | |
|     def testZeroes(self):
 | |
|         # Test that signed zeroes report their sign correctly.
 | |
|         self.assertEqual(sign(0.0), +1)
 | |
|         self.assertEqual(sign(-0.0), -1)
 | |
| 
 | |
| 
 | |
| # --- Tests for approx_equal ---
 | |
| 
 | |
| class ApproxEqualSymmetryTest(unittest.TestCase):
 | |
|     # Test symmetry of approx_equal.
 | |
| 
 | |
|     def test_relative_symmetry(self):
 | |
|         # Check that approx_equal treats relative error symmetrically.
 | |
|         # (a-b)/a is usually not equal to (a-b)/b. Ensure that this
 | |
|         # doesn't matter.
 | |
|         #
 | |
|         #   Note: the reason for this test is that an early version
 | |
|         #   of approx_equal was not symmetric. A relative error test
 | |
|         #   would pass, or fail, depending on which value was passed
 | |
|         #   as the first argument.
 | |
|         #
 | |
|         args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
 | |
|         args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
 | |
|         assert len(args1) == len(args2)
 | |
|         for a, b in zip(args1, args2):
 | |
|             self.do_relative_symmetry(a, b)
 | |
| 
 | |
|     def do_relative_symmetry(self, a, b):
 | |
|         a, b = min(a, b), max(a, b)
 | |
|         assert a < b
 | |
|         delta = b - a  # The absolute difference between the values.
 | |
|         rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
 | |
|         # Choose an error margin halfway between the two.
 | |
|         rel = (rel_err1 + rel_err2)/2
 | |
|         # Now see that values a and b compare approx equal regardless of
 | |
|         # which is given first.
 | |
|         self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
 | |
|         self.assertTrue(approx_equal(b, a, tol=0, rel=rel))
 | |
| 
 | |
|     def test_symmetry(self):
 | |
|         # Test that approx_equal(a, b) == approx_equal(b, a)
 | |
|         args = [-23, -2, 5, 107, 93568]
 | |
|         delta = 2
 | |
|         for a in args:
 | |
|             for type_ in (int, float, Decimal, Fraction):
 | |
|                 x = type_(a)*100
 | |
|                 y = x + delta
 | |
|                 r = abs(delta/max(x, y))
 | |
|                 # There are five cases to check:
 | |
|                 # 1) actual error <= tol, <= rel
 | |
|                 self.do_symmetry_test(x, y, tol=delta, rel=r)
 | |
|                 self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
 | |
|                 # 2) actual error > tol, > rel
 | |
|                 self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
 | |
|                 # 3) actual error <= tol, > rel
 | |
|                 self.do_symmetry_test(x, y, tol=delta, rel=r/2)
 | |
|                 # 4) actual error > tol, <= rel
 | |
|                 self.do_symmetry_test(x, y, tol=delta-1, rel=r)
 | |
|                 self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
 | |
|                 # 5) exact equality test
 | |
|                 self.do_symmetry_test(x, x, tol=0, rel=0)
 | |
|                 self.do_symmetry_test(x, y, tol=0, rel=0)
 | |
| 
 | |
|     def do_symmetry_test(self, a, b, tol, rel):
 | |
|         template = "approx_equal comparisons don't match for %r"
 | |
|         flag1 = approx_equal(a, b, tol, rel)
 | |
|         flag2 = approx_equal(b, a, tol, rel)
 | |
|         self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))
 | |
| 
 | |
| 
 | |
| class ApproxEqualExactTest(unittest.TestCase):
 | |
|     # Test the approx_equal function with exactly equal values.
 | |
|     # Equal values should compare as approximately equal.
 | |
|     # Test cases for exactly equal values, which should compare approx
 | |
|     # equal regardless of the error tolerances given.
 | |
| 
 | |
|     def do_exactly_equal_test(self, x, tol, rel):
 | |
|         result = approx_equal(x, x, tol=tol, rel=rel)
 | |
|         self.assertTrue(result, 'equality failure for x=%r' % x)
 | |
|         result = approx_equal(-x, -x, tol=tol, rel=rel)
 | |
|         self.assertTrue(result, 'equality failure for x=%r' % -x)
 | |
| 
 | |
|     def test_exactly_equal_ints(self):
 | |
|         # Test that equal int values are exactly equal.
 | |
|         for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
 | |
|             self.do_exactly_equal_test(n, 0, 0)
 | |
| 
 | |
|     def test_exactly_equal_floats(self):
 | |
|         # Test that equal float values are exactly equal.
 | |
|         for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
 | |
|             self.do_exactly_equal_test(x, 0, 0)
 | |
| 
 | |
|     def test_exactly_equal_fractions(self):
 | |
|         # Test that equal Fraction values are exactly equal.
 | |
|         F = Fraction
 | |
|         for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
 | |
|             self.do_exactly_equal_test(f, 0, 0)
 | |
| 
 | |
|     def test_exactly_equal_decimals(self):
 | |
|         # Test that equal Decimal values are exactly equal.
 | |
|         D = Decimal
 | |
|         for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
 | |
|             self.do_exactly_equal_test(d, 0, 0)
 | |
| 
 | |
|     def test_exactly_equal_absolute(self):
 | |
|         # Test that equal values are exactly equal with an absolute error.
 | |
|         for n in [16, 1013, 1372, 1198, 971, 4]:
 | |
|             # Test as ints.
 | |
|             self.do_exactly_equal_test(n, 0.01, 0)
 | |
|             # Test as floats.
 | |
|             self.do_exactly_equal_test(n/10, 0.01, 0)
 | |
|             # Test as Fractions.
 | |
|             f = Fraction(n, 1234)
 | |
|             self.do_exactly_equal_test(f, 0.01, 0)
 | |
| 
 | |
|     def test_exactly_equal_absolute_decimals(self):
 | |
|         # Test equal Decimal values are exactly equal with an absolute error.
 | |
|         self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
 | |
|         self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)
 | |
| 
 | |
|     def test_exactly_equal_relative(self):
 | |
|         # Test that equal values are exactly equal with a relative error.
 | |
|         for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
 | |
|             self.do_exactly_equal_test(x, 0, 0.01)
 | |
|         self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))
 | |
| 
 | |
|     def test_exactly_equal_both(self):
 | |
|         # Test that equal values are equal when both tol and rel are given.
 | |
|         for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
 | |
|             self.do_exactly_equal_test(x, 0.1, 0.01)
 | |
|         D = Decimal
 | |
|         self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))
 | |
| 
 | |
| 
 | |
| class ApproxEqualUnequalTest(unittest.TestCase):
 | |
|     # Unequal values should compare unequal with zero error tolerances.
 | |
|     # Test cases for unequal values, with exact equality test.
 | |
| 
 | |
|     def do_exactly_unequal_test(self, x):
 | |
|         for a in (x, -x):
 | |
|             result = approx_equal(a, a+1, tol=0, rel=0)
 | |
|             self.assertFalse(result, 'inequality failure for x=%r' % a)
 | |
| 
 | |
|     def test_exactly_unequal_ints(self):
 | |
|         # Test unequal int values are unequal with zero error tolerance.
 | |
|         for n in [951, 572305, 478, 917, 17240]:
 | |
|             self.do_exactly_unequal_test(n)
 | |
| 
 | |
|     def test_exactly_unequal_floats(self):
 | |
|         # Test unequal float values are unequal with zero error tolerance.
 | |
|         for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
 | |
|             self.do_exactly_unequal_test(x)
 | |
| 
 | |
|     def test_exactly_unequal_fractions(self):
 | |
|         # Test that unequal Fractions are unequal with zero error tolerance.
 | |
|         F = Fraction
 | |
|         for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
 | |
|             self.do_exactly_unequal_test(f)
 | |
| 
 | |
|     def test_exactly_unequal_decimals(self):
 | |
|         # Test that unequal Decimals are unequal with zero error tolerance.
 | |
|         for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
 | |
|             self.do_exactly_unequal_test(d)
 | |
| 
 | |
| 
 | |
| class ApproxEqualInexactTest(unittest.TestCase):
 | |
|     # Inexact test cases for approx_error.
 | |
|     # Test cases when comparing two values that are not exactly equal.
 | |
| 
 | |
|     # === Absolute error tests ===
 | |
| 
 | |
|     def do_approx_equal_abs_test(self, x, delta):
 | |
|         template = "Test failure for x={!r}, y={!r}"
 | |
|         for y in (x + delta, x - delta):
 | |
|             msg = template.format(x, y)
 | |
|             self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
 | |
|             self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)
 | |
| 
 | |
|     def test_approx_equal_absolute_ints(self):
 | |
|         # Test approximate equality of ints with an absolute error.
 | |
|         for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
 | |
|             self.do_approx_equal_abs_test(n, 10)
 | |
|             self.do_approx_equal_abs_test(n, 2)
 | |
| 
 | |
|     def test_approx_equal_absolute_floats(self):
 | |
|         # Test approximate equality of floats with an absolute error.
 | |
|         for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
 | |
|             self.do_approx_equal_abs_test(x, 1.5)
 | |
|             self.do_approx_equal_abs_test(x, 0.01)
 | |
|             self.do_approx_equal_abs_test(x, 0.0001)
 | |
| 
 | |
|     def test_approx_equal_absolute_fractions(self):
 | |
|         # Test approximate equality of Fractions with an absolute error.
 | |
|         delta = Fraction(1, 29)
 | |
|         numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
 | |
|         for f in (Fraction(n, 29) for n in numerators):
 | |
|             self.do_approx_equal_abs_test(f, delta)
 | |
|             self.do_approx_equal_abs_test(f, float(delta))
 | |
| 
 | |
|     def test_approx_equal_absolute_decimals(self):
 | |
|         # Test approximate equality of Decimals with an absolute error.
 | |
|         delta = Decimal("0.01")
 | |
|         for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
 | |
|             self.do_approx_equal_abs_test(d, delta)
 | |
|             self.do_approx_equal_abs_test(-d, delta)
 | |
| 
 | |
|     def test_cross_zero(self):
 | |
|         # Test for the case of the two values having opposite signs.
 | |
|         self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))
 | |
| 
 | |
|     # === Relative error tests ===
 | |
| 
 | |
|     def do_approx_equal_rel_test(self, x, delta):
 | |
|         template = "Test failure for x={!r}, y={!r}"
 | |
|         for y in (x*(1+delta), x*(1-delta)):
 | |
|             msg = template.format(x, y)
 | |
|             self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
 | |
|             self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)
 | |
| 
 | |
|     def test_approx_equal_relative_ints(self):
 | |
|         # Test approximate equality of ints with a relative error.
 | |
|         self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
 | |
|         self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
 | |
|         # ---
 | |
|         self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
 | |
|         self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
 | |
|         self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))
 | |
| 
 | |
|     def test_approx_equal_relative_floats(self):
 | |
|         # Test approximate equality of floats with a relative error.
 | |
|         for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
 | |
|             self.do_approx_equal_rel_test(x, 0.02)
 | |
|             self.do_approx_equal_rel_test(x, 0.0001)
 | |
| 
 | |
|     def test_approx_equal_relative_fractions(self):
 | |
|         # Test approximate equality of Fractions with a relative error.
 | |
|         F = Fraction
 | |
|         delta = Fraction(3, 8)
 | |
|         for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
 | |
|             for d in (delta, float(delta)):
 | |
|                 self.do_approx_equal_rel_test(f, d)
 | |
|                 self.do_approx_equal_rel_test(-f, d)
 | |
| 
 | |
|     def test_approx_equal_relative_decimals(self):
 | |
|         # Test approximate equality of Decimals with a relative error.
 | |
|         for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
 | |
|             self.do_approx_equal_rel_test(d, Decimal("0.001"))
 | |
|             self.do_approx_equal_rel_test(-d, Decimal("0.05"))
 | |
| 
 | |
|     # === Both absolute and relative error tests ===
 | |
| 
 | |
|     # There are four cases to consider:
 | |
|     #   1) actual error <= both absolute and relative error
 | |
|     #   2) actual error <= absolute error but > relative error
 | |
|     #   3) actual error <= relative error but > absolute error
 | |
|     #   4) actual error > both absolute and relative error
 | |
| 
 | |
|     def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
 | |
|         check = self.assertTrue if tol_flag else self.assertFalse
 | |
|         check(approx_equal(a, b, tol=tol, rel=0))
 | |
|         check = self.assertTrue if rel_flag else self.assertFalse
 | |
|         check(approx_equal(a, b, tol=0, rel=rel))
 | |
|         check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
 | |
|         check(approx_equal(a, b, tol=tol, rel=rel))
 | |
| 
 | |
|     def test_approx_equal_both1(self):
 | |
|         # Test actual error <= both absolute and relative error.
 | |
|         self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
 | |
|         self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)
 | |
| 
 | |
|     def test_approx_equal_both2(self):
 | |
|         # Test actual error <= absolute error but > relative error.
 | |
|         self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)
 | |
| 
 | |
|     def test_approx_equal_both3(self):
 | |
|         # Test actual error <= relative error but > absolute error.
 | |
|         self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)
 | |
| 
 | |
|     def test_approx_equal_both4(self):
 | |
|         # Test actual error > both absolute and relative error.
 | |
|         self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
 | |
|         self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)
 | |
| 
 | |
| 
 | |
| class ApproxEqualSpecialsTest(unittest.TestCase):
 | |
|     # Test approx_equal with NANs and INFs and zeroes.
 | |
| 
 | |
|     def test_inf(self):
 | |
|         for type_ in (float, Decimal):
 | |
|             inf = type_('inf')
 | |
|             self.assertTrue(approx_equal(inf, inf))
 | |
|             self.assertTrue(approx_equal(inf, inf, 0, 0))
 | |
|             self.assertTrue(approx_equal(inf, inf, 1, 0.01))
 | |
|             self.assertTrue(approx_equal(-inf, -inf))
 | |
|             self.assertFalse(approx_equal(inf, -inf))
 | |
|             self.assertFalse(approx_equal(inf, 1000))
 | |
| 
 | |
|     def test_nan(self):
 | |
|         for type_ in (float, Decimal):
 | |
|             nan = type_('nan')
 | |
|             for other in (nan, type_('inf'), 1000):
 | |
|                 self.assertFalse(approx_equal(nan, other))
 | |
| 
 | |
|     def test_float_zeroes(self):
 | |
|         nzero = math.copysign(0.0, -1)
 | |
|         self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))
 | |
| 
 | |
|     def test_decimal_zeroes(self):
 | |
|         nzero = Decimal("-0.0")
 | |
|         self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))
 | |
| 
 | |
| 
 | |
| class TestApproxEqualErrors(unittest.TestCase):
 | |
|     # Test error conditions of approx_equal.
 | |
| 
 | |
|     def test_bad_tol(self):
 | |
|         # Test negative tol raises.
 | |
|         self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)
 | |
| 
 | |
|     def test_bad_rel(self):
 | |
|         # Test negative rel raises.
 | |
|         self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)
 | |
| 
 | |
| 
 | |
| # --- Tests for NumericTestCase ---
 | |
| 
 | |
| # The formatting routine that generates the error messages is complex enough
 | |
| # that it too needs testing.
 | |
| 
 | |
| class TestNumericTestCase(unittest.TestCase):
 | |
|     # The exact wording of NumericTestCase error messages is *not* guaranteed,
 | |
|     # but we need to give them some sort of test to ensure that they are
 | |
|     # generated correctly. As a compromise, we look for specific substrings
 | |
|     # that are expected to be found even if the overall error message changes.
 | |
| 
 | |
|     def do_test(self, args):
 | |
|         actual_msg = NumericTestCase._make_std_err_msg(*args)
 | |
|         expected = self.generate_substrings(*args)
 | |
|         for substring in expected:
 | |
|             self.assertIn(substring, actual_msg)
 | |
| 
 | |
|     def test_numerictestcase_is_testcase(self):
 | |
|         # Ensure that NumericTestCase actually is a TestCase.
 | |
|         self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))
 | |
| 
 | |
|     def test_error_msg_numeric(self):
 | |
|         # Test the error message generated for numeric comparisons.
 | |
|         args = (2.5, 4.0, 0.5, 0.25, None)
 | |
|         self.do_test(args)
 | |
| 
 | |
|     def test_error_msg_sequence(self):
 | |
|         # Test the error message generated for sequence comparisons.
 | |
|         args = (3.75, 8.25, 1.25, 0.5, 7)
 | |
|         self.do_test(args)
 | |
| 
 | |
|     def generate_substrings(self, first, second, tol, rel, idx):
 | |
|         """Return substrings we expect to see in error messages."""
 | |
|         abs_err, rel_err = _calc_errors(first, second)
 | |
|         substrings = [
 | |
|                 'tol=%r' % tol,
 | |
|                 'rel=%r' % rel,
 | |
|                 'absolute error = %r' % abs_err,
 | |
|                 'relative error = %r' % rel_err,
 | |
|                 ]
 | |
|         if idx is not None:
 | |
|             substrings.append('differ at index %d' % idx)
 | |
|         return substrings
 | |
| 
 | |
| 
 | |
| # =======================================
 | |
| # === Tests for the statistics module ===
 | |
| # =======================================
 | |
| 
 | |
| 
 | |
| class GlobalsTest(unittest.TestCase):
 | |
|     module = statistics
 | |
|     expected_metadata = ["__doc__", "__all__"]
 | |
| 
 | |
|     def test_meta(self):
 | |
|         # Test for the existence of metadata.
 | |
|         for meta in self.expected_metadata:
 | |
|             self.assertTrue(hasattr(self.module, meta),
 | |
|                             "%s not present" % meta)
 | |
| 
 | |
|     def test_check_all(self):
 | |
|         # Check everything in __all__ exists and is public.
 | |
|         module = self.module
 | |
|         for name in module.__all__:
 | |
|             # No private names in __all__:
 | |
|             self.assertFalse(name.startswith("_"),
 | |
|                              'private name "%s" in __all__' % name)
 | |
|             # And anything in __all__ must exist:
 | |
|             self.assertTrue(hasattr(module, name),
 | |
|                             'missing name "%s" in __all__' % name)
 | |
| 
 | |
| 
 | |
| class DocTests(unittest.TestCase):
 | |
|     @unittest.skipIf(sys.flags.optimize >= 2,
 | |
|                      "Docstrings are omitted with -OO and above")
 | |
|     def test_doc_tests(self):
 | |
|         failed, tried = doctest.testmod(statistics, optionflags=doctest.ELLIPSIS)
 | |
|         self.assertGreater(tried, 0)
 | |
|         self.assertEqual(failed, 0)
 | |
| 
 | |
| class StatisticsErrorTest(unittest.TestCase):
 | |
|     def test_has_exception(self):
 | |
|         errmsg = (
 | |
|                 "Expected StatisticsError to be a ValueError, but got a"
 | |
|                 " subclass of %r instead."
 | |
|                 )
 | |
|         self.assertTrue(hasattr(statistics, 'StatisticsError'))
 | |
|         self.assertTrue(
 | |
|                 issubclass(statistics.StatisticsError, ValueError),
 | |
|                 errmsg % statistics.StatisticsError.__base__
 | |
|                 )
 | |
| 
 | |
| 
 | |
| # === Tests for private utility functions ===
 | |
| 
 | |
| class ExactRatioTest(unittest.TestCase):
 | |
|     # Test _exact_ratio utility.
 | |
| 
 | |
|     def test_int(self):
 | |
|         for i in (-20, -3, 0, 5, 99, 10**20):
 | |
|             self.assertEqual(statistics._exact_ratio(i), (i, 1))
 | |
| 
 | |
|     def test_fraction(self):
 | |
|         numerators = (-5, 1, 12, 38)
 | |
|         for n in numerators:
 | |
|             f = Fraction(n, 37)
 | |
|             self.assertEqual(statistics._exact_ratio(f), (n, 37))
 | |
| 
 | |
|     def test_float(self):
 | |
|         self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
 | |
|         self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
 | |
|         data = [random.uniform(-100, 100) for _ in range(100)]
 | |
|         for x in data:
 | |
|             num, den = statistics._exact_ratio(x)
 | |
|             self.assertEqual(x, num/den)
 | |
| 
 | |
|     def test_decimal(self):
 | |
|         D = Decimal
 | |
|         _exact_ratio = statistics._exact_ratio
 | |
|         self.assertEqual(_exact_ratio(D("0.125")), (1, 8))
 | |
|         self.assertEqual(_exact_ratio(D("12.345")), (2469, 200))
 | |
|         self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50))
 | |
| 
 | |
|     def test_inf(self):
 | |
|         INF = float("INF")
 | |
|         class MyFloat(float):
 | |
|             pass
 | |
|         class MyDecimal(Decimal):
 | |
|             pass
 | |
|         for inf in (INF, -INF):
 | |
|             for type_ in (float, MyFloat, Decimal, MyDecimal):
 | |
|                 x = type_(inf)
 | |
|                 ratio = statistics._exact_ratio(x)
 | |
|                 self.assertEqual(ratio, (x, None))
 | |
|                 self.assertEqual(type(ratio[0]), type_)
 | |
|                 self.assertTrue(math.isinf(ratio[0]))
 | |
| 
 | |
|     def test_float_nan(self):
 | |
|         NAN = float("NAN")
 | |
|         class MyFloat(float):
 | |
|             pass
 | |
|         for nan in (NAN, MyFloat(NAN)):
 | |
|             ratio = statistics._exact_ratio(nan)
 | |
|             self.assertTrue(math.isnan(ratio[0]))
 | |
|             self.assertIs(ratio[1], None)
 | |
|             self.assertEqual(type(ratio[0]), type(nan))
 | |
| 
 | |
|     def test_decimal_nan(self):
 | |
|         NAN = Decimal("NAN")
 | |
|         sNAN = Decimal("sNAN")
 | |
|         class MyDecimal(Decimal):
 | |
|             pass
 | |
|         for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)):
 | |
|             ratio = statistics._exact_ratio(nan)
 | |
|             self.assertTrue(_nan_equal(ratio[0], nan))
 | |
|             self.assertIs(ratio[1], None)
 | |
|             self.assertEqual(type(ratio[0]), type(nan))
 | |
| 
 | |
| 
 | |
| class DecimalToRatioTest(unittest.TestCase):
 | |
|     # Test _exact_ratio private function.
 | |
| 
 | |
|     def test_infinity(self):
 | |
|         # Test that INFs are handled correctly.
 | |
|         inf = Decimal('INF')
 | |
|         self.assertEqual(statistics._exact_ratio(inf), (inf, None))
 | |
|         self.assertEqual(statistics._exact_ratio(-inf), (-inf, None))
 | |
| 
 | |
|     def test_nan(self):
 | |
|         # Test that NANs are handled correctly.
 | |
|         for nan in (Decimal('NAN'), Decimal('sNAN')):
 | |
|             num, den = statistics._exact_ratio(nan)
 | |
|             # Because NANs always compare non-equal, we cannot use assertEqual.
 | |
|             # Nor can we use an identity test, as we don't guarantee anything
 | |
|             # about the object identity.
 | |
|             self.assertTrue(_nan_equal(num, nan))
 | |
|             self.assertIs(den, None)
 | |
| 
 | |
|     def test_sign(self):
 | |
|         # Test sign is calculated correctly.
 | |
|         numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
 | |
|         for d in numbers:
 | |
|             # First test positive decimals.
 | |
|             assert d > 0
 | |
|             num, den = statistics._exact_ratio(d)
 | |
|             self.assertGreaterEqual(num, 0)
 | |
|             self.assertGreater(den, 0)
 | |
|             # Then test negative decimals.
 | |
|             num, den = statistics._exact_ratio(-d)
 | |
|             self.assertLessEqual(num, 0)
 | |
|             self.assertGreater(den, 0)
 | |
| 
 | |
|     def test_negative_exponent(self):
 | |
|         # Test result when the exponent is negative.
 | |
|         t = statistics._exact_ratio(Decimal("0.1234"))
 | |
|         self.assertEqual(t, (617, 5000))
 | |
| 
 | |
|     def test_positive_exponent(self):
 | |
|         # Test results when the exponent is positive.
 | |
|         t = statistics._exact_ratio(Decimal("1.234e7"))
 | |
|         self.assertEqual(t, (12340000, 1))
 | |
| 
 | |
|     def test_regression_20536(self):
 | |
|         # Regression test for issue 20536.
 | |
|         # See http://bugs.python.org/issue20536
 | |
|         t = statistics._exact_ratio(Decimal("1e2"))
 | |
|         self.assertEqual(t, (100, 1))
 | |
|         t = statistics._exact_ratio(Decimal("1.47e5"))
 | |
|         self.assertEqual(t, (147000, 1))
 | |
| 
 | |
| 
 | |
| class IsFiniteTest(unittest.TestCase):
 | |
|     # Test _isfinite private function.
 | |
| 
 | |
|     def test_finite(self):
 | |
|         # Test that finite numbers are recognised as finite.
 | |
|         for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")):
 | |
|             self.assertTrue(statistics._isfinite(x))
 | |
| 
 | |
|     def test_infinity(self):
 | |
|         # Test that INFs are not recognised as finite.
 | |
|         for x in (float("inf"), Decimal("inf")):
 | |
|             self.assertFalse(statistics._isfinite(x))
 | |
| 
 | |
|     def test_nan(self):
 | |
|         # Test that NANs are not recognised as finite.
 | |
|         for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")):
 | |
|             self.assertFalse(statistics._isfinite(x))
 | |
| 
 | |
| 
 | |
| class CoerceTest(unittest.TestCase):
 | |
|     # Test that private function _coerce correctly deals with types.
 | |
| 
 | |
|     # The coercion rules are currently an implementation detail, although at
 | |
|     # some point that should change. The tests and comments here define the
 | |
|     # correct implementation.
 | |
| 
 | |
|     # Pre-conditions of _coerce:
 | |
|     #
 | |
|     #   - The first time _sum calls _coerce, the
 | |
|     #   - coerce(T, S) will never be called with bool as the first argument;
 | |
|     #     this is a pre-condition, guarded with an assertion.
 | |
| 
 | |
|     #
 | |
|     #   - coerce(T, T) will always return T; we assume T is a valid numeric
 | |
|     #     type. Violate this assumption at your own risk.
 | |
|     #
 | |
|     #   - Apart from as above, bool is treated as if it were actually int.
 | |
|     #
 | |
|     #   - coerce(int, X) and coerce(X, int) return X.
 | |
|     #   -
 | |
|     def test_bool(self):
 | |
|         # bool is somewhat special, due to the pre-condition that it is
 | |
|         # never given as the first argument to _coerce, and that it cannot
 | |
|         # be subclassed. So we test it specially.
 | |
|         for T in (int, float, Fraction, Decimal):
 | |
|             self.assertIs(statistics._coerce(T, bool), T)
 | |
|             class MyClass(T): pass
 | |
|             self.assertIs(statistics._coerce(MyClass, bool), MyClass)
 | |
| 
 | |
|     def assertCoerceTo(self, A, B):
 | |
|         """Assert that type A coerces to B."""
 | |
|         self.assertIs(statistics._coerce(A, B), B)
 | |
|         self.assertIs(statistics._coerce(B, A), B)
 | |
| 
 | |
|     def check_coerce_to(self, A, B):
 | |
|         """Checks that type A coerces to B, including subclasses."""
 | |
|         # Assert that type A is coerced to B.
 | |
|         self.assertCoerceTo(A, B)
 | |
|         # Subclasses of A are also coerced to B.
 | |
|         class SubclassOfA(A): pass
 | |
|         self.assertCoerceTo(SubclassOfA, B)
 | |
|         # A, and subclasses of A, are coerced to subclasses of B.
 | |
|         class SubclassOfB(B): pass
 | |
|         self.assertCoerceTo(A, SubclassOfB)
 | |
|         self.assertCoerceTo(SubclassOfA, SubclassOfB)
 | |
| 
 | |
|     def assertCoerceRaises(self, A, B):
 | |
|         """Assert that coercing A to B, or vice versa, raises TypeError."""
 | |
|         self.assertRaises(TypeError, statistics._coerce, (A, B))
 | |
|         self.assertRaises(TypeError, statistics._coerce, (B, A))
 | |
| 
 | |
|     def check_type_coercions(self, T):
 | |
|         """Check that type T coerces correctly with subclasses of itself."""
 | |
|         assert T is not bool
 | |
|         # Coercing a type with itself returns the same type.
 | |
|         self.assertIs(statistics._coerce(T, T), T)
 | |
|         # Coercing a type with a subclass of itself returns the subclass.
 | |
|         class U(T): pass
 | |
|         class V(T): pass
 | |
|         class W(U): pass
 | |
|         for typ in (U, V, W):
 | |
|             self.assertCoerceTo(T, typ)
 | |
|         self.assertCoerceTo(U, W)
 | |
|         # Coercing two subclasses that aren't parent/child is an error.
 | |
|         self.assertCoerceRaises(U, V)
 | |
|         self.assertCoerceRaises(V, W)
 | |
| 
 | |
|     def test_int(self):
 | |
|         # Check that int coerces correctly.
 | |
|         self.check_type_coercions(int)
 | |
|         for typ in (float, Fraction, Decimal):
 | |
|             self.check_coerce_to(int, typ)
 | |
| 
 | |
|     def test_fraction(self):
 | |
|         # Check that Fraction coerces correctly.
 | |
|         self.check_type_coercions(Fraction)
 | |
|         self.check_coerce_to(Fraction, float)
 | |
| 
 | |
|     def test_decimal(self):
 | |
|         # Check that Decimal coerces correctly.
 | |
|         self.check_type_coercions(Decimal)
 | |
| 
 | |
|     def test_float(self):
 | |
|         # Check that float coerces correctly.
 | |
|         self.check_type_coercions(float)
 | |
| 
 | |
|     def test_non_numeric_types(self):
 | |
|         for bad_type in (str, list, type(None), tuple, dict):
 | |
|             for good_type in (int, float, Fraction, Decimal):
 | |
|                 self.assertCoerceRaises(good_type, bad_type)
 | |
| 
 | |
|     def test_incompatible_types(self):
 | |
|         # Test that incompatible types raise.
 | |
|         for T in (float, Fraction):
 | |
|             class MySubclass(T): pass
 | |
|             self.assertCoerceRaises(T, Decimal)
 | |
|             self.assertCoerceRaises(MySubclass, Decimal)
 | |
| 
 | |
| 
 | |
| class ConvertTest(unittest.TestCase):
 | |
|     # Test private _convert function.
 | |
| 
 | |
|     def check_exact_equal(self, x, y):
 | |
|         """Check that x equals y, and has the same type as well."""
 | |
|         self.assertEqual(x, y)
 | |
|         self.assertIs(type(x), type(y))
 | |
| 
 | |
|     def test_int(self):
 | |
|         # Test conversions to int.
 | |
|         x = statistics._convert(Fraction(71), int)
 | |
|         self.check_exact_equal(x, 71)
 | |
|         class MyInt(int): pass
 | |
|         x = statistics._convert(Fraction(17), MyInt)
 | |
|         self.check_exact_equal(x, MyInt(17))
 | |
| 
 | |
|     def test_fraction(self):
 | |
|         # Test conversions to Fraction.
 | |
|         x = statistics._convert(Fraction(95, 99), Fraction)
 | |
|         self.check_exact_equal(x, Fraction(95, 99))
 | |
|         class MyFraction(Fraction):
 | |
|             def __truediv__(self, other):
 | |
|                 return self.__class__(super().__truediv__(other))
 | |
|         x = statistics._convert(Fraction(71, 13), MyFraction)
 | |
|         self.check_exact_equal(x, MyFraction(71, 13))
 | |
| 
 | |
|     def test_float(self):
 | |
|         # Test conversions to float.
 | |
|         x = statistics._convert(Fraction(-1, 2), float)
 | |
|         self.check_exact_equal(x, -0.5)
 | |
|         class MyFloat(float):
 | |
|             def __truediv__(self, other):
 | |
|                 return self.__class__(super().__truediv__(other))
 | |
|         x = statistics._convert(Fraction(9, 8), MyFloat)
 | |
|         self.check_exact_equal(x, MyFloat(1.125))
 | |
| 
 | |
|     def test_decimal(self):
 | |
|         # Test conversions to Decimal.
 | |
|         x = statistics._convert(Fraction(1, 40), Decimal)
 | |
|         self.check_exact_equal(x, Decimal("0.025"))
 | |
|         class MyDecimal(Decimal):
 | |
|             def __truediv__(self, other):
 | |
|                 return self.__class__(super().__truediv__(other))
 | |
|         x = statistics._convert(Fraction(-15, 16), MyDecimal)
 | |
|         self.check_exact_equal(x, MyDecimal("-0.9375"))
 | |
| 
 | |
|     def test_inf(self):
 | |
|         for INF in (float('inf'), Decimal('inf')):
 | |
|             for inf in (INF, -INF):
 | |
|                 x = statistics._convert(inf, type(inf))
 | |
|                 self.check_exact_equal(x, inf)
 | |
| 
 | |
|     def test_nan(self):
 | |
|         for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')):
 | |
|             x = statistics._convert(nan, type(nan))
 | |
|             self.assertTrue(_nan_equal(x, nan))
 | |
| 
 | |
|     def test_invalid_input_type(self):
 | |
|         with self.assertRaises(TypeError):
 | |
|             statistics._convert(None, float)
 | |
| 
 | |
| 
 | |
| class FailNegTest(unittest.TestCase):
 | |
|     """Test _fail_neg private function."""
 | |
| 
 | |
|     def test_pass_through(self):
 | |
|         # Test that values are passed through unchanged.
 | |
|         values = [1, 2.0, Fraction(3), Decimal(4)]
 | |
|         new = list(statistics._fail_neg(values))
 | |
|         self.assertEqual(values, new)
 | |
| 
 | |
|     def test_negatives_raise(self):
 | |
|         # Test that negatives raise an exception.
 | |
|         for x in [1, 2.0, Fraction(3), Decimal(4)]:
 | |
|             seq = [-x]
 | |
|             it = statistics._fail_neg(seq)
 | |
|             self.assertRaises(statistics.StatisticsError, next, it)
 | |
| 
 | |
|     def test_error_msg(self):
 | |
|         # Test that a given error message is used.
 | |
|         msg = "badness #%d" % random.randint(10000, 99999)
 | |
|         try:
 | |
|             next(statistics._fail_neg([-1], msg))
 | |
|         except statistics.StatisticsError as e:
 | |
|             errmsg = e.args[0]
 | |
|         else:
 | |
|             self.fail("expected exception, but it didn't happen")
 | |
|         self.assertEqual(errmsg, msg)
 | |
| 
 | |
| 
 | |
| # === Tests for public functions ===
 | |
| 
 | |
| class UnivariateCommonMixin:
 | |
|     # Common tests for most univariate functions that take a data argument.
 | |
| 
 | |
|     def test_no_args(self):
 | |
|         # Fail if given no arguments.
 | |
|         self.assertRaises(TypeError, self.func)
 | |
| 
 | |
|     def test_empty_data(self):
 | |
|         # Fail when the data argument (first argument) is empty.
 | |
|         for empty in ([], (), iter([])):
 | |
|             self.assertRaises(statistics.StatisticsError, self.func, empty)
 | |
| 
 | |
|     def prepare_data(self):
 | |
|         """Return int data for various tests."""
 | |
|         data = list(range(10))
 | |
|         while data == sorted(data):
 | |
|             random.shuffle(data)
 | |
|         return data
 | |
| 
 | |
|     def test_no_inplace_modifications(self):
 | |
|         # Test that the function does not modify its input data.
 | |
|         data = self.prepare_data()
 | |
|         assert len(data) != 1  # Necessary to avoid infinite loop.
 | |
|         assert data != sorted(data)
 | |
|         saved = data[:]
 | |
|         assert data is not saved
 | |
|         _ = self.func(data)
 | |
|         self.assertListEqual(data, saved, "data has been modified")
 | |
| 
 | |
|     def test_order_doesnt_matter(self):
 | |
|         # Test that the order of data points doesn't change the result.
 | |
| 
 | |
|         # CAUTION: due to floating point rounding errors, the result actually
 | |
|         # may depend on the order. Consider this test representing an ideal.
 | |
|         # To avoid this test failing, only test with exact values such as ints
 | |
|         # or Fractions.
 | |
|         data = [1, 2, 3, 3, 3, 4, 5, 6]*100
 | |
|         expected = self.func(data)
 | |
|         random.shuffle(data)
 | |
|         actual = self.func(data)
 | |
|         self.assertEqual(expected, actual)
 | |
| 
 | |
|     def test_type_of_data_collection(self):
 | |
|         # Test that the type of iterable data doesn't effect the result.
 | |
|         class MyList(list):
 | |
|             pass
 | |
|         class MyTuple(tuple):
 | |
|             pass
 | |
|         def generator(data):
 | |
|             return (obj for obj in data)
 | |
|         data = self.prepare_data()
 | |
|         expected = self.func(data)
 | |
|         for kind in (list, tuple, iter, MyList, MyTuple, generator):
 | |
|             result = self.func(kind(data))
 | |
|             self.assertEqual(result, expected)
 | |
| 
 | |
|     def test_range_data(self):
 | |
|         # Test that functions work with range objects.
 | |
|         data = range(20, 50, 3)
 | |
|         expected = self.func(list(data))
 | |
|         self.assertEqual(self.func(data), expected)
 | |
| 
 | |
|     def test_bad_arg_types(self):
 | |
|         # Test that function raises when given data of the wrong type.
 | |
| 
 | |
|         # Don't roll the following into a loop like this:
 | |
|         #   for bad in list_of_bad:
 | |
|         #       self.check_for_type_error(bad)
 | |
|         #
 | |
|         # Since assertRaises doesn't show the arguments that caused the test
 | |
|         # failure, it is very difficult to debug these test failures when the
 | |
|         # following are in a loop.
 | |
|         self.check_for_type_error(None)
 | |
|         self.check_for_type_error(23)
 | |
|         self.check_for_type_error(42.0)
 | |
|         self.check_for_type_error(object())
 | |
| 
 | |
|     def check_for_type_error(self, *args):
 | |
|         self.assertRaises(TypeError, self.func, *args)
 | |
| 
 | |
|     def test_type_of_data_element(self):
 | |
|         # Check the type of data elements doesn't affect the numeric result.
 | |
|         # This is a weaker test than UnivariateTypeMixin.testTypesConserved,
 | |
|         # because it checks the numeric result by equality, but not by type.
 | |
|         class MyFloat(float):
 | |
|             def __truediv__(self, other):
 | |
|                 return type(self)(super().__truediv__(other))
 | |
|             def __add__(self, other):
 | |
|                 return type(self)(super().__add__(other))
 | |
|             __radd__ = __add__
 | |
| 
 | |
|         raw = self.prepare_data()
 | |
|         expected = self.func(raw)
 | |
|         for kind in (float, MyFloat, Decimal, Fraction):
 | |
|             data = [kind(x) for x in raw]
 | |
|             result = type(expected)(self.func(data))
 | |
|             self.assertEqual(result, expected)
 | |
| 
 | |
| 
 | |
| class UnivariateTypeMixin:
 | |
|     """Mixin class for type-conserving functions.
 | |
| 
 | |
|     This mixin class holds test(s) for functions which conserve the type of
 | |
|     individual data points. E.g. the mean of a list of Fractions should itself
 | |
|     be a Fraction.
 | |
| 
 | |
|     Not all tests to do with types need go in this class. Only those that
 | |
|     rely on the function returning the same type as its input data.
 | |
|     """
 | |
|     def prepare_types_for_conservation_test(self):
 | |
|         """Return the types which are expected to be conserved."""
 | |
|         class MyFloat(float):
 | |
|             def __truediv__(self, other):
 | |
|                 return type(self)(super().__truediv__(other))
 | |
|             def __rtruediv__(self, other):
 | |
|                 return type(self)(super().__rtruediv__(other))
 | |
|             def __sub__(self, other):
 | |
|                 return type(self)(super().__sub__(other))
 | |
|             def __rsub__(self, other):
 | |
|                 return type(self)(super().__rsub__(other))
 | |
|             def __pow__(self, other):
 | |
|                 return type(self)(super().__pow__(other))
 | |
|             def __add__(self, other):
 | |
|                 return type(self)(super().__add__(other))
 | |
|             __radd__ = __add__
 | |
|             def __mul__(self, other):
 | |
|                 return type(self)(super().__mul__(other))
 | |
|             __rmul__ = __mul__
 | |
|         return (float, Decimal, Fraction, MyFloat)
 | |
| 
 | |
|     def test_types_conserved(self):
 | |
|         # Test that functions keeps the same type as their data points.
 | |
|         # (Excludes mixed data types.) This only tests the type of the return
 | |
|         # result, not the value.
 | |
|         data = self.prepare_data()
 | |
|         for kind in self.prepare_types_for_conservation_test():
 | |
|             d = [kind(x) for x in data]
 | |
|             result = self.func(d)
 | |
|             self.assertIs(type(result), kind)
 | |
| 
 | |
| 
 | |
| class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin):
 | |
|     # Common test cases for statistics._sum() function.
 | |
| 
 | |
|     # This test suite looks only at the numeric value returned by _sum,
 | |
|     # after conversion to the appropriate type.
 | |
|     def setUp(self):
 | |
|         def simplified_sum(*args):
 | |
|             T, value, n = statistics._sum(*args)
 | |
|             return statistics._coerce(value, T)
 | |
|         self.func = simplified_sum
 | |
| 
 | |
| 
 | |
| class TestSum(NumericTestCase):
 | |
|     # Test cases for statistics._sum() function.
 | |
| 
 | |
|     # These tests look at the entire three value tuple returned by _sum.
 | |
| 
 | |
|     def setUp(self):
 | |
|         self.func = statistics._sum
 | |
| 
 | |
|     def test_empty_data(self):
 | |
|         # Override test for empty data.
 | |
|         for data in ([], (), iter([])):
 | |
|             self.assertEqual(self.func(data), (int, Fraction(0), 0))
 | |
| 
 | |
|     def test_ints(self):
 | |
|         self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]),
 | |
|                          (int, Fraction(60), 8))
 | |
| 
 | |
|     def test_floats(self):
 | |
|         self.assertEqual(self.func([0.25]*20),
 | |
|                          (float, Fraction(5.0), 20))
 | |
| 
 | |
|     def test_fractions(self):
 | |
|         self.assertEqual(self.func([Fraction(1, 1000)]*500),
 | |
|                          (Fraction, Fraction(1, 2), 500))
 | |
| 
 | |
|     def test_decimals(self):
 | |
|         D = Decimal
 | |
|         data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
 | |
|                 D("3.974"), D("2.328"), D("4.617"), D("2.843"),
 | |
|                 ]
 | |
|         self.assertEqual(self.func(data),
 | |
|                          (Decimal, Decimal("20.686"), 8))
 | |
| 
 | |
|     def test_compare_with_math_fsum(self):
 | |
|         # Compare with the math.fsum function.
 | |
|         # Ideally we ought to get the exact same result, but sometimes
 | |
|         # we differ by a very slight amount :-(
 | |
|         data = [random.uniform(-100, 1000) for _ in range(1000)]
 | |
|         self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16)
 | |
| 
 | |
|     def test_strings_fail(self):
 | |
|         # Sum of strings should fail.
 | |
|         self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
 | |
|         self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])
 | |
| 
 | |
|     def test_bytes_fail(self):
 | |
|         # Sum of bytes should fail.
 | |
|         self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
 | |
|         self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])
 | |
| 
 | |
|     def test_mixed_sum(self):
 | |
|         # Mixed input types are not (currently) allowed.
 | |
|         # Check that mixed data types fail.
 | |
|         self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)])
 | |
|         # And so does mixed start argument.
 | |
|         self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))
 | |
| 
 | |
| 
 | |
| class SumTortureTest(NumericTestCase):
 | |
|     def test_torture(self):
 | |
|         # Tim Peters' torture test for sum, and variants of same.
 | |
|         self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
 | |
|                          (float, Fraction(20000.0), 40000))
 | |
|         self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
 | |
|                          (float, Fraction(20000.0), 40000))
 | |
|         T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
 | |
|         self.assertIs(T, float)
 | |
|         self.assertEqual(count, 40000)
 | |
|         self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16)
 | |
| 
 | |
| 
 | |
| class SumSpecialValues(NumericTestCase):
 | |
|     # Test that sum works correctly with IEEE-754 special values.
 | |
| 
 | |
|     def test_nan(self):
 | |
|         for type_ in (float, Decimal):
 | |
|             nan = type_('nan')
 | |
|             result = statistics._sum([1, nan, 2])[1]
 | |
|             self.assertIs(type(result), type_)
 | |
|             self.assertTrue(math.isnan(result))
 | |
| 
 | |
|     def check_infinity(self, x, inf):
 | |
|         """Check x is an infinity of the same type and sign as inf."""
 | |
|         self.assertTrue(math.isinf(x))
 | |
|         self.assertIs(type(x), type(inf))
 | |
|         self.assertEqual(x > 0, inf > 0)
 | |
|         assert x == inf
 | |
| 
 | |
|     def do_test_inf(self, inf):
 | |
|         # Adding a single infinity gives infinity.
 | |
|         result = statistics._sum([1, 2, inf, 3])[1]
 | |
|         self.check_infinity(result, inf)
 | |
|         # Adding two infinities of the same sign also gives infinity.
 | |
|         result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
 | |
|         self.check_infinity(result, inf)
 | |
| 
 | |
|     def test_float_inf(self):
 | |
|         inf = float('inf')
 | |
|         for sign in (+1, -1):
 | |
|             self.do_test_inf(sign*inf)
 | |
| 
 | |
|     def test_decimal_inf(self):
 | |
|         inf = Decimal('inf')
 | |
|         for sign in (+1, -1):
 | |
|             self.do_test_inf(sign*inf)
 | |
| 
 | |
|     def test_float_mismatched_infs(self):
 | |
|         # Test that adding two infinities of opposite sign gives a NAN.
 | |
|         inf = float('inf')
 | |
|         result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
 | |
|         self.assertTrue(math.isnan(result))
 | |
| 
 | |
|     def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
 | |
|         # Test adding Decimal INFs with opposite sign returns NAN.
 | |
|         inf = Decimal('inf')
 | |
|         data = [1, 2, inf, 3, -inf, 4]
 | |
|         with decimal.localcontext(decimal.ExtendedContext):
 | |
|             self.assertTrue(math.isnan(statistics._sum(data)[1]))
 | |
| 
 | |
|     def test_decimal_basiccontext_mismatched_infs_to_nan(self):
 | |
|         # Test adding Decimal INFs with opposite sign raises InvalidOperation.
 | |
|         inf = Decimal('inf')
 | |
|         data = [1, 2, inf, 3, -inf, 4]
 | |
|         with decimal.localcontext(decimal.BasicContext):
 | |
|             self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
 | |
| 
 | |
|     def test_decimal_snan_raises(self):
 | |
|         # Adding sNAN should raise InvalidOperation.
 | |
|         sNAN = Decimal('sNAN')
 | |
|         data = [1, sNAN, 2]
 | |
|         self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
 | |
| 
 | |
| 
 | |
| # === Tests for averages ===
 | |
| 
 | |
| class AverageMixin(UnivariateCommonMixin):
 | |
|     # Mixin class holding common tests for averages.
 | |
| 
 | |
|     def test_single_value(self):
 | |
|         # Average of a single value is the value itself.
 | |
|         for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
 | |
|             self.assertEqual(self.func([x]), x)
 | |
| 
 | |
|     def prepare_values_for_repeated_single_test(self):
 | |
|         return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712'))
 | |
| 
 | |
|     def test_repeated_single_value(self):
 | |
|         # The average of a single repeated value is the value itself.
 | |
|         for x in self.prepare_values_for_repeated_single_test():
 | |
|             for count in (2, 5, 10, 20):
 | |
|                 with self.subTest(x=x, count=count):
 | |
|                     data = [x]*count
 | |
|                     self.assertEqual(self.func(data), x)
 | |
| 
 | |
| 
 | |
| class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
 | |
|     def setUp(self):
 | |
|         self.func = statistics.mean
 | |
| 
 | |
|     def test_torture_pep(self):
 | |
|         # "Torture Test" from PEP-450.
 | |
|         self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)
 | |
| 
 | |
|     def test_ints(self):
 | |
|         # Test mean with ints.
 | |
|         data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 4.8125)
 | |
| 
 | |
|     def test_floats(self):
 | |
|         # Test mean with floats.
 | |
|         data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 22.015625)
 | |
| 
 | |
|     def test_decimals(self):
 | |
|         # Test mean with Decimals.
 | |
|         D = Decimal
 | |
|         data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), D("3.5896"))
 | |
| 
 | |
|     def test_fractions(self):
 | |
|         # Test mean with Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), F(1479, 1960))
 | |
| 
 | |
|     def test_inf(self):
 | |
|         # Test mean with infinities.
 | |
|         raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
 | |
|         for kind in (float, Decimal):
 | |
|             for sign in (1, -1):
 | |
|                 inf = kind("inf")*sign
 | |
|                 data = raw + [inf]
 | |
|                 result = self.func(data)
 | |
|                 self.assertTrue(math.isinf(result))
 | |
|                 self.assertEqual(result, inf)
 | |
| 
 | |
|     def test_mismatched_infs(self):
 | |
|         # Test mean with infinities of opposite sign.
 | |
|         data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
 | |
|         result = self.func(data)
 | |
|         self.assertTrue(math.isnan(result))
 | |
| 
 | |
|     def test_nan(self):
 | |
|         # Test mean with NANs.
 | |
|         raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later.
 | |
|         for kind in (float, Decimal):
 | |
|             inf = kind("nan")
 | |
|             data = raw + [inf]
 | |
|             result = self.func(data)
 | |
|             self.assertTrue(math.isnan(result))
 | |
| 
 | |
|     def test_big_data(self):
 | |
|         # Test adding a large constant to every data point.
 | |
|         c = 1e9
 | |
|         data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
 | |
|         expected = self.func(data) + c
 | |
|         assert expected != c
 | |
|         result = self.func([x+c for x in data])
 | |
|         self.assertEqual(result, expected)
 | |
| 
 | |
|     def test_doubled_data(self):
 | |
|         # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
 | |
|         data = [random.uniform(-3, 5) for _ in range(1000)]
 | |
|         expected = self.func(data)
 | |
|         actual = self.func(data*2)
 | |
|         self.assertApproxEqual(actual, expected)
 | |
| 
 | |
|     def test_regression_20561(self):
 | |
|         # Regression test for issue 20561.
 | |
|         # See http://bugs.python.org/issue20561
 | |
|         d = Decimal('1e4')
 | |
|         self.assertEqual(statistics.mean([d]), d)
 | |
| 
 | |
|     def test_regression_25177(self):
 | |
|         # Regression test for issue 25177.
 | |
|         # Ensure very big and very small floats don't overflow.
 | |
|         # See http://bugs.python.org/issue25177.
 | |
|         self.assertEqual(statistics.mean(
 | |
|             [8.988465674311579e+307, 8.98846567431158e+307]),
 | |
|             8.98846567431158e+307)
 | |
|         big = 8.98846567431158e+307
 | |
|         tiny = 5e-324
 | |
|         for n in (2, 3, 5, 200):
 | |
|             self.assertEqual(statistics.mean([big]*n), big)
 | |
|             self.assertEqual(statistics.mean([tiny]*n), tiny)
 | |
| 
 | |
| 
 | |
| class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
 | |
|     def setUp(self):
 | |
|         self.func = statistics.harmonic_mean
 | |
| 
 | |
|     def prepare_data(self):
 | |
|         # Override mixin method.
 | |
|         values = super().prepare_data()
 | |
|         values.remove(0)
 | |
|         return values
 | |
| 
 | |
|     def prepare_values_for_repeated_single_test(self):
 | |
|         # Override mixin method.
 | |
|         return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125'))
 | |
| 
 | |
|     def test_zero(self):
 | |
|         # Test that harmonic mean returns zero when given zero.
 | |
|         values = [1, 0, 2]
 | |
|         self.assertEqual(self.func(values), 0)
 | |
| 
 | |
|     def test_negative_error(self):
 | |
|         # Test that harmonic mean raises when given a negative value.
 | |
|         exc = statistics.StatisticsError
 | |
|         for values in ([-1], [1, -2, 3]):
 | |
|             with self.subTest(values=values):
 | |
|                 self.assertRaises(exc, self.func, values)
 | |
| 
 | |
|     def test_invalid_type_error(self):
 | |
|         # Test error is raised when input contains invalid type(s)
 | |
|         for data in [
 | |
|             ['3.14'],               # single string
 | |
|             ['1', '2', '3'],        # multiple strings
 | |
|             [1, '2', 3, '4', 5],    # mixed strings and valid integers
 | |
|             [2.3, 3.4, 4.5, '5.6']  # only one string and valid floats
 | |
|         ]:
 | |
|             with self.subTest(data=data):
 | |
|                 with self.assertRaises(TypeError):
 | |
|                     self.func(data)
 | |
| 
 | |
|     def test_ints(self):
 | |
|         # Test harmonic mean with ints.
 | |
|         data = [2, 4, 4, 8, 16, 16]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 6*4/5)
 | |
| 
 | |
|     def test_floats_exact(self):
 | |
|         # Test harmonic mean with some carefully chosen floats.
 | |
|         data = [1/8, 1/4, 1/4, 1/2, 1/2]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 1/4)
 | |
|         self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5)
 | |
| 
 | |
|     def test_singleton_lists(self):
 | |
|         # Test that harmonic mean([x]) returns (approximately) x.
 | |
|         for x in range(1, 101):
 | |
|             self.assertEqual(self.func([x]), x)
 | |
| 
 | |
|     def test_decimals_exact(self):
 | |
|         # Test harmonic mean with some carefully chosen Decimals.
 | |
|         D = Decimal
 | |
|         self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30))
 | |
|         data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), D("0.10"))
 | |
|         data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), D(66528)/70723)
 | |
| 
 | |
|     def test_fractions(self):
 | |
|         # Test harmonic mean with Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), F(7*420, 4029))
 | |
| 
 | |
|     def test_inf(self):
 | |
|         # Test harmonic mean with infinity.
 | |
|         values = [2.0, float('inf'), 1.0]
 | |
|         self.assertEqual(self.func(values), 2.0)
 | |
| 
 | |
|     def test_nan(self):
 | |
|         # Test harmonic mean with NANs.
 | |
|         values = [2.0, float('nan'), 1.0]
 | |
|         self.assertTrue(math.isnan(self.func(values)))
 | |
| 
 | |
|     def test_multiply_data_points(self):
 | |
|         # Test multiplying every data point by a constant.
 | |
|         c = 111
 | |
|         data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
 | |
|         expected = self.func(data)*c
 | |
|         result = self.func([x*c for x in data])
 | |
|         self.assertEqual(result, expected)
 | |
| 
 | |
|     def test_doubled_data(self):
 | |
|         # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z].
 | |
|         data = [random.uniform(1, 5) for _ in range(1000)]
 | |
|         expected = self.func(data)
 | |
|         actual = self.func(data*2)
 | |
|         self.assertApproxEqual(actual, expected)
 | |
| 
 | |
|     def test_with_weights(self):
 | |
|         self.assertEqual(self.func([40, 60], [5, 30]), 56.0)  # common case
 | |
|         self.assertEqual(self.func([40, 60],
 | |
|                                    weights=[5, 30]), 56.0)    # keyword argument
 | |
|         self.assertEqual(self.func(iter([40, 60]),
 | |
|                                    iter([5, 30])), 56.0)      # iterator inputs
 | |
|         self.assertEqual(
 | |
|             self.func([Fraction(10, 3), Fraction(23, 5), Fraction(7, 2)], [5, 2, 10]),
 | |
|             self.func([Fraction(10, 3)] * 5 +
 | |
|                       [Fraction(23, 5)] * 2 +
 | |
|                       [Fraction(7, 2)] * 10))
 | |
|         self.assertEqual(self.func([10], [7]), 10)            # n=1 fast path
 | |
|         with self.assertRaises(TypeError):
 | |
|             self.func([1, 2, 3], [1, (), 3])                  # non-numeric weight
 | |
|         with self.assertRaises(statistics.StatisticsError):
 | |
|             self.func([1, 2, 3], [1, 2])                      # wrong number of weights
 | |
|         with self.assertRaises(statistics.StatisticsError):
 | |
|             self.func([10], [0])                              # no non-zero weights
 | |
|         with self.assertRaises(statistics.StatisticsError):
 | |
|             self.func([10, 20], [0, 0])                       # no non-zero weights
 | |
| 
 | |
| 
 | |
| class TestMedian(NumericTestCase, AverageMixin):
 | |
|     # Common tests for median and all median.* functions.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.median
 | |
| 
 | |
|     def prepare_data(self):
 | |
|         """Overload method from UnivariateCommonMixin."""
 | |
|         data = super().prepare_data()
 | |
|         if len(data)%2 != 1:
 | |
|             data.append(2)
 | |
|         return data
 | |
| 
 | |
|     def test_even_ints(self):
 | |
|         # Test median with an even number of int data points.
 | |
|         data = [1, 2, 3, 4, 5, 6]
 | |
|         assert len(data)%2 == 0
 | |
|         self.assertEqual(self.func(data), 3.5)
 | |
| 
 | |
|     def test_odd_ints(self):
 | |
|         # Test median with an odd number of int data points.
 | |
|         data = [1, 2, 3, 4, 5, 6, 9]
 | |
|         assert len(data)%2 == 1
 | |
|         self.assertEqual(self.func(data), 4)
 | |
| 
 | |
|     def test_odd_fractions(self):
 | |
|         # Test median works with an odd number of Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
 | |
|         assert len(data)%2 == 1
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), F(3, 7))
 | |
| 
 | |
|     def test_even_fractions(self):
 | |
|         # Test median works with an even number of Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), F(1, 2))
 | |
| 
 | |
|     def test_odd_decimals(self):
 | |
|         # Test median works with an odd number of Decimals.
 | |
|         D = Decimal
 | |
|         data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
 | |
|         assert len(data)%2 == 1
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), D('4.2'))
 | |
| 
 | |
|     def test_even_decimals(self):
 | |
|         # Test median works with an even number of Decimals.
 | |
|         D = Decimal
 | |
|         data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), D('3.65'))
 | |
| 
 | |
| 
 | |
| class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
 | |
|     # Test conservation of data element type for median.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.median
 | |
| 
 | |
|     def prepare_data(self):
 | |
|         data = list(range(15))
 | |
|         assert len(data)%2 == 1
 | |
|         while data == sorted(data):
 | |
|             random.shuffle(data)
 | |
|         return data
 | |
| 
 | |
| 
 | |
| class TestMedianLow(TestMedian, UnivariateTypeMixin):
 | |
|     def setUp(self):
 | |
|         self.func = statistics.median_low
 | |
| 
 | |
|     def test_even_ints(self):
 | |
|         # Test median_low with an even number of ints.
 | |
|         data = [1, 2, 3, 4, 5, 6]
 | |
|         assert len(data)%2 == 0
 | |
|         self.assertEqual(self.func(data), 3)
 | |
| 
 | |
|     def test_even_fractions(self):
 | |
|         # Test median_low works with an even number of Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), F(3, 7))
 | |
| 
 | |
|     def test_even_decimals(self):
 | |
|         # Test median_low works with an even number of Decimals.
 | |
|         D = Decimal
 | |
|         data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), D('3.3'))
 | |
| 
 | |
| 
 | |
| class TestMedianHigh(TestMedian, UnivariateTypeMixin):
 | |
|     def setUp(self):
 | |
|         self.func = statistics.median_high
 | |
| 
 | |
|     def test_even_ints(self):
 | |
|         # Test median_high with an even number of ints.
 | |
|         data = [1, 2, 3, 4, 5, 6]
 | |
|         assert len(data)%2 == 0
 | |
|         self.assertEqual(self.func(data), 4)
 | |
| 
 | |
|     def test_even_fractions(self):
 | |
|         # Test median_high works with an even number of Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), F(4, 7))
 | |
| 
 | |
|     def test_even_decimals(self):
 | |
|         # Test median_high works with an even number of Decimals.
 | |
|         D = Decimal
 | |
|         data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), D('4.4'))
 | |
| 
 | |
| 
 | |
| class TestMedianGrouped(TestMedian):
 | |
|     # Test median_grouped.
 | |
|     # Doesn't conserve data element types, so don't use TestMedianType.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.median_grouped
 | |
| 
 | |
|     def test_odd_number_repeated(self):
 | |
|         # Test median.grouped with repeated median values.
 | |
|         data = [12, 13, 14, 14, 14, 15, 15]
 | |
|         assert len(data)%2 == 1
 | |
|         self.assertEqual(self.func(data), 14)
 | |
|         #---
 | |
|         data = [12, 13, 14, 14, 14, 14, 15]
 | |
|         assert len(data)%2 == 1
 | |
|         self.assertEqual(self.func(data), 13.875)
 | |
|         #---
 | |
|         data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
 | |
|         assert len(data)%2 == 1
 | |
|         self.assertEqual(self.func(data, 5), 19.375)
 | |
|         #---
 | |
|         data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
 | |
|         assert len(data)%2 == 1
 | |
|         self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
 | |
| 
 | |
|     def test_even_number_repeated(self):
 | |
|         # Test median.grouped with repeated median values.
 | |
|         data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
 | |
|         assert len(data)%2 == 0
 | |
|         self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
 | |
|         #---
 | |
|         data = [2, 3, 4, 4, 4, 5]
 | |
|         assert len(data)%2 == 0
 | |
|         self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
 | |
|         #---
 | |
|         data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
 | |
|         assert len(data)%2 == 0
 | |
|         self.assertEqual(self.func(data), 4.5)
 | |
|         #---
 | |
|         data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
 | |
|         assert len(data)%2 == 0
 | |
|         self.assertEqual(self.func(data), 4.75)
 | |
| 
 | |
|     def test_repeated_single_value(self):
 | |
|         # Override method from AverageMixin.
 | |
|         # Yet again, failure of median_grouped to conserve the data type
 | |
|         # causes me headaches :-(
 | |
|         for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
 | |
|             for count in (2, 5, 10, 20):
 | |
|                 data = [x]*count
 | |
|                 self.assertEqual(self.func(data), float(x))
 | |
| 
 | |
|     def test_single_value(self):
 | |
|         # Override method from AverageMixin.
 | |
|         # Average of a single value is the value as a float.
 | |
|         for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
 | |
|             self.assertEqual(self.func([x]), float(x))
 | |
| 
 | |
|     def test_odd_fractions(self):
 | |
|         # Test median_grouped works with an odd number of Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
 | |
|         assert len(data)%2 == 1
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 3.0)
 | |
| 
 | |
|     def test_even_fractions(self):
 | |
|         # Test median_grouped works with an even number of Fractions.
 | |
|         F = Fraction
 | |
|         data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 3.25)
 | |
| 
 | |
|     def test_odd_decimals(self):
 | |
|         # Test median_grouped works with an odd number of Decimals.
 | |
|         D = Decimal
 | |
|         data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
 | |
|         assert len(data)%2 == 1
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 6.75)
 | |
| 
 | |
|     def test_even_decimals(self):
 | |
|         # Test median_grouped works with an even number of Decimals.
 | |
|         D = Decimal
 | |
|         data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 6.5)
 | |
|         #---
 | |
|         data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
 | |
|         assert len(data)%2 == 0
 | |
|         random.shuffle(data)
 | |
|         self.assertEqual(self.func(data), 7.0)
 | |
| 
 | |
|     def test_interval(self):
 | |
|         # Test median_grouped with interval argument.
 | |
|         data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
 | |
|         self.assertEqual(self.func(data, 0.25), 2.875)
 | |
|         data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
 | |
|         self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
 | |
|         data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
 | |
|         self.assertEqual(self.func(data, 20), 265.0)
 | |
| 
 | |
|     def test_data_type_error(self):
 | |
|         # Test median_grouped with str, bytes data types for data and interval
 | |
|         data = ["", "", ""]
 | |
|         self.assertRaises(TypeError, self.func, data)
 | |
|         #---
 | |
|         data = [b"", b"", b""]
 | |
|         self.assertRaises(TypeError, self.func, data)
 | |
|         #---
 | |
|         data = [1, 2, 3]
 | |
|         interval = ""
 | |
|         self.assertRaises(TypeError, self.func, data, interval)
 | |
|         #---
 | |
|         data = [1, 2, 3]
 | |
|         interval = b""
 | |
|         self.assertRaises(TypeError, self.func, data, interval)
 | |
| 
 | |
| 
 | |
| class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
 | |
|     # Test cases for the discrete version of mode.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.mode
 | |
| 
 | |
|     def prepare_data(self):
 | |
|         """Overload method from UnivariateCommonMixin."""
 | |
|         # Make sure test data has exactly one mode.
 | |
|         return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]
 | |
| 
 | |
|     def test_range_data(self):
 | |
|         # Override test from UnivariateCommonMixin.
 | |
|         data = range(20, 50, 3)
 | |
|         self.assertEqual(self.func(data), 20)
 | |
| 
 | |
|     def test_nominal_data(self):
 | |
|         # Test mode with nominal data.
 | |
|         data = 'abcbdb'
 | |
|         self.assertEqual(self.func(data), 'b')
 | |
|         data = 'fe fi fo fum fi fi'.split()
 | |
|         self.assertEqual(self.func(data), 'fi')
 | |
| 
 | |
|     def test_discrete_data(self):
 | |
|         # Test mode with discrete numeric data.
 | |
|         data = list(range(10))
 | |
|         for i in range(10):
 | |
|             d = data + [i]
 | |
|             random.shuffle(d)
 | |
|             self.assertEqual(self.func(d), i)
 | |
| 
 | |
|     def test_bimodal_data(self):
 | |
|         # Test mode with bimodal data.
 | |
|         data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
 | |
|         assert data.count(2) == data.count(6) == 4
 | |
|         # mode() should return 2, the first encountered mode
 | |
|         self.assertEqual(self.func(data), 2)
 | |
| 
 | |
|     def test_unique_data(self):
 | |
|         # Test mode when data points are all unique.
 | |
|         data = list(range(10))
 | |
|         # mode() should return 0, the first encountered mode
 | |
|         self.assertEqual(self.func(data), 0)
 | |
| 
 | |
|     def test_none_data(self):
 | |
|         # Test that mode raises TypeError if given None as data.
 | |
| 
 | |
|         # This test is necessary because the implementation of mode uses
 | |
|         # collections.Counter, which accepts None and returns an empty dict.
 | |
|         self.assertRaises(TypeError, self.func, None)
 | |
| 
 | |
|     def test_counter_data(self):
 | |
|         # Test that a Counter is treated like any other iterable.
 | |
|         # We're making sure mode() first calls iter() on its input.
 | |
|         # The concern is that a Counter of a Counter returns the original
 | |
|         # unchanged rather than counting its keys.
 | |
|         c = collections.Counter(a=1, b=2)
 | |
|         # If iter() is called, mode(c) loops over the keys, ['a', 'b'],
 | |
|         # all the counts will be 1, and the first encountered mode is 'a'.
 | |
|         self.assertEqual(self.func(c), 'a')
 | |
| 
 | |
| 
 | |
| class TestMultiMode(unittest.TestCase):
 | |
| 
 | |
|     def test_basics(self):
 | |
|         multimode = statistics.multimode
 | |
|         self.assertEqual(multimode('aabbbbbbbbcc'), ['b'])
 | |
|         self.assertEqual(multimode('aabbbbccddddeeffffgg'), ['b', 'd', 'f'])
 | |
|         self.assertEqual(multimode(''), [])
 | |
| 
 | |
| 
 | |
| class TestFMean(unittest.TestCase):
 | |
| 
 | |
|     def test_basics(self):
 | |
|         fmean = statistics.fmean
 | |
|         D = Decimal
 | |
|         F = Fraction
 | |
|         for data, expected_mean, kind in [
 | |
|             ([3.5, 4.0, 5.25], 4.25, 'floats'),
 | |
|             ([D('3.5'), D('4.0'), D('5.25')], 4.25, 'decimals'),
 | |
|             ([F(7, 2), F(4, 1), F(21, 4)], 4.25, 'fractions'),
 | |
|             ([True, False, True, True, False], 0.60, 'booleans'),
 | |
|             ([3.5, 4, F(21, 4)], 4.25, 'mixed types'),
 | |
|             ((3.5, 4.0, 5.25), 4.25, 'tuple'),
 | |
|             (iter([3.5, 4.0, 5.25]), 4.25, 'iterator'),
 | |
|                 ]:
 | |
|             actual_mean = fmean(data)
 | |
|             self.assertIs(type(actual_mean), float, kind)
 | |
|             self.assertEqual(actual_mean, expected_mean, kind)
 | |
| 
 | |
|     def test_error_cases(self):
 | |
|         fmean = statistics.fmean
 | |
|         StatisticsError = statistics.StatisticsError
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             fmean([])                               # empty input
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             fmean(iter([]))                         # empty iterator
 | |
|         with self.assertRaises(TypeError):
 | |
|             fmean(None)                             # non-iterable input
 | |
|         with self.assertRaises(TypeError):
 | |
|             fmean([10, None, 20])                   # non-numeric input
 | |
|         with self.assertRaises(TypeError):
 | |
|             fmean()                                 # missing data argument
 | |
|         with self.assertRaises(TypeError):
 | |
|             fmean([10, 20, 60], 70)                 # too many arguments
 | |
| 
 | |
|     def test_special_values(self):
 | |
|         # Rules for special values are inherited from math.fsum()
 | |
|         fmean = statistics.fmean
 | |
|         NaN = float('Nan')
 | |
|         Inf = float('Inf')
 | |
|         self.assertTrue(math.isnan(fmean([10, NaN])), 'nan')
 | |
|         self.assertTrue(math.isnan(fmean([NaN, Inf])), 'nan and infinity')
 | |
|         self.assertTrue(math.isinf(fmean([10, Inf])), 'infinity')
 | |
|         with self.assertRaises(ValueError):
 | |
|             fmean([Inf, -Inf])
 | |
| 
 | |
|     def test_weights(self):
 | |
|         fmean = statistics.fmean
 | |
|         StatisticsError = statistics.StatisticsError
 | |
|         self.assertEqual(
 | |
|             fmean([10, 10, 10, 50], [0.25] * 4),
 | |
|             fmean([10, 10, 10, 50]))
 | |
|         self.assertEqual(
 | |
|             fmean([10, 10, 20], [0.25, 0.25, 0.50]),
 | |
|             fmean([10, 10, 20, 20]))
 | |
|         self.assertEqual(                           # inputs are iterators
 | |
|             fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])),
 | |
|             fmean([10, 10, 20, 20]))
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             fmean([10, 20, 30], [1, 2])             # unequal lengths
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             fmean([10, 20], [-1, 1])                # sum of weights is zero
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             fmean(iter([10, 20]), iter([-1, 1]))    # sum of weights is zero
 | |
| 
 | |
| 
 | |
| # === Tests for variances and standard deviations ===
 | |
| 
 | |
| class VarianceStdevMixin(UnivariateCommonMixin):
 | |
|     # Mixin class holding common tests for variance and std dev.
 | |
| 
 | |
|     # Subclasses should inherit from this before NumericTestClass, in order
 | |
|     # to see the rel attribute below. See testShiftData for an explanation.
 | |
| 
 | |
|     rel = 1e-12
 | |
| 
 | |
|     def test_single_value(self):
 | |
|         # Deviation of a single value is zero.
 | |
|         for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
 | |
|             self.assertEqual(self.func([x]), 0)
 | |
| 
 | |
|     def test_repeated_single_value(self):
 | |
|         # The deviation of a single repeated value is zero.
 | |
|         for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
 | |
|             for count in (2, 3, 5, 15):
 | |
|                 data = [x]*count
 | |
|                 self.assertEqual(self.func(data), 0)
 | |
| 
 | |
|     def test_domain_error_regression(self):
 | |
|         # Regression test for a domain error exception.
 | |
|         # (Thanks to Geremy Condra.)
 | |
|         data = [0.123456789012345]*10000
 | |
|         # All the items are identical, so variance should be exactly zero.
 | |
|         # We allow some small round-off error, but not much.
 | |
|         result = self.func(data)
 | |
|         self.assertApproxEqual(result, 0.0, tol=5e-17)
 | |
|         self.assertGreaterEqual(result, 0)  # A negative result must fail.
 | |
| 
 | |
|     def test_shift_data(self):
 | |
|         # Test that shifting the data by a constant amount does not affect
 | |
|         # the variance or stdev. Or at least not much.
 | |
| 
 | |
|         # Due to rounding, this test should be considered an ideal. We allow
 | |
|         # some tolerance away from "no change at all" by setting tol and/or rel
 | |
|         # attributes. Subclasses may set tighter or looser error tolerances.
 | |
|         raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
 | |
|         expected = self.func(raw)
 | |
|         # Don't set shift too high, the bigger it is, the more rounding error.
 | |
|         shift = 1e5
 | |
|         data = [x + shift for x in raw]
 | |
|         self.assertApproxEqual(self.func(data), expected)
 | |
| 
 | |
|     def test_shift_data_exact(self):
 | |
|         # Like test_shift_data, but result is always exact.
 | |
|         raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
 | |
|         assert all(x==int(x) for x in raw)
 | |
|         expected = self.func(raw)
 | |
|         shift = 10**9
 | |
|         data = [x + shift for x in raw]
 | |
|         self.assertEqual(self.func(data), expected)
 | |
| 
 | |
|     def test_iter_list_same(self):
 | |
|         # Test that iter data and list data give the same result.
 | |
| 
 | |
|         # This is an explicit test that iterators and lists are treated the
 | |
|         # same; justification for this test over and above the similar test
 | |
|         # in UnivariateCommonMixin is that an earlier design had variance and
 | |
|         # friends swap between one- and two-pass algorithms, which would
 | |
|         # sometimes give different results.
 | |
|         data = [random.uniform(-3, 8) for _ in range(1000)]
 | |
|         expected = self.func(data)
 | |
|         self.assertEqual(self.func(iter(data)), expected)
 | |
| 
 | |
| 
 | |
| class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
 | |
|     # Tests for population variance.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.pvariance
 | |
| 
 | |
|     def test_exact_uniform(self):
 | |
|         # Test the variance against an exact result for uniform data.
 | |
|         data = list(range(10000))
 | |
|         random.shuffle(data)
 | |
|         expected = (10000**2 - 1)/12  # Exact value.
 | |
|         self.assertEqual(self.func(data), expected)
 | |
| 
 | |
|     def test_ints(self):
 | |
|         # Test population variance with int data.
 | |
|         data = [4, 7, 13, 16]
 | |
|         exact = 22.5
 | |
|         self.assertEqual(self.func(data), exact)
 | |
| 
 | |
|     def test_fractions(self):
 | |
|         # Test population variance with Fraction data.
 | |
|         F = Fraction
 | |
|         data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
 | |
|         exact = F(3, 8)
 | |
|         result = self.func(data)
 | |
|         self.assertEqual(result, exact)
 | |
|         self.assertIsInstance(result, Fraction)
 | |
| 
 | |
|     def test_decimals(self):
 | |
|         # Test population variance with Decimal data.
 | |
|         D = Decimal
 | |
|         data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
 | |
|         exact = D('0.096875')
 | |
|         result = self.func(data)
 | |
|         self.assertEqual(result, exact)
 | |
|         self.assertIsInstance(result, Decimal)
 | |
| 
 | |
|     def test_accuracy_bug_20499(self):
 | |
|         data = [0, 0, 1]
 | |
|         exact = 2 / 9
 | |
|         result = self.func(data)
 | |
|         self.assertEqual(result, exact)
 | |
|         self.assertIsInstance(result, float)
 | |
| 
 | |
| 
 | |
| class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
 | |
|     # Tests for sample variance.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.variance
 | |
| 
 | |
|     def test_single_value(self):
 | |
|         # Override method from VarianceStdevMixin.
 | |
|         for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
 | |
|             self.assertRaises(statistics.StatisticsError, self.func, [x])
 | |
| 
 | |
|     def test_ints(self):
 | |
|         # Test sample variance with int data.
 | |
|         data = [4, 7, 13, 16]
 | |
|         exact = 30
 | |
|         self.assertEqual(self.func(data), exact)
 | |
| 
 | |
|     def test_fractions(self):
 | |
|         # Test sample variance with Fraction data.
 | |
|         F = Fraction
 | |
|         data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
 | |
|         exact = F(1, 2)
 | |
|         result = self.func(data)
 | |
|         self.assertEqual(result, exact)
 | |
|         self.assertIsInstance(result, Fraction)
 | |
| 
 | |
|     def test_decimals(self):
 | |
|         # Test sample variance with Decimal data.
 | |
|         D = Decimal
 | |
|         data = [D(2), D(2), D(7), D(9)]
 | |
|         exact = 4*D('9.5')/D(3)
 | |
|         result = self.func(data)
 | |
|         self.assertEqual(result, exact)
 | |
|         self.assertIsInstance(result, Decimal)
 | |
| 
 | |
|     def test_center_not_at_mean(self):
 | |
|         data = (1.0, 2.0)
 | |
|         self.assertEqual(self.func(data), 0.5)
 | |
|         self.assertEqual(self.func(data, xbar=2.0), 1.0)
 | |
| 
 | |
|     def test_accuracy_bug_20499(self):
 | |
|         data = [0, 0, 2]
 | |
|         exact = 4 / 3
 | |
|         result = self.func(data)
 | |
|         self.assertEqual(result, exact)
 | |
|         self.assertIsInstance(result, float)
 | |
| 
 | |
| class TestPStdev(VarianceStdevMixin, NumericTestCase):
 | |
|     # Tests for population standard deviation.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.pstdev
 | |
| 
 | |
|     def test_compare_to_variance(self):
 | |
|         # Test that stdev is, in fact, the square root of variance.
 | |
|         data = [random.uniform(-17, 24) for _ in range(1000)]
 | |
|         expected = math.sqrt(statistics.pvariance(data))
 | |
|         self.assertEqual(self.func(data), expected)
 | |
| 
 | |
|     def test_center_not_at_mean(self):
 | |
|         # See issue: 40855
 | |
|         data = (3, 6, 7, 10)
 | |
|         self.assertEqual(self.func(data), 2.5)
 | |
|         self.assertEqual(self.func(data, mu=0.5), 6.5)
 | |
| 
 | |
| class TestSqrtHelpers(unittest.TestCase):
 | |
| 
 | |
|     def test_integer_sqrt_of_frac_rto(self):
 | |
|         for n, m in itertools.product(range(100), range(1, 1000)):
 | |
|             r = statistics._integer_sqrt_of_frac_rto(n, m)
 | |
|             self.assertIsInstance(r, int)
 | |
|             if r*r*m == n:
 | |
|                 # Root is exact
 | |
|                 continue
 | |
|             # Inexact, so the root should be odd
 | |
|             self.assertEqual(r&1, 1)
 | |
|             # Verify correct rounding
 | |
|             self.assertTrue(m * (r - 1)**2 < n < m * (r + 1)**2)
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_float_sqrt_of_frac(self):
 | |
| 
 | |
|         def is_root_correctly_rounded(x: Fraction, root: float) -> bool:
 | |
|             if not x:
 | |
|                 return root == 0.0
 | |
| 
 | |
|             # Extract adjacent representable floats
 | |
|             r_up: float = math.nextafter(root, math.inf)
 | |
|             r_down: float = math.nextafter(root, -math.inf)
 | |
|             assert r_down < root < r_up
 | |
| 
 | |
|             # Convert to fractions for exact arithmetic
 | |
|             frac_root: Fraction = Fraction(root)
 | |
|             half_way_up: Fraction = (frac_root + Fraction(r_up)) / 2
 | |
|             half_way_down: Fraction = (frac_root + Fraction(r_down)) / 2
 | |
| 
 | |
|             # Check a closed interval.
 | |
|             # Does not test for a midpoint rounding rule.
 | |
|             return half_way_down ** 2 <= x <= half_way_up ** 2
 | |
| 
 | |
|         randrange = random.randrange
 | |
| 
 | |
|         for i in range(60_000):
 | |
|             numerator: int = randrange(10 ** randrange(50))
 | |
|             denonimator: int = randrange(10 ** randrange(50)) + 1
 | |
|             with self.subTest(numerator=numerator, denonimator=denonimator):
 | |
|                 x: Fraction = Fraction(numerator, denonimator)
 | |
|                 root: float = statistics._float_sqrt_of_frac(numerator, denonimator)
 | |
|                 self.assertTrue(is_root_correctly_rounded(x, root))
 | |
| 
 | |
|         # Verify that corner cases and error handling match math.sqrt()
 | |
|         self.assertEqual(statistics._float_sqrt_of_frac(0, 1), 0.0)
 | |
|         with self.assertRaises(ValueError):
 | |
|             statistics._float_sqrt_of_frac(-1, 1)
 | |
|         with self.assertRaises(ValueError):
 | |
|             statistics._float_sqrt_of_frac(1, -1)
 | |
| 
 | |
|         # Error handling for zero denominator matches that for Fraction(1, 0)
 | |
|         with self.assertRaises(ZeroDivisionError):
 | |
|             statistics._float_sqrt_of_frac(1, 0)
 | |
| 
 | |
|         # The result is well defined if both inputs are negative
 | |
|         self.assertEqual(statistics._float_sqrt_of_frac(-2, -1), statistics._float_sqrt_of_frac(2, 1))
 | |
| 
 | |
|     def test_decimal_sqrt_of_frac(self):
 | |
|         root: Decimal
 | |
|         numerator: int
 | |
|         denominator: int
 | |
| 
 | |
|         for root, numerator, denominator in [
 | |
|             (Decimal('0.4481904599041192673635338663'), 200874688349065940678243576378, 1000000000000000000000000000000),  # No adj
 | |
|             (Decimal('0.7924949131383786609961759598'), 628048187350206338833590574929, 1000000000000000000000000000000),  # Adj up
 | |
|             (Decimal('0.8500554152289934068192208727'), 722594208960136395984391238251, 1000000000000000000000000000000),  # Adj down
 | |
|         ]:
 | |
|             with decimal.localcontext(decimal.DefaultContext):
 | |
|                 self.assertEqual(statistics._decimal_sqrt_of_frac(numerator, denominator), root)
 | |
| 
 | |
|             # Confirm expected root with a quad precision decimal computation
 | |
|             with decimal.localcontext(decimal.DefaultContext) as ctx:
 | |
|                 ctx.prec *= 4
 | |
|                 high_prec_ratio = Decimal(numerator) / Decimal(denominator)
 | |
|                 ctx.rounding = decimal.ROUND_05UP
 | |
|                 high_prec_root = high_prec_ratio.sqrt()
 | |
|             with decimal.localcontext(decimal.DefaultContext):
 | |
|                 target_root = +high_prec_root
 | |
|             self.assertEqual(root, target_root)
 | |
| 
 | |
|         # Verify that corner cases and error handling match Decimal.sqrt()
 | |
|         self.assertEqual(statistics._decimal_sqrt_of_frac(0, 1), 0.0)
 | |
|         with self.assertRaises(decimal.InvalidOperation):
 | |
|             statistics._decimal_sqrt_of_frac(-1, 1)
 | |
|         with self.assertRaises(decimal.InvalidOperation):
 | |
|             statistics._decimal_sqrt_of_frac(1, -1)
 | |
| 
 | |
|         # Error handling for zero denominator matches that for Fraction(1, 0)
 | |
|         with self.assertRaises(ZeroDivisionError):
 | |
|             statistics._decimal_sqrt_of_frac(1, 0)
 | |
| 
 | |
|         # The result is well defined if both inputs are negative
 | |
|         self.assertEqual(statistics._decimal_sqrt_of_frac(-2, -1), statistics._decimal_sqrt_of_frac(2, 1))
 | |
| 
 | |
| 
 | |
| class TestStdev(VarianceStdevMixin, NumericTestCase):
 | |
|     # Tests for sample standard deviation.
 | |
|     def setUp(self):
 | |
|         self.func = statistics.stdev
 | |
| 
 | |
|     def test_single_value(self):
 | |
|         # Override method from VarianceStdevMixin.
 | |
|         for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
 | |
|             self.assertRaises(statistics.StatisticsError, self.func, [x])
 | |
| 
 | |
|     def test_compare_to_variance(self):
 | |
|         # Test that stdev is, in fact, the square root of variance.
 | |
|         data = [random.uniform(-2, 9) for _ in range(1000)]
 | |
|         expected = math.sqrt(statistics.variance(data))
 | |
|         self.assertAlmostEqual(self.func(data), expected)
 | |
| 
 | |
|     def test_center_not_at_mean(self):
 | |
|         data = (1.0, 2.0)
 | |
|         self.assertEqual(self.func(data, xbar=2.0), 1.0)
 | |
| 
 | |
| class TestGeometricMean(unittest.TestCase):
 | |
| 
 | |
|     def test_basics(self):
 | |
|         geometric_mean = statistics.geometric_mean
 | |
|         self.assertAlmostEqual(geometric_mean([54, 24, 36]), 36.0)
 | |
|         self.assertAlmostEqual(geometric_mean([4.0, 9.0]), 6.0)
 | |
|         self.assertAlmostEqual(geometric_mean([17.625]), 17.625)
 | |
| 
 | |
|         random.seed(86753095551212)
 | |
|         for rng in [
 | |
|                 range(1, 100),
 | |
|                 range(1, 1_000),
 | |
|                 range(1, 10_000),
 | |
|                 range(500, 10_000, 3),
 | |
|                 range(10_000, 500, -3),
 | |
|                 [12, 17, 13, 5, 120, 7],
 | |
|                 [random.expovariate(50.0) for i in range(1_000)],
 | |
|                 [random.lognormvariate(20.0, 3.0) for i in range(2_000)],
 | |
|                 [random.triangular(2000, 3000, 2200) for i in range(3_000)],
 | |
|             ]:
 | |
|             gm_decimal = math.prod(map(Decimal, rng)) ** (Decimal(1) / len(rng))
 | |
|             gm_float = geometric_mean(rng)
 | |
|             self.assertTrue(math.isclose(gm_float, float(gm_decimal)))
 | |
| 
 | |
|     def test_various_input_types(self):
 | |
|         geometric_mean = statistics.geometric_mean
 | |
|         D = Decimal
 | |
|         F = Fraction
 | |
|         # https://www.wolframalpha.com/input/?i=geometric+mean+3.5,+4.0,+5.25
 | |
|         expected_mean = 4.18886
 | |
|         for data, kind in [
 | |
|             ([3.5, 4.0, 5.25], 'floats'),
 | |
|             ([D('3.5'), D('4.0'), D('5.25')], 'decimals'),
 | |
|             ([F(7, 2), F(4, 1), F(21, 4)], 'fractions'),
 | |
|             ([3.5, 4, F(21, 4)], 'mixed types'),
 | |
|             ((3.5, 4.0, 5.25), 'tuple'),
 | |
|             (iter([3.5, 4.0, 5.25]), 'iterator'),
 | |
|                 ]:
 | |
|             actual_mean = geometric_mean(data)
 | |
|             self.assertIs(type(actual_mean), float, kind)
 | |
|             self.assertAlmostEqual(actual_mean, expected_mean, places=5)
 | |
| 
 | |
|     def test_big_and_small(self):
 | |
|         geometric_mean = statistics.geometric_mean
 | |
| 
 | |
|         # Avoid overflow to infinity
 | |
|         large = 2.0 ** 1000
 | |
|         big_gm = geometric_mean([54.0 * large, 24.0 * large, 36.0 * large])
 | |
|         self.assertTrue(math.isclose(big_gm, 36.0 * large))
 | |
|         self.assertFalse(math.isinf(big_gm))
 | |
| 
 | |
|         # Avoid underflow to zero
 | |
|         small = 2.0 ** -1000
 | |
|         small_gm = geometric_mean([54.0 * small, 24.0 * small, 36.0 * small])
 | |
|         self.assertTrue(math.isclose(small_gm, 36.0 * small))
 | |
|         self.assertNotEqual(small_gm, 0.0)
 | |
| 
 | |
|     def test_error_cases(self):
 | |
|         geometric_mean = statistics.geometric_mean
 | |
|         StatisticsError = statistics.StatisticsError
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             geometric_mean([])                      # empty input
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             geometric_mean([3.5, 0.0, 5.25])        # zero input
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             geometric_mean([3.5, -4.0, 5.25])       # negative input
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             geometric_mean(iter([]))                # empty iterator
 | |
|         with self.assertRaises(TypeError):
 | |
|             geometric_mean(None)                    # non-iterable input
 | |
|         with self.assertRaises(TypeError):
 | |
|             geometric_mean([10, None, 20])          # non-numeric input
 | |
|         with self.assertRaises(TypeError):
 | |
|             geometric_mean()                        # missing data argument
 | |
|         with self.assertRaises(TypeError):
 | |
|             geometric_mean([10, 20, 60], 70)        # too many arguments
 | |
| 
 | |
|     def test_special_values(self):
 | |
|         # Rules for special values are inherited from math.fsum()
 | |
|         geometric_mean = statistics.geometric_mean
 | |
|         NaN = float('Nan')
 | |
|         Inf = float('Inf')
 | |
|         self.assertTrue(math.isnan(geometric_mean([10, NaN])), 'nan')
 | |
|         self.assertTrue(math.isnan(geometric_mean([NaN, Inf])), 'nan and infinity')
 | |
|         self.assertTrue(math.isinf(geometric_mean([10, Inf])), 'infinity')
 | |
|         with self.assertRaises(ValueError):
 | |
|             geometric_mean([Inf, -Inf])
 | |
| 
 | |
|     def test_mixed_int_and_float(self):
 | |
|         # Regression test for b.p.o. issue #28327
 | |
|         geometric_mean = statistics.geometric_mean
 | |
|         expected_mean = 3.80675409583932
 | |
|         values = [
 | |
|             [2, 3, 5, 7],
 | |
|             [2, 3, 5, 7.0],
 | |
|             [2, 3, 5.0, 7.0],
 | |
|             [2, 3.0, 5.0, 7.0],
 | |
|             [2.0, 3.0, 5.0, 7.0],
 | |
|         ]
 | |
|         for v in values:
 | |
|             with self.subTest(v=v):
 | |
|                 actual_mean = geometric_mean(v)
 | |
|                 self.assertAlmostEqual(actual_mean, expected_mean, places=5)
 | |
| 
 | |
| 
 | |
| class TestQuantiles(unittest.TestCase):
 | |
| 
 | |
|     def test_specific_cases(self):
 | |
|         # Match results computed by hand and cross-checked
 | |
|         # against the PERCENTILE.EXC function in MS Excel.
 | |
|         quantiles = statistics.quantiles
 | |
|         data = [120, 200, 250, 320, 350]
 | |
|         random.shuffle(data)
 | |
|         for n, expected in [
 | |
|             (1, []),
 | |
|             (2, [250.0]),
 | |
|             (3, [200.0, 320.0]),
 | |
|             (4, [160.0, 250.0, 335.0]),
 | |
|             (5, [136.0, 220.0, 292.0, 344.0]),
 | |
|             (6, [120.0, 200.0, 250.0, 320.0, 350.0]),
 | |
|             (8, [100.0, 160.0, 212.5, 250.0, 302.5, 335.0, 357.5]),
 | |
|             (10, [88.0, 136.0, 184.0, 220.0, 250.0, 292.0, 326.0, 344.0, 362.0]),
 | |
|             (12, [80.0, 120.0, 160.0, 200.0, 225.0, 250.0, 285.0, 320.0, 335.0,
 | |
|                   350.0, 365.0]),
 | |
|             (15, [72.0, 104.0, 136.0, 168.0, 200.0, 220.0, 240.0, 264.0, 292.0,
 | |
|                   320.0, 332.0, 344.0, 356.0, 368.0]),
 | |
|                 ]:
 | |
|             self.assertEqual(expected, quantiles(data, n=n))
 | |
|             self.assertEqual(len(quantiles(data, n=n)), n - 1)
 | |
|             # Preserve datatype when possible
 | |
|             for datatype in (float, Decimal, Fraction):
 | |
|                 result = quantiles(map(datatype, data), n=n)
 | |
|                 self.assertTrue(all(type(x) == datatype) for x in result)
 | |
|                 self.assertEqual(result, list(map(datatype, expected)))
 | |
|             # Quantiles should be idempotent
 | |
|             if len(expected) >= 2:
 | |
|                 self.assertEqual(quantiles(expected, n=n), expected)
 | |
|             # Cross-check against method='inclusive' which should give
 | |
|             # the same result after adding in minimum and maximum values
 | |
|             # extrapolated from the two lowest and two highest points.
 | |
|             sdata = sorted(data)
 | |
|             lo = 2 * sdata[0] - sdata[1]
 | |
|             hi = 2 * sdata[-1] - sdata[-2]
 | |
|             padded_data = data + [lo, hi]
 | |
|             self.assertEqual(
 | |
|                 quantiles(data, n=n),
 | |
|                 quantiles(padded_data, n=n, method='inclusive'),
 | |
|                 (n, data),
 | |
|             )
 | |
|             # Invariant under translation and scaling
 | |
|             def f(x):
 | |
|                 return 3.5 * x - 1234.675
 | |
|             exp = list(map(f, expected))
 | |
|             act = quantiles(map(f, data), n=n)
 | |
|             self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
 | |
|         # Q2 agrees with median()
 | |
|         for k in range(2, 60):
 | |
|             data = random.choices(range(100), k=k)
 | |
|             q1, q2, q3 = quantiles(data)
 | |
|             self.assertEqual(q2, statistics.median(data))
 | |
| 
 | |
|     def test_specific_cases_inclusive(self):
 | |
|         # Match results computed by hand and cross-checked
 | |
|         # against the PERCENTILE.INC function in MS Excel
 | |
|         # and against the quantile() function in SciPy.
 | |
|         quantiles = statistics.quantiles
 | |
|         data = [100, 200, 400, 800]
 | |
|         random.shuffle(data)
 | |
|         for n, expected in [
 | |
|             (1, []),
 | |
|             (2, [300.0]),
 | |
|             (3, [200.0, 400.0]),
 | |
|             (4, [175.0, 300.0, 500.0]),
 | |
|             (5, [160.0, 240.0, 360.0, 560.0]),
 | |
|             (6, [150.0, 200.0, 300.0, 400.0, 600.0]),
 | |
|             (8, [137.5, 175, 225.0, 300.0, 375.0, 500.0,650.0]),
 | |
|             (10, [130.0, 160.0, 190.0, 240.0, 300.0, 360.0, 440.0, 560.0, 680.0]),
 | |
|             (12, [125.0, 150.0, 175.0, 200.0, 250.0, 300.0, 350.0, 400.0,
 | |
|                   500.0, 600.0, 700.0]),
 | |
|             (15, [120.0, 140.0, 160.0, 180.0, 200.0, 240.0, 280.0, 320.0, 360.0,
 | |
|                   400.0, 480.0, 560.0, 640.0, 720.0]),
 | |
|                 ]:
 | |
|             self.assertEqual(expected, quantiles(data, n=n, method="inclusive"))
 | |
|             self.assertEqual(len(quantiles(data, n=n, method="inclusive")), n - 1)
 | |
|             # Preserve datatype when possible
 | |
|             for datatype in (float, Decimal, Fraction):
 | |
|                 result = quantiles(map(datatype, data), n=n, method="inclusive")
 | |
|                 self.assertTrue(all(type(x) == datatype) for x in result)
 | |
|                 self.assertEqual(result, list(map(datatype, expected)))
 | |
|             # Invariant under translation and scaling
 | |
|             def f(x):
 | |
|                 return 3.5 * x - 1234.675
 | |
|             exp = list(map(f, expected))
 | |
|             act = quantiles(map(f, data), n=n, method="inclusive")
 | |
|             self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act)))
 | |
|         # Natural deciles
 | |
|         self.assertEqual(quantiles([0, 100], n=10, method='inclusive'),
 | |
|                          [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
 | |
|         self.assertEqual(quantiles(range(0, 101), n=10, method='inclusive'),
 | |
|                          [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
 | |
|         # Whenever n is smaller than the number of data points, running
 | |
|         # method='inclusive' should give the same result as method='exclusive'
 | |
|         # after the two included extreme points are removed.
 | |
|         data = [random.randrange(10_000) for i in range(501)]
 | |
|         actual = quantiles(data, n=32, method='inclusive')
 | |
|         data.remove(min(data))
 | |
|         data.remove(max(data))
 | |
|         expected = quantiles(data, n=32)
 | |
|         self.assertEqual(expected, actual)
 | |
|         # Q2 agrees with median()
 | |
|         for k in range(2, 60):
 | |
|             data = random.choices(range(100), k=k)
 | |
|             q1, q2, q3 = quantiles(data, method='inclusive')
 | |
|             self.assertEqual(q2, statistics.median(data))
 | |
| 
 | |
|     def test_equal_inputs(self):
 | |
|         quantiles = statistics.quantiles
 | |
|         for n in range(2, 10):
 | |
|             data = [10.0] * n
 | |
|             self.assertEqual(quantiles(data), [10.0, 10.0, 10.0])
 | |
|             self.assertEqual(quantiles(data, method='inclusive'),
 | |
|                             [10.0, 10.0, 10.0])
 | |
| 
 | |
|     def test_equal_sized_groups(self):
 | |
|         quantiles = statistics.quantiles
 | |
|         total = 10_000
 | |
|         data = [random.expovariate(0.2) for i in range(total)]
 | |
|         while len(set(data)) != total:
 | |
|             data.append(random.expovariate(0.2))
 | |
|         data.sort()
 | |
| 
 | |
|         # Cases where the group size exactly divides the total
 | |
|         for n in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000):
 | |
|             group_size = total // n
 | |
|             self.assertEqual(
 | |
|                 [bisect.bisect(data, q) for q in quantiles(data, n=n)],
 | |
|                 list(range(group_size, total, group_size)))
 | |
| 
 | |
|         # When the group sizes can't be exactly equal, they should
 | |
|         # differ by no more than one
 | |
|         for n in (13, 19, 59, 109, 211, 571, 1019, 1907, 5261, 9769):
 | |
|             group_sizes = {total // n, total // n + 1}
 | |
|             pos = [bisect.bisect(data, q) for q in quantiles(data, n=n)]
 | |
|             sizes = {q - p for p, q in zip(pos, pos[1:])}
 | |
|             self.assertTrue(sizes <= group_sizes)
 | |
| 
 | |
|     def test_error_cases(self):
 | |
|         quantiles = statistics.quantiles
 | |
|         StatisticsError = statistics.StatisticsError
 | |
|         with self.assertRaises(TypeError):
 | |
|             quantiles()                         # Missing arguments
 | |
|         with self.assertRaises(TypeError):
 | |
|             quantiles([10, 20, 30], 13, n=4)    # Too many arguments
 | |
|         with self.assertRaises(TypeError):
 | |
|             quantiles([10, 20, 30], 4)          # n is a positional argument
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             quantiles([10, 20, 30], n=0)        # n is zero
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             quantiles([10, 20, 30], n=-1)       # n is negative
 | |
|         with self.assertRaises(TypeError):
 | |
|             quantiles([10, 20, 30], n=1.5)      # n is not an integer
 | |
|         with self.assertRaises(ValueError):
 | |
|             quantiles([10, 20, 30], method='X') # method is unknown
 | |
|         with self.assertRaises(StatisticsError):
 | |
|             quantiles([10], n=4)                # not enough data points
 | |
|         with self.assertRaises(TypeError):
 | |
|             quantiles([10, None, 30], n=4)      # data is non-numeric
 | |
| 
 | |
| 
 | |
| class TestBivariateStatistics(unittest.TestCase):
 | |
| 
 | |
|     def test_unequal_size_error(self):
 | |
|         for x, y in [
 | |
|             ([1, 2, 3], [1, 2]),
 | |
|             ([1, 2], [1, 2, 3]),
 | |
|         ]:
 | |
|             with self.assertRaises(statistics.StatisticsError):
 | |
|                 statistics.covariance(x, y)
 | |
|             with self.assertRaises(statistics.StatisticsError):
 | |
|                 statistics.correlation(x, y)
 | |
|             with self.assertRaises(statistics.StatisticsError):
 | |
|                 statistics.linear_regression(x, y)
 | |
| 
 | |
|     def test_small_sample_error(self):
 | |
|         for x, y in [
 | |
|             ([], []),
 | |
|             ([], [1, 2,]),
 | |
|             ([1, 2,], []),
 | |
|             ([1,], [1,]),
 | |
|             ([1,], [1, 2,]),
 | |
|             ([1, 2,], [1,]),
 | |
|         ]:
 | |
|             with self.assertRaises(statistics.StatisticsError):
 | |
|                 statistics.covariance(x, y)
 | |
|             with self.assertRaises(statistics.StatisticsError):
 | |
|                 statistics.correlation(x, y)
 | |
|             with self.assertRaises(statistics.StatisticsError):
 | |
|                 statistics.linear_regression(x, y)
 | |
| 
 | |
| 
 | |
| class TestCorrelationAndCovariance(unittest.TestCase):
 | |
| 
 | |
|     def test_results(self):
 | |
|         for x, y, result in [
 | |
|             ([1, 2, 3], [1, 2, 3], 1),
 | |
|             ([1, 2, 3], [-1, -2, -3], -1),
 | |
|             ([1, 2, 3], [3, 2, 1], -1),
 | |
|             ([1, 2, 3], [1, 2, 1], 0),
 | |
|             ([1, 2, 3], [1, 3, 2], 0.5),
 | |
|         ]:
 | |
|             self.assertAlmostEqual(statistics.correlation(x, y), result)
 | |
|             self.assertAlmostEqual(statistics.covariance(x, y), result)
 | |
| 
 | |
|     def test_different_scales(self):
 | |
|         x = [1, 2, 3]
 | |
|         y = [10, 30, 20]
 | |
|         self.assertAlmostEqual(statistics.correlation(x, y), 0.5)
 | |
|         self.assertAlmostEqual(statistics.covariance(x, y), 5)
 | |
| 
 | |
|         y = [.1, .2, .3]
 | |
|         self.assertAlmostEqual(statistics.correlation(x, y), 1)
 | |
|         self.assertAlmostEqual(statistics.covariance(x, y), 0.1)
 | |
| 
 | |
| 
 | |
|     def test_correlation_spearman(self):
 | |
|         # https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide-2.php
 | |
|         # Compare with:
 | |
|         #     >>> import scipy.stats.mstats
 | |
|         #     >>> scipy.stats.mstats.spearmanr(reading, mathematics)
 | |
|         #     SpearmanrResult(correlation=0.6686960980480712, pvalue=0.03450954165178532)
 | |
|         # And Wolfram Alpha gives: 0.668696
 | |
|         #     https://www.wolframalpha.com/input?i=SpearmanRho%5B%7B56%2C+75%2C+45%2C+71%2C+61%2C+64%2C+58%2C+80%2C+76%2C+61%7D%2C+%7B66%2C+70%2C+40%2C+60%2C+65%2C+56%2C+59%2C+77%2C+67%2C+63%7D%5D
 | |
|         reading = [56, 75, 45, 71, 61, 64, 58, 80, 76, 61]
 | |
|         mathematics = [66, 70, 40, 60, 65, 56, 59, 77, 67, 63]
 | |
|         self.assertAlmostEqual(statistics.correlation(reading, mathematics, method='ranked'),
 | |
|                                0.6686960980480712)
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             statistics.correlation(reading, mathematics, method='bad_method')
 | |
| 
 | |
| class TestLinearRegression(unittest.TestCase):
 | |
| 
 | |
|     def test_constant_input_error(self):
 | |
|         x = [1, 1, 1,]
 | |
|         y = [1, 2, 3,]
 | |
|         with self.assertRaises(statistics.StatisticsError):
 | |
|             statistics.linear_regression(x, y)
 | |
| 
 | |
|     def test_results(self):
 | |
|         for x, y, true_intercept, true_slope in [
 | |
|             ([1, 2, 3], [0, 0, 0], 0, 0),
 | |
|             ([1, 2, 3], [1, 2, 3], 0, 1),
 | |
|             ([1, 2, 3], [100, 100, 100], 100, 0),
 | |
|             ([1, 2, 3], [12, 14, 16], 10, 2),
 | |
|             ([1, 2, 3], [-1, -2, -3], 0, -1),
 | |
|             ([1, 2, 3], [21, 22, 23], 20, 1),
 | |
|             ([1, 2, 3], [5.1, 5.2, 5.3], 5, 0.1),
 | |
|         ]:
 | |
|             slope, intercept = statistics.linear_regression(x, y)
 | |
|             self.assertAlmostEqual(intercept, true_intercept)
 | |
|             self.assertAlmostEqual(slope, true_slope)
 | |
| 
 | |
|     def test_proportional(self):
 | |
|         x = [10, 20, 30, 40]
 | |
|         y = [180, 398, 610, 799]
 | |
|         slope, intercept = statistics.linear_regression(x, y, proportional=True)
 | |
|         self.assertAlmostEqual(slope, 20 + 1/150)
 | |
|         self.assertEqual(intercept, 0.0)
 | |
| 
 | |
| class TestNormalDist:
 | |
| 
 | |
|     # General note on precision: The pdf(), cdf(), and overlap() methods
 | |
|     # depend on functions in the math libraries that do not make
 | |
|     # explicit accuracy guarantees.  Accordingly, some of the accuracy
 | |
|     # tests below may fail if the underlying math functions are
 | |
|     # inaccurate.  There isn't much we can do about this short of
 | |
|     # implementing our own implementations from scratch.
 | |
| 
 | |
|     def test_slots(self):
 | |
|         nd = self.module.NormalDist(300, 23)
 | |
|         with self.assertRaises(TypeError):
 | |
|             vars(nd)
 | |
|         self.assertEqual(tuple(nd.__slots__), ('_mu', '_sigma'))
 | |
| 
 | |
|     def test_instantiation_and_attributes(self):
 | |
|         nd = self.module.NormalDist(500, 17)
 | |
|         self.assertEqual(nd.mean, 500)
 | |
|         self.assertEqual(nd.stdev, 17)
 | |
|         self.assertEqual(nd.variance, 17**2)
 | |
| 
 | |
|         # default arguments
 | |
|         nd = self.module.NormalDist()
 | |
|         self.assertEqual(nd.mean, 0)
 | |
|         self.assertEqual(nd.stdev, 1)
 | |
|         self.assertEqual(nd.variance, 1**2)
 | |
| 
 | |
|         # error case: negative sigma
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             self.module.NormalDist(500, -10)
 | |
| 
 | |
|         # verify that subclass type is honored
 | |
|         class NewNormalDist(self.module.NormalDist):
 | |
|             pass
 | |
|         nnd = NewNormalDist(200, 5)
 | |
|         self.assertEqual(type(nnd), NewNormalDist)
 | |
| 
 | |
|     def test_alternative_constructor(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         data = [96, 107, 90, 92, 110]
 | |
|         # list input
 | |
|         self.assertEqual(NormalDist.from_samples(data), NormalDist(99, 9))
 | |
|         # tuple input
 | |
|         self.assertEqual(NormalDist.from_samples(tuple(data)), NormalDist(99, 9))
 | |
|         # iterator input
 | |
|         self.assertEqual(NormalDist.from_samples(iter(data)), NormalDist(99, 9))
 | |
|         # error cases
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             NormalDist.from_samples([])                      # empty input
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             NormalDist.from_samples([10])                    # only one input
 | |
| 
 | |
|         # verify that subclass type is honored
 | |
|         class NewNormalDist(NormalDist):
 | |
|             pass
 | |
|         nnd = NewNormalDist.from_samples(data)
 | |
|         self.assertEqual(type(nnd), NewNormalDist)
 | |
| 
 | |
|     def test_sample_generation(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         mu, sigma = 10_000, 3.0
 | |
|         X = NormalDist(mu, sigma)
 | |
|         n = 1_000
 | |
|         data = X.samples(n)
 | |
|         self.assertEqual(len(data), n)
 | |
|         self.assertEqual(set(map(type, data)), {float})
 | |
|         # mean(data) expected to fall within 8 standard deviations
 | |
|         xbar = self.module.mean(data)
 | |
|         self.assertTrue(mu - sigma*8 <= xbar <= mu + sigma*8)
 | |
| 
 | |
|         # verify that seeding makes reproducible sequences
 | |
|         n = 100
 | |
|         data1 = X.samples(n, seed='happiness and joy')
 | |
|         data2 = X.samples(n, seed='trouble and despair')
 | |
|         data3 = X.samples(n, seed='happiness and joy')
 | |
|         data4 = X.samples(n, seed='trouble and despair')
 | |
|         self.assertEqual(data1, data3)
 | |
|         self.assertEqual(data2, data4)
 | |
|         self.assertNotEqual(data1, data2)
 | |
| 
 | |
|     def test_pdf(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         X = NormalDist(100, 15)
 | |
|         # Verify peak around center
 | |
|         self.assertLess(X.pdf(99), X.pdf(100))
 | |
|         self.assertLess(X.pdf(101), X.pdf(100))
 | |
|         # Test symmetry
 | |
|         for i in range(50):
 | |
|             self.assertAlmostEqual(X.pdf(100 - i), X.pdf(100 + i))
 | |
|         # Test vs CDF
 | |
|         dx = 2.0 ** -10
 | |
|         for x in range(90, 111):
 | |
|             est_pdf = (X.cdf(x + dx) - X.cdf(x)) / dx
 | |
|             self.assertAlmostEqual(X.pdf(x), est_pdf, places=4)
 | |
|         # Test vs table of known values -- CRC 26th Edition
 | |
|         Z = NormalDist()
 | |
|         for x, px in enumerate([
 | |
|             0.3989, 0.3989, 0.3989, 0.3988, 0.3986,
 | |
|             0.3984, 0.3982, 0.3980, 0.3977, 0.3973,
 | |
|             0.3970, 0.3965, 0.3961, 0.3956, 0.3951,
 | |
|             0.3945, 0.3939, 0.3932, 0.3925, 0.3918,
 | |
|             0.3910, 0.3902, 0.3894, 0.3885, 0.3876,
 | |
|             0.3867, 0.3857, 0.3847, 0.3836, 0.3825,
 | |
|             0.3814, 0.3802, 0.3790, 0.3778, 0.3765,
 | |
|             0.3752, 0.3739, 0.3725, 0.3712, 0.3697,
 | |
|             0.3683, 0.3668, 0.3653, 0.3637, 0.3621,
 | |
|             0.3605, 0.3589, 0.3572, 0.3555, 0.3538,
 | |
|         ]):
 | |
|             self.assertAlmostEqual(Z.pdf(x / 100.0), px, places=4)
 | |
|             self.assertAlmostEqual(Z.pdf(-x / 100.0), px, places=4)
 | |
|         # Error case: variance is zero
 | |
|         Y = NormalDist(100, 0)
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             Y.pdf(90)
 | |
|         # Special values
 | |
|         self.assertEqual(X.pdf(float('-Inf')), 0.0)
 | |
|         self.assertEqual(X.pdf(float('Inf')), 0.0)
 | |
|         self.assertTrue(math.isnan(X.pdf(float('NaN'))))
 | |
| 
 | |
|     def test_cdf(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         X = NormalDist(100, 15)
 | |
|         cdfs = [X.cdf(x) for x in range(1, 200)]
 | |
|         self.assertEqual(set(map(type, cdfs)), {float})
 | |
|         # Verify montonic
 | |
|         self.assertEqual(cdfs, sorted(cdfs))
 | |
|         # Verify center (should be exact)
 | |
|         self.assertEqual(X.cdf(100), 0.50)
 | |
|         # Check against a table of known values
 | |
|         # https://en.wikipedia.org/wiki/Standard_normal_table#Cumulative
 | |
|         Z = NormalDist()
 | |
|         for z, cum_prob in [
 | |
|             (0.00, 0.50000), (0.01, 0.50399), (0.02, 0.50798),
 | |
|             (0.14, 0.55567), (0.29, 0.61409), (0.33, 0.62930),
 | |
|             (0.54, 0.70540), (0.60, 0.72575), (1.17, 0.87900),
 | |
|             (1.60, 0.94520), (2.05, 0.97982), (2.89, 0.99807),
 | |
|             (3.52, 0.99978), (3.98, 0.99997), (4.07, 0.99998),
 | |
|             ]:
 | |
|             self.assertAlmostEqual(Z.cdf(z), cum_prob, places=5)
 | |
|             self.assertAlmostEqual(Z.cdf(-z), 1.0 - cum_prob, places=5)
 | |
|         # Error case: variance is zero
 | |
|         Y = NormalDist(100, 0)
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             Y.cdf(90)
 | |
|         # Special values
 | |
|         self.assertEqual(X.cdf(float('-Inf')), 0.0)
 | |
|         self.assertEqual(X.cdf(float('Inf')), 1.0)
 | |
|         self.assertTrue(math.isnan(X.cdf(float('NaN'))))
 | |
| 
 | |
|     @support.skip_if_pgo_task
 | |
|     def test_inv_cdf(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
| 
 | |
|         # Center case should be exact.
 | |
|         iq = NormalDist(100, 15)
 | |
|         self.assertEqual(iq.inv_cdf(0.50), iq.mean)
 | |
| 
 | |
|         # Test versus a published table of known percentage points.
 | |
|         # See the second table at the bottom of the page here:
 | |
|         # http://people.bath.ac.uk/masss/tables/normaltable.pdf
 | |
|         Z = NormalDist()
 | |
|         pp = {5.0: (0.000, 1.645, 2.576, 3.291, 3.891,
 | |
|                     4.417, 4.892, 5.327, 5.731, 6.109),
 | |
|               2.5: (0.674, 1.960, 2.807, 3.481, 4.056,
 | |
|                     4.565, 5.026, 5.451, 5.847, 6.219),
 | |
|               1.0: (1.282, 2.326, 3.090, 3.719, 4.265,
 | |
|                     4.753, 5.199, 5.612, 5.998, 6.361)}
 | |
|         for base, row in pp.items():
 | |
|             for exp, x in enumerate(row, start=1):
 | |
|                 p = base * 10.0 ** (-exp)
 | |
|                 self.assertAlmostEqual(-Z.inv_cdf(p), x, places=3)
 | |
|                 p = 1.0 - p
 | |
|                 self.assertAlmostEqual(Z.inv_cdf(p), x, places=3)
 | |
| 
 | |
|         # Match published example for MS Excel
 | |
|         # https://support.office.com/en-us/article/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13
 | |
|         self.assertAlmostEqual(NormalDist(40, 1.5).inv_cdf(0.908789), 42.000002)
 | |
| 
 | |
|         # One million equally spaced probabilities
 | |
|         n = 2**20
 | |
|         for p in range(1, n):
 | |
|             p /= n
 | |
|             self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
 | |
| 
 | |
|         # One hundred ever smaller probabilities to test tails out to
 | |
|         # extreme probabilities: 1 / 2**50 and (2**50-1) / 2 ** 50
 | |
|         for e in range(1, 51):
 | |
|             p = 2.0 ** (-e)
 | |
|             self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
 | |
|             p = 1.0 - p
 | |
|             self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p)
 | |
| 
 | |
|         # Now apply cdf() first.  Near the tails, the round-trip loses
 | |
|         # precision and is ill-conditioned (small changes in the inputs
 | |
|         # give large changes in the output), so only check to 5 places.
 | |
|         for x in range(200):
 | |
|             self.assertAlmostEqual(iq.inv_cdf(iq.cdf(x)), x, places=5)
 | |
| 
 | |
|         # Error cases:
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             iq.inv_cdf(0.0)                         # p is zero
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             iq.inv_cdf(-0.1)                        # p under zero
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             iq.inv_cdf(1.0)                         # p is one
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             iq.inv_cdf(1.1)                         # p over one
 | |
| 
 | |
|         # Supported case:
 | |
|         iq = NormalDist(100, 0)                     # sigma is zero
 | |
|         self.assertEqual(iq.inv_cdf(0.5), 100)
 | |
| 
 | |
|         # Special values
 | |
|         self.assertTrue(math.isnan(Z.inv_cdf(float('NaN'))))
 | |
| 
 | |
|     def test_quantiles(self):
 | |
|         # Quartiles of a standard normal distribution
 | |
|         Z = self.module.NormalDist()
 | |
|         for n, expected in [
 | |
|             (1, []),
 | |
|             (2, [0.0]),
 | |
|             (3, [-0.4307, 0.4307]),
 | |
|             (4 ,[-0.6745, 0.0, 0.6745]),
 | |
|                 ]:
 | |
|             actual = Z.quantiles(n=n)
 | |
|             self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
 | |
|                             for e, a in zip(expected, actual)))
 | |
| 
 | |
|     def test_overlap(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
| 
 | |
|         # Match examples from Imman and Bradley
 | |
|         for X1, X2, published_result in [
 | |
|                 (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0), 0.80258),
 | |
|                 (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0), 0.60993),
 | |
|             ]:
 | |
|             self.assertAlmostEqual(X1.overlap(X2), published_result, places=4)
 | |
|             self.assertAlmostEqual(X2.overlap(X1), published_result, places=4)
 | |
| 
 | |
|         # Check against integration of the PDF
 | |
|         def overlap_numeric(X, Y, *, steps=8_192, z=5):
 | |
|             'Numerical integration cross-check for overlap() '
 | |
|             fsum = math.fsum
 | |
|             center = (X.mean + Y.mean) / 2.0
 | |
|             width = z * max(X.stdev, Y.stdev)
 | |
|             start = center - width
 | |
|             dx = 2.0 * width / steps
 | |
|             x_arr = [start + i*dx for i in range(steps)]
 | |
|             xp = list(map(X.pdf, x_arr))
 | |
|             yp = list(map(Y.pdf, x_arr))
 | |
|             total = max(fsum(xp), fsum(yp))
 | |
|             return fsum(map(min, xp, yp)) / total
 | |
| 
 | |
|         for X1, X2 in [
 | |
|                 # Examples from Imman and Bradley
 | |
|                 (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0)),
 | |
|                 (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)),
 | |
|                 # Example from https://www.rasch.org/rmt/rmt101r.htm
 | |
|                 (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)),
 | |
|                 # Gender heights from http://www.usablestats.com/lessons/normal
 | |
|                 (NormalDist(70, 4), NormalDist(65, 3.5)),
 | |
|                 # Misc cases with equal standard deviations
 | |
|                 (NormalDist(100, 15), NormalDist(110, 15)),
 | |
|                 (NormalDist(-100, 15), NormalDist(110, 15)),
 | |
|                 (NormalDist(-100, 15), NormalDist(-110, 15)),
 | |
|                 # Misc cases with unequal standard deviations
 | |
|                 (NormalDist(100, 12), NormalDist(100, 15)),
 | |
|                 (NormalDist(100, 12), NormalDist(110, 15)),
 | |
|                 (NormalDist(100, 12), NormalDist(150, 15)),
 | |
|                 (NormalDist(100, 12), NormalDist(150, 35)),
 | |
|                 # Misc cases with small values
 | |
|                 (NormalDist(1.000, 0.002), NormalDist(1.001, 0.003)),
 | |
|                 (NormalDist(1.000, 0.002), NormalDist(1.006, 0.0003)),
 | |
|                 (NormalDist(1.000, 0.002), NormalDist(1.001, 0.099)),
 | |
|             ]:
 | |
|             self.assertAlmostEqual(X1.overlap(X2), overlap_numeric(X1, X2), places=5)
 | |
|             self.assertAlmostEqual(X2.overlap(X1), overlap_numeric(X1, X2), places=5)
 | |
| 
 | |
|         # Error cases
 | |
|         X = NormalDist()
 | |
|         with self.assertRaises(TypeError):
 | |
|             X.overlap()                             # too few arguments
 | |
|         with self.assertRaises(TypeError):
 | |
|             X.overlap(X, X)                         # too may arguments
 | |
|         with self.assertRaises(TypeError):
 | |
|             X.overlap(None)                         # right operand not a NormalDist
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             X.overlap(NormalDist(1, 0))             # right operand sigma is zero
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             NormalDist(1, 0).overlap(X)             # left operand sigma is zero
 | |
| 
 | |
|     def test_zscore(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         X = NormalDist(100, 15)
 | |
|         self.assertEqual(X.zscore(142), 2.8)
 | |
|         self.assertEqual(X.zscore(58), -2.8)
 | |
|         self.assertEqual(X.zscore(100), 0.0)
 | |
|         with self.assertRaises(TypeError):
 | |
|             X.zscore()                              # too few arguments
 | |
|         with self.assertRaises(TypeError):
 | |
|             X.zscore(1, 1)                          # too may arguments
 | |
|         with self.assertRaises(TypeError):
 | |
|             X.zscore(None)                          # non-numeric type
 | |
|         with self.assertRaises(self.module.StatisticsError):
 | |
|             NormalDist(1, 0).zscore(100)            # sigma is zero
 | |
| 
 | |
|     def test_properties(self):
 | |
|         X = self.module.NormalDist(100, 15)
 | |
|         self.assertEqual(X.mean, 100)
 | |
|         self.assertEqual(X.median, 100)
 | |
|         self.assertEqual(X.mode, 100)
 | |
|         self.assertEqual(X.stdev, 15)
 | |
|         self.assertEqual(X.variance, 225)
 | |
| 
 | |
|     def test_same_type_addition_and_subtraction(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         X = NormalDist(100, 12)
 | |
|         Y = NormalDist(40, 5)
 | |
|         self.assertEqual(X + Y, NormalDist(140, 13))        # __add__
 | |
|         self.assertEqual(X - Y, NormalDist(60, 13))         # __sub__
 | |
| 
 | |
|     def test_translation_and_scaling(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         X = NormalDist(100, 15)
 | |
|         y = 10
 | |
|         self.assertEqual(+X, NormalDist(100, 15))           # __pos__
 | |
|         self.assertEqual(-X, NormalDist(-100, 15))          # __neg__
 | |
|         self.assertEqual(X + y, NormalDist(110, 15))        # __add__
 | |
|         self.assertEqual(y + X, NormalDist(110, 15))        # __radd__
 | |
|         self.assertEqual(X - y, NormalDist(90, 15))         # __sub__
 | |
|         self.assertEqual(y - X, NormalDist(-90, 15))        # __rsub__
 | |
|         self.assertEqual(X * y, NormalDist(1000, 150))      # __mul__
 | |
|         self.assertEqual(y * X, NormalDist(1000, 150))      # __rmul__
 | |
|         self.assertEqual(X / y, NormalDist(10, 1.5))        # __truediv__
 | |
|         with self.assertRaises(TypeError):                  # __rtruediv__
 | |
|             y / X
 | |
| 
 | |
|     def test_unary_operations(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         X = NormalDist(100, 12)
 | |
|         Y = +X
 | |
|         self.assertIsNot(X, Y)
 | |
|         self.assertEqual(X.mean, Y.mean)
 | |
|         self.assertEqual(X.stdev, Y.stdev)
 | |
|         Y = -X
 | |
|         self.assertIsNot(X, Y)
 | |
|         self.assertEqual(X.mean, -Y.mean)
 | |
|         self.assertEqual(X.stdev, Y.stdev)
 | |
| 
 | |
|     def test_equality(self):
 | |
|         NormalDist = self.module.NormalDist
 | |
|         nd1 = NormalDist()
 | |
|         nd2 = NormalDist(2, 4)
 | |
|         nd3 = NormalDist()
 | |
|         nd4 = NormalDist(2, 4)
 | |
|         nd5 = NormalDist(2, 8)
 | |
|         nd6 = NormalDist(8, 4)
 | |
|         self.assertNotEqual(nd1, nd2)
 | |
|         self.assertEqual(nd1, nd3)
 | |
|         self.assertEqual(nd2, nd4)
 | |
|         self.assertNotEqual(nd2, nd5)
 | |
|         self.assertNotEqual(nd2, nd6)
 | |
| 
 | |
|         # Test NotImplemented when types are different
 | |
|         class A:
 | |
|             def __eq__(self, other):
 | |
|                 return 10
 | |
|         a = A()
 | |
|         self.assertEqual(nd1.__eq__(a), NotImplemented)
 | |
|         self.assertEqual(nd1 == a, 10)
 | |
|         self.assertEqual(a == nd1, 10)
 | |
| 
 | |
|         # All subclasses to compare equal giving the same behavior
 | |
|         # as list, tuple, int, float, complex, str, dict, set, etc.
 | |
|         class SizedNormalDist(NormalDist):
 | |
|             def __init__(self, mu, sigma, n):
 | |
|                 super().__init__(mu, sigma)
 | |
|                 self.n = n
 | |
|         s = SizedNormalDist(100, 15, 57)
 | |
|         nd4 = NormalDist(100, 15)
 | |
|         self.assertEqual(s, nd4)
 | |
| 
 | |
|         # Don't allow duck type equality because we wouldn't
 | |
|         # want a lognormal distribution to compare equal
 | |
|         # to a normal distribution with the same parameters
 | |
|         class LognormalDist:
 | |
|             def __init__(self, mu, sigma):
 | |
|                 self.mu = mu
 | |
|                 self.sigma = sigma
 | |
|         lnd = LognormalDist(100, 15)
 | |
|         nd = NormalDist(100, 15)
 | |
|         self.assertNotEqual(nd, lnd)
 | |
| 
 | |
|     def test_copy(self):
 | |
|         nd = self.module.NormalDist(37.5, 5.625)
 | |
|         nd1 = copy.copy(nd)
 | |
|         self.assertEqual(nd, nd1)
 | |
|         nd2 = copy.deepcopy(nd)
 | |
|         self.assertEqual(nd, nd2)
 | |
| 
 | |
|     def test_pickle(self):
 | |
|         nd = self.module.NormalDist(37.5, 5.625)
 | |
|         for proto in range(pickle.HIGHEST_PROTOCOL + 1):
 | |
|             with self.subTest(proto=proto):
 | |
|                 pickled = pickle.loads(pickle.dumps(nd, protocol=proto))
 | |
|                 self.assertEqual(nd, pickled)
 | |
| 
 | |
|     def test_hashability(self):
 | |
|         ND = self.module.NormalDist
 | |
|         s = {ND(100, 15), ND(100.0, 15.0), ND(100, 10), ND(95, 15), ND(100, 15)}
 | |
|         self.assertEqual(len(s), 3)
 | |
| 
 | |
|     def test_repr(self):
 | |
|         nd = self.module.NormalDist(37.5, 5.625)
 | |
|         self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)')
 | |
| 
 | |
| # Swapping the sys.modules['statistics'] is to solving the
 | |
| # _pickle.PicklingError:
 | |
| # Can't pickle <class 'statistics.NormalDist'>:
 | |
| # it's not the same object as statistics.NormalDist
 | |
| class TestNormalDistPython(unittest.TestCase, TestNormalDist):
 | |
|     module = py_statistics
 | |
|     def setUp(self):
 | |
|         sys.modules['statistics'] = self.module
 | |
| 
 | |
|     def tearDown(self):
 | |
|         sys.modules['statistics'] = statistics
 | |
| 
 | |
| 
 | |
| @unittest.skipUnless(c_statistics, 'requires _statistics')
 | |
| class TestNormalDistC(unittest.TestCase, TestNormalDist):
 | |
|     module = c_statistics
 | |
|     def setUp(self):
 | |
|         sys.modules['statistics'] = self.module
 | |
| 
 | |
|     def tearDown(self):
 | |
|         sys.modules['statistics'] = statistics
 | |
| 
 | |
| 
 | |
| # === Run tests ===
 | |
| 
 | |
| def load_tests(loader, tests, ignore):
 | |
|     """Used for doctest/unittest integration."""
 | |
|     tests.addTests(doctest.DocTestSuite())
 | |
|     return tests
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 | 
