mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			85 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
"""
 | 
						|
N queens problem.
 | 
						|
 | 
						|
The (well-known) problem is due to Niklaus Wirth.
 | 
						|
 | 
						|
This solution is inspired by Dijkstra (Structured Programming).  It is
 | 
						|
a classic recursive backtracking approach.
 | 
						|
"""
 | 
						|
 | 
						|
N = 8                                   # Default; command line overrides
 | 
						|
 | 
						|
class Queens:
 | 
						|
 | 
						|
    def __init__(self, n=N):
 | 
						|
        self.n = n
 | 
						|
        self.reset()
 | 
						|
 | 
						|
    def reset(self):
 | 
						|
        n = self.n
 | 
						|
        self.y = [None] * n             # Where is the queen in column x
 | 
						|
        self.row = [0] * n              # Is row[y] safe?
 | 
						|
        self.up = [0] * (2*n-1)         # Is upward diagonal[x-y] safe?
 | 
						|
        self.down = [0] * (2*n-1)       # Is downward diagonal[x+y] safe?
 | 
						|
        self.nfound = 0                 # Instrumentation
 | 
						|
 | 
						|
    def solve(self, x=0):               # Recursive solver
 | 
						|
        for y in range(self.n):
 | 
						|
            if self.safe(x, y):
 | 
						|
                self.place(x, y)
 | 
						|
                if x+1 == self.n:
 | 
						|
                    self.display()
 | 
						|
                else:
 | 
						|
                    self.solve(x+1)
 | 
						|
                self.remove(x, y)
 | 
						|
 | 
						|
    def safe(self, x, y):
 | 
						|
        return not self.row[y] and not self.up[x-y] and not self.down[x+y]
 | 
						|
 | 
						|
    def place(self, x, y):
 | 
						|
        self.y[x] = y
 | 
						|
        self.row[y] = 1
 | 
						|
        self.up[x-y] = 1
 | 
						|
        self.down[x+y] = 1
 | 
						|
 | 
						|
    def remove(self, x, y):
 | 
						|
        self.y[x] = None
 | 
						|
        self.row[y] = 0
 | 
						|
        self.up[x-y] = 0
 | 
						|
        self.down[x+y] = 0
 | 
						|
 | 
						|
    silent = 0                          # If true, count solutions only
 | 
						|
 | 
						|
    def display(self):
 | 
						|
        self.nfound = self.nfound + 1
 | 
						|
        if self.silent:
 | 
						|
            return
 | 
						|
        print('+-' + '--'*self.n + '+')
 | 
						|
        for y in range(self.n-1, -1, -1):
 | 
						|
            print('|', end=' ')
 | 
						|
            for x in range(self.n):
 | 
						|
                if self.y[x] == y:
 | 
						|
                    print("Q", end=' ')
 | 
						|
                else:
 | 
						|
                    print(".", end=' ')
 | 
						|
            print('|')
 | 
						|
        print('+-' + '--'*self.n + '+')
 | 
						|
 | 
						|
def main():
 | 
						|
    import sys
 | 
						|
    silent = 0
 | 
						|
    n = N
 | 
						|
    if sys.argv[1:2] == ['-n']:
 | 
						|
        silent = 1
 | 
						|
        del sys.argv[1]
 | 
						|
    if sys.argv[1:]:
 | 
						|
        n = int(sys.argv[1])
 | 
						|
    q = Queens(n)
 | 
						|
    q.silent = silent
 | 
						|
    q.solve()
 | 
						|
    print("Found", q.nfound, "solutions.")
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |