mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 10:26:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			4974 lines
		
	
	
	
		
			135 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4974 lines
		
	
	
	
		
			135 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*  C implementation for the date/time type documented at
 | |
|  *  http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
 | |
|  */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "modsupport.h"
 | |
| #include "structmember.h"
 | |
| 
 | |
| #include <time.h>
 | |
| 
 | |
| #include "timefuncs.h"
 | |
| 
 | |
| /* Differentiate between building the core module and building extension
 | |
|  * modules.
 | |
|  */
 | |
| #ifndef Py_BUILD_CORE
 | |
| #define Py_BUILD_CORE
 | |
| #endif
 | |
| #include "datetime.h"
 | |
| #undef Py_BUILD_CORE
 | |
| 
 | |
| /* We require that C int be at least 32 bits, and use int virtually
 | |
|  * everywhere.  In just a few cases we use a temp long, where a Python
 | |
|  * API returns a C long.  In such cases, we have to ensure that the
 | |
|  * final result fits in a C int (this can be an issue on 64-bit boxes).
 | |
|  */
 | |
| #if SIZEOF_INT < 4
 | |
| #	error "datetime.c requires that C int have at least 32 bits"
 | |
| #endif
 | |
| 
 | |
| #define MINYEAR 1
 | |
| #define MAXYEAR 9999
 | |
| 
 | |
| /* Nine decimal digits is easy to communicate, and leaves enough room
 | |
|  * so that two delta days can be added w/o fear of overflowing a signed
 | |
|  * 32-bit int, and with plenty of room left over to absorb any possible
 | |
|  * carries from adding seconds.
 | |
|  */
 | |
| #define MAX_DELTA_DAYS 999999999
 | |
| 
 | |
| /* Rename the long macros in datetime.h to more reasonable short names. */
 | |
| #define GET_YEAR		PyDateTime_GET_YEAR
 | |
| #define GET_MONTH		PyDateTime_GET_MONTH
 | |
| #define GET_DAY			PyDateTime_GET_DAY
 | |
| #define DATE_GET_HOUR		PyDateTime_DATE_GET_HOUR
 | |
| #define DATE_GET_MINUTE		PyDateTime_DATE_GET_MINUTE
 | |
| #define DATE_GET_SECOND		PyDateTime_DATE_GET_SECOND
 | |
| #define DATE_GET_MICROSECOND	PyDateTime_DATE_GET_MICROSECOND
 | |
| 
 | |
| /* Date accessors for date and datetime. */
 | |
| #define SET_YEAR(o, v)		(((o)->data[0] = ((v) & 0xff00) >> 8), \
 | |
|                                  ((o)->data[1] = ((v) & 0x00ff)))
 | |
| #define SET_MONTH(o, v)		(PyDateTime_GET_MONTH(o) = (v))
 | |
| #define SET_DAY(o, v)		(PyDateTime_GET_DAY(o) = (v))
 | |
| 
 | |
| /* Date/Time accessors for datetime. */
 | |
| #define DATE_SET_HOUR(o, v)	(PyDateTime_DATE_GET_HOUR(o) = (v))
 | |
| #define DATE_SET_MINUTE(o, v)	(PyDateTime_DATE_GET_MINUTE(o) = (v))
 | |
| #define DATE_SET_SECOND(o, v)	(PyDateTime_DATE_GET_SECOND(o) = (v))
 | |
| #define DATE_SET_MICROSECOND(o, v)	\
 | |
| 	(((o)->data[7] = ((v) & 0xff0000) >> 16), \
 | |
|          ((o)->data[8] = ((v) & 0x00ff00) >> 8), \
 | |
|          ((o)->data[9] = ((v) & 0x0000ff)))
 | |
| 
 | |
| /* Time accessors for time. */
 | |
| #define TIME_GET_HOUR		PyDateTime_TIME_GET_HOUR
 | |
| #define TIME_GET_MINUTE		PyDateTime_TIME_GET_MINUTE
 | |
| #define TIME_GET_SECOND		PyDateTime_TIME_GET_SECOND
 | |
| #define TIME_GET_MICROSECOND	PyDateTime_TIME_GET_MICROSECOND
 | |
| #define TIME_SET_HOUR(o, v)	(PyDateTime_TIME_GET_HOUR(o) = (v))
 | |
| #define TIME_SET_MINUTE(o, v)	(PyDateTime_TIME_GET_MINUTE(o) = (v))
 | |
| #define TIME_SET_SECOND(o, v)	(PyDateTime_TIME_GET_SECOND(o) = (v))
 | |
| #define TIME_SET_MICROSECOND(o, v)	\
 | |
| 	(((o)->data[3] = ((v) & 0xff0000) >> 16), \
 | |
|          ((o)->data[4] = ((v) & 0x00ff00) >> 8), \
 | |
|          ((o)->data[5] = ((v) & 0x0000ff)))
 | |
| 
 | |
| /* Delta accessors for timedelta. */
 | |
| #define GET_TD_DAYS(o)		(((PyDateTime_Delta *)(o))->days)
 | |
| #define GET_TD_SECONDS(o)	(((PyDateTime_Delta *)(o))->seconds)
 | |
| #define GET_TD_MICROSECONDS(o)	(((PyDateTime_Delta *)(o))->microseconds)
 | |
| 
 | |
| #define SET_TD_DAYS(o, v)	((o)->days = (v))
 | |
| #define SET_TD_SECONDS(o, v)	((o)->seconds = (v))
 | |
| #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
 | |
| 
 | |
| /* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
 | |
|  * p->hastzinfo.
 | |
|  */
 | |
| #define HASTZINFO(p)		(((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
 | |
| 
 | |
| /* M is a char or int claiming to be a valid month.  The macro is equivalent
 | |
|  * to the two-sided Python test
 | |
|  *	1 <= M <= 12
 | |
|  */
 | |
| #define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
 | |
| 
 | |
| /* Forward declarations. */
 | |
| static PyTypeObject PyDateTime_DateType;
 | |
| static PyTypeObject PyDateTime_DateTimeType;
 | |
| static PyTypeObject PyDateTime_DeltaType;
 | |
| static PyTypeObject PyDateTime_TimeType;
 | |
| static PyTypeObject PyDateTime_TZInfoType;
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Math utilities.
 | |
|  */
 | |
| 
 | |
| /* k = i+j overflows iff k differs in sign from both inputs,
 | |
|  * iff k^i has sign bit set and k^j has sign bit set,
 | |
|  * iff (k^i)&(k^j) has sign bit set.
 | |
|  */
 | |
| #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
 | |
| 	((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
 | |
| 
 | |
| /* Compute Python divmod(x, y), returning the quotient and storing the
 | |
|  * remainder into *r.  The quotient is the floor of x/y, and that's
 | |
|  * the real point of this.  C will probably truncate instead (C99
 | |
|  * requires truncation; C89 left it implementation-defined).
 | |
|  * Simplification:  we *require* that y > 0 here.  That's appropriate
 | |
|  * for all the uses made of it.  This simplifies the code and makes
 | |
|  * the overflow case impossible (divmod(LONG_MIN, -1) is the only
 | |
|  * overflow case).
 | |
|  */
 | |
| static int
 | |
| divmod(int x, int y, int *r)
 | |
| {
 | |
| 	int quo;
 | |
| 
 | |
| 	assert(y > 0);
 | |
| 	quo = x / y;
 | |
| 	*r = x - quo * y;
 | |
| 	if (*r < 0) {
 | |
| 		--quo;
 | |
| 		*r += y;
 | |
| 	}
 | |
| 	assert(0 <= *r && *r < y);
 | |
| 	return quo;
 | |
| }
 | |
| 
 | |
| /* Round a double to the nearest long.  |x| must be small enough to fit
 | |
|  * in a C long; this is not checked.
 | |
|  */
 | |
| static long
 | |
| round_to_long(double x)
 | |
| {
 | |
| 	if (x >= 0.0)
 | |
| 		x = floor(x + 0.5);
 | |
| 	else
 | |
| 		x = ceil(x - 0.5);
 | |
| 	return (long)x;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * General calendrical helper functions
 | |
|  */
 | |
| 
 | |
| /* For each month ordinal in 1..12, the number of days in that month,
 | |
|  * and the number of days before that month in the same year.  These
 | |
|  * are correct for non-leap years only.
 | |
|  */
 | |
| static int _days_in_month[] = {
 | |
| 	0, /* unused; this vector uses 1-based indexing */
 | |
| 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 | |
| };
 | |
| 
 | |
| static int _days_before_month[] = {
 | |
| 	0, /* unused; this vector uses 1-based indexing */
 | |
| 	0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
 | |
| };
 | |
| 
 | |
| /* year -> 1 if leap year, else 0. */
 | |
| static int
 | |
| is_leap(int year)
 | |
| {
 | |
| 	/* Cast year to unsigned.  The result is the same either way, but
 | |
| 	 * C can generate faster code for unsigned mod than for signed
 | |
| 	 * mod (especially for % 4 -- a good compiler should just grab
 | |
| 	 * the last 2 bits when the LHS is unsigned).
 | |
| 	 */
 | |
| 	const unsigned int ayear = (unsigned int)year;
 | |
| 	return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
 | |
| }
 | |
| 
 | |
| /* year, month -> number of days in that month in that year */
 | |
| static int
 | |
| days_in_month(int year, int month)
 | |
| {
 | |
| 	assert(month >= 1);
 | |
| 	assert(month <= 12);
 | |
| 	if (month == 2 && is_leap(year))
 | |
| 		return 29;
 | |
| 	else
 | |
| 		return _days_in_month[month];
 | |
| }
 | |
| 
 | |
| /* year, month -> number of days in year preceeding first day of month */
 | |
| static int
 | |
| days_before_month(int year, int month)
 | |
| {
 | |
| 	int days;
 | |
| 
 | |
| 	assert(month >= 1);
 | |
| 	assert(month <= 12);
 | |
| 	days = _days_before_month[month];
 | |
| 	if (month > 2 && is_leap(year))
 | |
| 		++days;
 | |
| 	return days;
 | |
| }
 | |
| 
 | |
| /* year -> number of days before January 1st of year.  Remember that we
 | |
|  * start with year 1, so days_before_year(1) == 0.
 | |
|  */
 | |
| static int
 | |
| days_before_year(int year)
 | |
| {
 | |
| 	int y = year - 1;
 | |
| 	/* This is incorrect if year <= 0; we really want the floor
 | |
| 	 * here.  But so long as MINYEAR is 1, the smallest year this
 | |
| 	 * can see is 0 (this can happen in some normalization endcases),
 | |
| 	 * so we'll just special-case that.
 | |
| 	 */
 | |
| 	assert (year >= 0);
 | |
| 	if (y >= 0)
 | |
| 		return y*365 + y/4 - y/100 + y/400;
 | |
| 	else {
 | |
| 		assert(y == -1);
 | |
| 		return -366;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Number of days in 4, 100, and 400 year cycles.  That these have
 | |
|  * the correct values is asserted in the module init function.
 | |
|  */
 | |
| #define DI4Y	1461	/* days_before_year(5); days in 4 years */
 | |
| #define DI100Y	36524	/* days_before_year(101); days in 100 years */
 | |
| #define DI400Y	146097	/* days_before_year(401); days in 400 years  */
 | |
| 
 | |
| /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
 | |
| static void
 | |
| ord_to_ymd(int ordinal, int *year, int *month, int *day)
 | |
| {
 | |
| 	int n, n1, n4, n100, n400, leapyear, preceding;
 | |
| 
 | |
| 	/* ordinal is a 1-based index, starting at 1-Jan-1.  The pattern of
 | |
| 	 * leap years repeats exactly every 400 years.  The basic strategy is
 | |
| 	 * to find the closest 400-year boundary at or before ordinal, then
 | |
| 	 * work with the offset from that boundary to ordinal.  Life is much
 | |
| 	 * clearer if we subtract 1 from ordinal first -- then the values
 | |
| 	 * of ordinal at 400-year boundaries are exactly those divisible
 | |
| 	 * by DI400Y:
 | |
| 	 *
 | |
| 	 *    D  M   Y            n              n-1
 | |
| 	 *    -- --- ----        ----------     ----------------
 | |
| 	 *    31 Dec -400        -DI400Y       -DI400Y -1
 | |
| 	 *     1 Jan -399         -DI400Y +1   -DI400Y      400-year boundary
 | |
| 	 *    ...
 | |
| 	 *    30 Dec  000        -1             -2
 | |
| 	 *    31 Dec  000         0             -1
 | |
| 	 *     1 Jan  001         1              0          400-year boundary
 | |
| 	 *     2 Jan  001         2              1
 | |
| 	 *     3 Jan  001         3              2
 | |
| 	 *    ...
 | |
| 	 *    31 Dec  400         DI400Y        DI400Y -1
 | |
| 	 *     1 Jan  401         DI400Y +1     DI400Y      400-year boundary
 | |
| 	 */
 | |
| 	assert(ordinal >= 1);
 | |
| 	--ordinal;
 | |
| 	n400 = ordinal / DI400Y;
 | |
| 	n = ordinal % DI400Y;
 | |
| 	*year = n400 * 400 + 1;
 | |
| 
 | |
| 	/* Now n is the (non-negative) offset, in days, from January 1 of
 | |
| 	 * year, to the desired date.  Now compute how many 100-year cycles
 | |
| 	 * precede n.
 | |
| 	 * Note that it's possible for n100 to equal 4!  In that case 4 full
 | |
| 	 * 100-year cycles precede the desired day, which implies the
 | |
| 	 * desired day is December 31 at the end of a 400-year cycle.
 | |
| 	 */
 | |
| 	n100 = n / DI100Y;
 | |
| 	n = n % DI100Y;
 | |
| 
 | |
| 	/* Now compute how many 4-year cycles precede it. */
 | |
| 	n4 = n / DI4Y;
 | |
| 	n = n % DI4Y;
 | |
| 
 | |
| 	/* And now how many single years.  Again n1 can be 4, and again
 | |
| 	 * meaning that the desired day is December 31 at the end of the
 | |
| 	 * 4-year cycle.
 | |
| 	 */
 | |
| 	n1 = n / 365;
 | |
| 	n = n % 365;
 | |
| 
 | |
| 	*year += n100 * 100 + n4 * 4 + n1;
 | |
| 	if (n1 == 4 || n100 == 4) {
 | |
| 		assert(n == 0);
 | |
| 		*year -= 1;
 | |
| 		*month = 12;
 | |
| 		*day = 31;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Now the year is correct, and n is the offset from January 1.  We
 | |
| 	 * find the month via an estimate that's either exact or one too
 | |
| 	 * large.
 | |
| 	 */
 | |
| 	leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
 | |
| 	assert(leapyear == is_leap(*year));
 | |
| 	*month = (n + 50) >> 5;
 | |
| 	preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
 | |
| 	if (preceding > n) {
 | |
| 		/* estimate is too large */
 | |
| 		*month -= 1;
 | |
| 		preceding -= days_in_month(*year, *month);
 | |
| 	}
 | |
| 	n -= preceding;
 | |
| 	assert(0 <= n);
 | |
| 	assert(n < days_in_month(*year, *month));
 | |
| 
 | |
| 	*day = n + 1;
 | |
| }
 | |
| 
 | |
| /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
 | |
| static int
 | |
| ymd_to_ord(int year, int month, int day)
 | |
| {
 | |
| 	return days_before_year(year) + days_before_month(year, month) + day;
 | |
| }
 | |
| 
 | |
| /* Day of week, where Monday==0, ..., Sunday==6.  1/1/1 was a Monday. */
 | |
| static int
 | |
| weekday(int year, int month, int day)
 | |
| {
 | |
| 	return (ymd_to_ord(year, month, day) + 6) % 7;
 | |
| }
 | |
| 
 | |
| /* Ordinal of the Monday starting week 1 of the ISO year.  Week 1 is the
 | |
|  * first calendar week containing a Thursday.
 | |
|  */
 | |
| static int
 | |
| iso_week1_monday(int year)
 | |
| {
 | |
| 	int first_day = ymd_to_ord(year, 1, 1);	/* ord of 1/1 */
 | |
| 	/* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
 | |
| 	int first_weekday = (first_day + 6) % 7;
 | |
| 	/* ordinal of closest Monday at or before 1/1 */
 | |
| 	int week1_monday  = first_day - first_weekday;
 | |
| 
 | |
| 	if (first_weekday > 3)	/* if 1/1 was Fri, Sat, Sun */
 | |
| 		week1_monday += 7;
 | |
| 	return week1_monday;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Range checkers.
 | |
|  */
 | |
| 
 | |
| /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS.  If so, return 0.
 | |
|  * If not, raise OverflowError and return -1.
 | |
|  */
 | |
| static int
 | |
| check_delta_day_range(int days)
 | |
| {
 | |
| 	if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
 | |
| 		return 0;
 | |
| 	PyErr_Format(PyExc_OverflowError,
 | |
| 		     "days=%d; must have magnitude <= %d",
 | |
| 		     days, MAX_DELTA_DAYS);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Check that date arguments are in range.  Return 0 if they are.  If they
 | |
|  * aren't, raise ValueError and return -1.
 | |
|  */
 | |
| static int
 | |
| check_date_args(int year, int month, int day)
 | |
| {
 | |
| 
 | |
| 	if (year < MINYEAR || year > MAXYEAR) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"year is out of range");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (month < 1 || month > 12) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"month must be in 1..12");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (day < 1 || day > days_in_month(year, month)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"day is out of range for month");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Check that time arguments are in range.  Return 0 if they are.  If they
 | |
|  * aren't, raise ValueError and return -1.
 | |
|  */
 | |
| static int
 | |
| check_time_args(int h, int m, int s, int us)
 | |
| {
 | |
| 	if (h < 0 || h > 23) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"hour must be in 0..23");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (m < 0 || m > 59) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"minute must be in 0..59");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (s < 0 || s > 59) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"second must be in 0..59");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (us < 0 || us > 999999) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"microsecond must be in 0..999999");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Normalization utilities.
 | |
|  */
 | |
| 
 | |
| /* One step of a mixed-radix conversion.  A "hi" unit is equivalent to
 | |
|  * factor "lo" units.  factor must be > 0.  If *lo is less than 0, or
 | |
|  * at least factor, enough of *lo is converted into "hi" units so that
 | |
|  * 0 <= *lo < factor.  The input values must be such that int overflow
 | |
|  * is impossible.
 | |
|  */
 | |
| static void
 | |
| normalize_pair(int *hi, int *lo, int factor)
 | |
| {
 | |
| 	assert(factor > 0);
 | |
| 	assert(lo != hi);
 | |
| 	if (*lo < 0 || *lo >= factor) {
 | |
| 		const int num_hi = divmod(*lo, factor, lo);
 | |
| 		const int new_hi = *hi + num_hi;
 | |
| 		assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
 | |
| 		*hi = new_hi;
 | |
| 	}
 | |
| 	assert(0 <= *lo && *lo < factor);
 | |
| }
 | |
| 
 | |
| /* Fiddle days (d), seconds (s), and microseconds (us) so that
 | |
|  * 	0 <= *s < 24*3600
 | |
|  * 	0 <= *us < 1000000
 | |
|  * The input values must be such that the internals don't overflow.
 | |
|  * The way this routine is used, we don't get close.
 | |
|  */
 | |
| static void
 | |
| normalize_d_s_us(int *d, int *s, int *us)
 | |
| {
 | |
| 	if (*us < 0 || *us >= 1000000) {
 | |
| 		normalize_pair(s, us, 1000000);
 | |
| 		/* |s| can't be bigger than about
 | |
| 		 * |original s| + |original us|/1000000 now.
 | |
| 		 */
 | |
| 
 | |
| 	}
 | |
| 	if (*s < 0 || *s >= 24*3600) {
 | |
| 		normalize_pair(d, s, 24*3600);
 | |
| 		/* |d| can't be bigger than about
 | |
| 		 * |original d| +
 | |
| 		 * (|original s| + |original us|/1000000) / (24*3600) now.
 | |
| 		 */
 | |
| 	}
 | |
| 	assert(0 <= *s && *s < 24*3600);
 | |
| 	assert(0 <= *us && *us < 1000000);
 | |
| }
 | |
| 
 | |
| /* Fiddle years (y), months (m), and days (d) so that
 | |
|  * 	1 <= *m <= 12
 | |
|  * 	1 <= *d <= days_in_month(*y, *m)
 | |
|  * The input values must be such that the internals don't overflow.
 | |
|  * The way this routine is used, we don't get close.
 | |
|  */
 | |
| static void
 | |
| normalize_y_m_d(int *y, int *m, int *d)
 | |
| {
 | |
| 	int dim;	/* # of days in month */
 | |
| 
 | |
| 	/* This gets muddy:  the proper range for day can't be determined
 | |
| 	 * without knowing the correct month and year, but if day is, e.g.,
 | |
| 	 * plus or minus a million, the current month and year values make
 | |
| 	 * no sense (and may also be out of bounds themselves).
 | |
| 	 * Saying 12 months == 1 year should be non-controversial.
 | |
| 	 */
 | |
| 	if (*m < 1 || *m > 12) {
 | |
| 		--*m;
 | |
| 		normalize_pair(y, m, 12);
 | |
| 		++*m;
 | |
| 		/* |y| can't be bigger than about
 | |
| 		 * |original y| + |original m|/12 now.
 | |
| 		 */
 | |
| 	}
 | |
| 	assert(1 <= *m && *m <= 12);
 | |
| 
 | |
| 	/* Now only day can be out of bounds (year may also be out of bounds
 | |
| 	 * for a datetime object, but we don't care about that here).
 | |
| 	 * If day is out of bounds, what to do is arguable, but at least the
 | |
| 	 * method here is principled and explainable.
 | |
| 	 */
 | |
| 	dim = days_in_month(*y, *m);
 | |
| 	if (*d < 1 || *d > dim) {
 | |
| 		/* Move day-1 days from the first of the month.  First try to
 | |
| 		 * get off cheap if we're only one day out of range
 | |
| 		 * (adjustments for timezone alone can't be worse than that).
 | |
| 		 */
 | |
| 		if (*d == 0) {
 | |
| 			--*m;
 | |
| 			if (*m > 0)
 | |
| 				*d = days_in_month(*y, *m);
 | |
| 			else {
 | |
| 				--*y;
 | |
| 				*m = 12;
 | |
| 				*d = 31;
 | |
| 			}
 | |
| 		}
 | |
| 		else if (*d == dim + 1) {
 | |
| 			/* move forward a day */
 | |
| 			++*m;
 | |
| 			*d = 1;
 | |
| 			if (*m > 12) {
 | |
| 				*m = 1;
 | |
| 				++*y;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			int ordinal = ymd_to_ord(*y, *m, 1) +
 | |
| 						  *d - 1;
 | |
| 			ord_to_ymd(ordinal, y, m, d);
 | |
| 		}
 | |
| 	}
 | |
| 	assert(*m > 0);
 | |
| 	assert(*d > 0);
 | |
| }
 | |
| 
 | |
| /* Fiddle out-of-bounds months and days so that the result makes some kind
 | |
|  * of sense.  The parameters are both inputs and outputs.  Returns < 0 on
 | |
|  * failure, where failure means the adjusted year is out of bounds.
 | |
|  */
 | |
| static int
 | |
| normalize_date(int *year, int *month, int *day)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	normalize_y_m_d(year, month, day);
 | |
| 	if (MINYEAR <= *year && *year <= MAXYEAR)
 | |
| 		result = 0;
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_OverflowError,
 | |
| 				"date value out of range");
 | |
| 		result = -1;
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Force all the datetime fields into range.  The parameters are both
 | |
|  * inputs and outputs.  Returns < 0 on error.
 | |
|  */
 | |
| static int
 | |
| normalize_datetime(int *year, int *month, int *day,
 | |
|                    int *hour, int *minute, int *second,
 | |
|                    int *microsecond)
 | |
| {
 | |
| 	normalize_pair(second, microsecond, 1000000);
 | |
| 	normalize_pair(minute, second, 60);
 | |
| 	normalize_pair(hour, minute, 60);
 | |
| 	normalize_pair(day, hour, 24);
 | |
| 	return normalize_date(year, month, day);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Basic object allocation:  tp_alloc implementations.  These allocate
 | |
|  * Python objects of the right size and type, and do the Python object-
 | |
|  * initialization bit.  If there's not enough memory, they return NULL after
 | |
|  * setting MemoryError.  All data members remain uninitialized trash.
 | |
|  *
 | |
|  * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
 | |
|  * member is needed.  This is ugly, imprecise, and possibly insecure.
 | |
|  * tp_basicsize for the time and datetime types is set to the size of the
 | |
|  * struct that has room for the tzinfo member, so subclasses in Python will
 | |
|  * allocate enough space for a tzinfo member whether or not one is actually
 | |
|  * needed.  That's the "ugly and imprecise" parts.  The "possibly insecure"
 | |
|  * part is that PyType_GenericAlloc() (which subclasses in Python end up
 | |
|  * using) just happens today to effectively ignore the nitems argument
 | |
|  * when tp_itemsize is 0, which it is for these type objects.  If that
 | |
|  * changes, perhaps the callers of tp_alloc slots in this file should
 | |
|  * be changed to force a 0 nitems argument unless the type being allocated
 | |
|  * is a base type implemented in this file (so that tp_alloc is time_alloc
 | |
|  * or datetime_alloc below, which know about the nitems abuse).
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| time_alloc(PyTypeObject *type, Py_ssize_t aware)
 | |
| {
 | |
| 	PyObject *self;
 | |
| 
 | |
| 	self = (PyObject *)
 | |
| 		PyObject_MALLOC(aware ?
 | |
| 				sizeof(PyDateTime_Time) :
 | |
| 				sizeof(_PyDateTime_BaseTime));
 | |
| 	if (self == NULL)
 | |
| 		return (PyObject *)PyErr_NoMemory();
 | |
| 	PyObject_INIT(self, type);
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
 | |
| {
 | |
| 	PyObject *self;
 | |
| 
 | |
| 	self = (PyObject *)
 | |
| 		PyObject_MALLOC(aware ?
 | |
| 				sizeof(PyDateTime_DateTime) :
 | |
| 				sizeof(_PyDateTime_BaseDateTime));
 | |
| 	if (self == NULL)
 | |
| 		return (PyObject *)PyErr_NoMemory();
 | |
| 	PyObject_INIT(self, type);
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Helpers for setting object fields.  These work on pointers to the
 | |
|  * appropriate base class.
 | |
|  */
 | |
| 
 | |
| /* For date and datetime. */
 | |
| static void
 | |
| set_date_fields(PyDateTime_Date *self, int y, int m, int d)
 | |
| {
 | |
| 	self->hashcode = -1;
 | |
| 	SET_YEAR(self, y);
 | |
| 	SET_MONTH(self, m);
 | |
| 	SET_DAY(self, d);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Create various objects, mostly without range checking.
 | |
|  */
 | |
| 
 | |
| /* Create a date instance with no range checking. */
 | |
| static PyObject *
 | |
| new_date_ex(int year, int month, int day, PyTypeObject *type)
 | |
| {
 | |
| 	PyDateTime_Date *self;
 | |
| 
 | |
| 	self = (PyDateTime_Date *) (type->tp_alloc(type, 0));
 | |
| 	if (self != NULL)
 | |
| 		set_date_fields(self, year, month, day);
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| #define new_date(year, month, day) \
 | |
| 	new_date_ex(year, month, day, &PyDateTime_DateType)
 | |
| 
 | |
| /* Create a datetime instance with no range checking. */
 | |
| static PyObject *
 | |
| new_datetime_ex(int year, int month, int day, int hour, int minute,
 | |
| 	     int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
 | |
| {
 | |
| 	PyDateTime_DateTime *self;
 | |
| 	char aware = tzinfo != Py_None;
 | |
| 
 | |
| 	self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
 | |
| 	if (self != NULL) {
 | |
| 		self->hastzinfo = aware;
 | |
| 		set_date_fields((PyDateTime_Date *)self, year, month, day);
 | |
| 		DATE_SET_HOUR(self, hour);
 | |
| 		DATE_SET_MINUTE(self, minute);
 | |
| 		DATE_SET_SECOND(self, second);
 | |
| 		DATE_SET_MICROSECOND(self, usecond);
 | |
| 		if (aware) {
 | |
| 			Py_INCREF(tzinfo);
 | |
| 			self->tzinfo = tzinfo;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| #define new_datetime(y, m, d, hh, mm, ss, us, tzinfo)		\
 | |
| 	new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo,	\
 | |
| 			&PyDateTime_DateTimeType)
 | |
| 
 | |
| /* Create a time instance with no range checking. */
 | |
| static PyObject *
 | |
| new_time_ex(int hour, int minute, int second, int usecond,
 | |
| 	    PyObject *tzinfo, PyTypeObject *type)
 | |
| {
 | |
| 	PyDateTime_Time *self;
 | |
| 	char aware = tzinfo != Py_None;
 | |
| 
 | |
| 	self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
 | |
| 	if (self != NULL) {
 | |
| 		self->hastzinfo = aware;
 | |
| 		self->hashcode = -1;
 | |
| 		TIME_SET_HOUR(self, hour);
 | |
| 		TIME_SET_MINUTE(self, minute);
 | |
| 		TIME_SET_SECOND(self, second);
 | |
| 		TIME_SET_MICROSECOND(self, usecond);
 | |
| 		if (aware) {
 | |
| 			Py_INCREF(tzinfo);
 | |
| 			self->tzinfo = tzinfo;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| #define new_time(hh, mm, ss, us, tzinfo)		\
 | |
| 	new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
 | |
| 
 | |
| /* Create a timedelta instance.  Normalize the members iff normalize is
 | |
|  * true.  Passing false is a speed optimization, if you know for sure
 | |
|  * that seconds and microseconds are already in their proper ranges.  In any
 | |
|  * case, raises OverflowError and returns NULL if the normalized days is out
 | |
|  * of range).
 | |
|  */
 | |
| static PyObject *
 | |
| new_delta_ex(int days, int seconds, int microseconds, int normalize,
 | |
| 	     PyTypeObject *type)
 | |
| {
 | |
| 	PyDateTime_Delta *self;
 | |
| 
 | |
| 	if (normalize)
 | |
| 		normalize_d_s_us(&days, &seconds, µseconds);
 | |
| 	assert(0 <= seconds && seconds < 24*3600);
 | |
| 	assert(0 <= microseconds && microseconds < 1000000);
 | |
| 
 | |
|  	if (check_delta_day_range(days) < 0)
 | |
|  		return NULL;
 | |
| 
 | |
| 	self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
 | |
| 	if (self != NULL) {
 | |
| 		self->hashcode = -1;
 | |
| 		SET_TD_DAYS(self, days);
 | |
| 		SET_TD_SECONDS(self, seconds);
 | |
| 		SET_TD_MICROSECONDS(self, microseconds);
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| #define new_delta(d, s, us, normalize)	\
 | |
| 	new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * tzinfo helpers.
 | |
|  */
 | |
| 
 | |
| /* Ensure that p is None or of a tzinfo subclass.  Return 0 if OK; if not
 | |
|  * raise TypeError and return -1.
 | |
|  */
 | |
| static int
 | |
| check_tzinfo_subclass(PyObject *p)
 | |
| {
 | |
| 	if (p == Py_None || PyTZInfo_Check(p))
 | |
| 		return 0;
 | |
| 	PyErr_Format(PyExc_TypeError,
 | |
| 		     "tzinfo argument must be None or of a tzinfo subclass, "
 | |
| 		     "not type '%s'",
 | |
| 		     Py_TYPE(p)->tp_name);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Return tzinfo.methname(tzinfoarg), without any checking of results.
 | |
|  * If tzinfo is None, returns None.
 | |
|  */
 | |
| static PyObject *
 | |
| call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	assert(tzinfo && methname && tzinfoarg);
 | |
| 	assert(check_tzinfo_subclass(tzinfo) >= 0);
 | |
| 	if (tzinfo == Py_None) {
 | |
| 		result = Py_None;
 | |
| 		Py_INCREF(result);
 | |
| 	}
 | |
| 	else
 | |
| 		result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* If self has a tzinfo member, return a BORROWED reference to it.  Else
 | |
|  * return NULL, which is NOT AN ERROR.  There are no error returns here,
 | |
|  * and the caller must not decref the result.
 | |
|  */
 | |
| static PyObject *
 | |
| get_tzinfo_member(PyObject *self)
 | |
| {
 | |
| 	PyObject *tzinfo = NULL;
 | |
| 
 | |
| 	if (PyDateTime_Check(self) && HASTZINFO(self))
 | |
| 		tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
 | |
| 	else if (PyTime_Check(self) && HASTZINFO(self))
 | |
| 		tzinfo = ((PyDateTime_Time *)self)->tzinfo;
 | |
| 
 | |
| 	return tzinfo;
 | |
| }
 | |
| 
 | |
| /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
 | |
|  * result.  tzinfo must be an instance of the tzinfo class.  If the method
 | |
|  * returns None, this returns 0 and sets *none to 1.  If the method doesn't
 | |
|  * return None or timedelta, TypeError is raised and this returns -1.  If it
 | |
|  * returnsa timedelta and the value is out of range or isn't a whole number
 | |
|  * of minutes, ValueError is raised and this returns -1.
 | |
|  * Else *none is set to 0 and the integer method result is returned.
 | |
|  */
 | |
| static int
 | |
| call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
 | |
| 		       int *none)
 | |
| {
 | |
| 	PyObject *u;
 | |
| 	int result = -1;
 | |
| 
 | |
| 	assert(tzinfo != NULL);
 | |
| 	assert(PyTZInfo_Check(tzinfo));
 | |
| 	assert(tzinfoarg != NULL);
 | |
| 
 | |
| 	*none = 0;
 | |
| 	u = call_tzinfo_method(tzinfo, name, tzinfoarg);
 | |
| 	if (u == NULL)
 | |
| 		return -1;
 | |
| 
 | |
| 	else if (u == Py_None) {
 | |
| 		result = 0;
 | |
| 		*none = 1;
 | |
| 	}
 | |
| 	else if (PyDelta_Check(u)) {
 | |
| 		const int days = GET_TD_DAYS(u);
 | |
| 		if (days < -1 || days > 0)
 | |
| 			result = 24*60;	/* trigger ValueError below */
 | |
| 		else {
 | |
| 			/* next line can't overflow because we know days
 | |
| 			 * is -1 or 0 now
 | |
| 			 */
 | |
| 			int ss = days * 24 * 3600 + GET_TD_SECONDS(u);
 | |
| 			result = divmod(ss, 60, &ss);
 | |
| 			if (ss || GET_TD_MICROSECONDS(u)) {
 | |
| 				PyErr_Format(PyExc_ValueError,
 | |
| 					     "tzinfo.%s() must return a "
 | |
| 					     "whole number of minutes",
 | |
| 					     name);
 | |
| 				result = -1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 			     "tzinfo.%s() must return None or "
 | |
| 			     "timedelta, not '%s'",
 | |
| 			     name, Py_TYPE(u)->tp_name);
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(u);
 | |
| 	if (result < -1439 || result > 1439) {
 | |
| 		PyErr_Format(PyExc_ValueError,
 | |
| 			     "tzinfo.%s() returned %d; must be in "
 | |
| 			     "-1439 .. 1439",
 | |
| 			     name, result);
 | |
| 		result = -1;
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
 | |
|  * result.  tzinfo must be an instance of the tzinfo class.  If utcoffset()
 | |
|  * returns None, call_utcoffset returns 0 and sets *none to 1.  If uctoffset()
 | |
|  * doesn't return None or timedelta, TypeError is raised and this returns -1.
 | |
|  * If utcoffset() returns an invalid timedelta (out of range, or not a whole
 | |
|  * # of minutes), ValueError is raised and this returns -1.  Else *none is
 | |
|  * set to 0 and the offset is returned (as int # of minutes east of UTC).
 | |
|  */
 | |
| static int
 | |
| call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
 | |
| {
 | |
| 	return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
 | |
| }
 | |
| 
 | |
| /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
 | |
|  */
 | |
| static PyObject *
 | |
| offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) {
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	assert(tzinfo && name && tzinfoarg);
 | |
| 	if (tzinfo == Py_None) {
 | |
| 		result = Py_None;
 | |
| 		Py_INCREF(result);
 | |
| 	}
 | |
| 	else {
 | |
| 		int none;
 | |
| 		int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg,
 | |
| 						    &none);
 | |
| 		if (offset < 0 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		if (none) {
 | |
| 			result = Py_None;
 | |
| 			Py_INCREF(result);
 | |
| 		}
 | |
| 		else
 | |
| 			result = new_delta(0, offset * 60, 0, 1);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Call tzinfo.dst(tzinfoarg), and extract an integer from the
 | |
|  * result.  tzinfo must be an instance of the tzinfo class.  If dst()
 | |
|  * returns None, call_dst returns 0 and sets *none to 1.  If dst()
 | |
|  & doesn't return None or timedelta, TypeError is raised and this
 | |
|  * returns -1.  If dst() returns an invalid timedelta for a UTC offset,
 | |
|  * ValueError is raised and this returns -1.  Else *none is set to 0 and
 | |
|  * the offset is returned (as an int # of minutes east of UTC).
 | |
|  */
 | |
| static int
 | |
| call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
 | |
| {
 | |
| 	return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
 | |
| }
 | |
| 
 | |
| /* Call tzinfo.tzname(tzinfoarg), and return the result.  tzinfo must be
 | |
|  * an instance of the tzinfo class or None.  If tzinfo isn't None, and
 | |
|  * tzname() doesn't return None or a string, TypeError is raised and this
 | |
|  * returns NULL.  If the result is a string, we ensure it is a Unicode
 | |
|  * string.
 | |
|  */
 | |
| static PyObject *
 | |
| call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	assert(tzinfo != NULL);
 | |
| 	assert(check_tzinfo_subclass(tzinfo) >= 0);
 | |
| 	assert(tzinfoarg != NULL);
 | |
| 
 | |
| 	if (tzinfo == Py_None) {
 | |
| 		result = Py_None;
 | |
| 		Py_INCREF(result);
 | |
| 	}
 | |
| 	else
 | |
| 		result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
 | |
| 
 | |
| 	if (result != NULL && result != Py_None) {
 | |
| 		if (!PyUnicode_Check(result)) {
 | |
| 			PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
 | |
| 				     "return None or a string, not '%s'",
 | |
| 				     Py_TYPE(result)->tp_name);
 | |
| 			Py_DECREF(result);
 | |
| 			result = NULL;
 | |
| 		}
 | |
| 		else if (!PyUnicode_Check(result)) {
 | |
| 			PyObject *temp = PyUnicode_FromObject(result);
 | |
| 			Py_DECREF(result);
 | |
| 			result = temp;
 | |
| 		}
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| typedef enum {
 | |
| 	      /* an exception has been set; the caller should pass it on */
 | |
| 	      OFFSET_ERROR,
 | |
| 
 | |
| 	      /* type isn't date, datetime, or time subclass */
 | |
| 	      OFFSET_UNKNOWN,
 | |
| 
 | |
| 	      /* date,
 | |
| 	       * datetime with !hastzinfo
 | |
| 	       * datetime with None tzinfo,
 | |
| 	       * datetime where utcoffset() returns None
 | |
| 	       * time with !hastzinfo
 | |
| 	       * time with None tzinfo,
 | |
| 	       * time where utcoffset() returns None
 | |
| 	       */
 | |
| 	      OFFSET_NAIVE,
 | |
| 
 | |
| 	      /* time or datetime where utcoffset() doesn't return None */
 | |
| 	      OFFSET_AWARE
 | |
| } naivety;
 | |
| 
 | |
| /* Classify an object as to whether it's naive or offset-aware.  See
 | |
|  * the "naivety" typedef for details.  If the type is aware, *offset is set
 | |
|  * to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
 | |
|  * If the type is offset-naive (or unknown, or error), *offset is set to 0.
 | |
|  * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
 | |
|  */
 | |
| static naivety
 | |
| classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset)
 | |
| {
 | |
| 	int none;
 | |
| 	PyObject *tzinfo;
 | |
| 
 | |
| 	assert(tzinfoarg != NULL);
 | |
| 	*offset = 0;
 | |
| 	tzinfo = get_tzinfo_member(op);	/* NULL means no tzinfo, not error */
 | |
| 	if (tzinfo == Py_None)
 | |
| 		return OFFSET_NAIVE;
 | |
| 	if (tzinfo == NULL) {
 | |
| 		/* note that a datetime passes the PyDate_Check test */
 | |
| 		return (PyTime_Check(op) || PyDate_Check(op)) ?
 | |
| 		       OFFSET_NAIVE : OFFSET_UNKNOWN;
 | |
| 	}
 | |
| 	*offset = call_utcoffset(tzinfo, tzinfoarg, &none);
 | |
| 	if (*offset == -1 && PyErr_Occurred())
 | |
| 		return OFFSET_ERROR;
 | |
| 	return none ? OFFSET_NAIVE : OFFSET_AWARE;
 | |
| }
 | |
| 
 | |
| /* Classify two objects as to whether they're naive or offset-aware.
 | |
|  * This isn't quite the same as calling classify_utcoffset() twice:  for
 | |
|  * binary operations (comparison and subtraction), we generally want to
 | |
|  * ignore the tzinfo members if they're identical.  This is by design,
 | |
|  * so that results match "naive" expectations when mixing objects from a
 | |
|  * single timezone.  So in that case, this sets both offsets to 0 and
 | |
|  * both naiveties to OFFSET_NAIVE.
 | |
|  * The function returns 0 if everything's OK, and -1 on error.
 | |
|  */
 | |
| static int
 | |
| classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1,
 | |
| 			PyObject *tzinfoarg1,
 | |
| 			PyObject *o2, int *offset2, naivety *n2,
 | |
| 			PyObject *tzinfoarg2)
 | |
| {
 | |
| 	if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) {
 | |
| 		*offset1 = *offset2 = 0;
 | |
| 		*n1 = *n2 = OFFSET_NAIVE;
 | |
| 	}
 | |
| 	else {
 | |
| 		*n1 = classify_utcoffset(o1, tzinfoarg1, offset1);
 | |
| 		if (*n1 == OFFSET_ERROR)
 | |
| 			return -1;
 | |
| 		*n2 = classify_utcoffset(o2, tzinfoarg2, offset2);
 | |
| 		if (*n2 == OFFSET_ERROR)
 | |
| 			return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* repr is like "someclass(arg1, arg2)".  If tzinfo isn't None,
 | |
|  * stuff
 | |
|  *     ", tzinfo=" + repr(tzinfo)
 | |
|  * before the closing ")".
 | |
|  */
 | |
| static PyObject *
 | |
| append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
 | |
| {
 | |
| 	PyObject *temp;
 | |
| 
 | |
| 	assert(PyUnicode_Check(repr));
 | |
| 	assert(tzinfo);
 | |
| 	if (tzinfo == Py_None)
 | |
| 		return repr;
 | |
| 	/* Get rid of the trailing ')'. */
 | |
| 	assert(PyUnicode_AS_UNICODE(repr)[PyUnicode_GET_SIZE(repr)-1] == ')');
 | |
| 	temp = PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(repr),
 | |
| 					  PyUnicode_GET_SIZE(repr) - 1);
 | |
| 	Py_DECREF(repr);
 | |
| 	if (temp == NULL)
 | |
| 		return NULL;
 | |
| 	repr = PyUnicode_FromFormat("%U, tzinfo=%R)", temp, tzinfo);
 | |
| 	Py_DECREF(temp);
 | |
| 	return repr;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * String format helpers.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
 | |
| {
 | |
| 	static const char *DayNames[] = {
 | |
| 		"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
 | |
| 	};
 | |
| 	static const char *MonthNames[] = {
 | |
| 		"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 | |
| 		"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 | |
| 	};
 | |
| 
 | |
| 	int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
 | |
| 
 | |
| 	return PyUnicode_FromFormat("%s %s %2d %02d:%02d:%02d %04d",
 | |
| 	                            DayNames[wday], MonthNames[GET_MONTH(date)-1],
 | |
| 	                            GET_DAY(date), hours, minutes, seconds,
 | |
| 	                            GET_YEAR(date));
 | |
| }
 | |
| 
 | |
| /* Add an hours & minutes UTC offset string to buf.  buf has no more than
 | |
|  * buflen bytes remaining.  The UTC offset is gotten by calling
 | |
|  * tzinfo.uctoffset(tzinfoarg).  If that returns None, \0 is stored into
 | |
|  * *buf, and that's all.  Else the returned value is checked for sanity (an
 | |
|  * integer in range), and if that's OK it's converted to an hours & minutes
 | |
|  * string of the form
 | |
|  *   sign HH sep MM
 | |
|  * Returns 0 if everything is OK.  If the return value from utcoffset() is
 | |
|  * bogus, an appropriate exception is set and -1 is returned.
 | |
|  */
 | |
| static int
 | |
| format_utcoffset(char *buf, size_t buflen, const char *sep,
 | |
| 		PyObject *tzinfo, PyObject *tzinfoarg)
 | |
| {
 | |
| 	int offset;
 | |
| 	int hours;
 | |
| 	int minutes;
 | |
| 	char sign;
 | |
| 	int none;
 | |
| 
 | |
| 	offset = call_utcoffset(tzinfo, tzinfoarg, &none);
 | |
| 	if (offset == -1 && PyErr_Occurred())
 | |
| 		return -1;
 | |
| 	if (none) {
 | |
| 		*buf = '\0';
 | |
| 		return 0;
 | |
| 	}
 | |
| 	sign = '+';
 | |
| 	if (offset < 0) {
 | |
| 		sign = '-';
 | |
| 		offset = - offset;
 | |
| 	}
 | |
| 	hours = divmod(offset, 60, &minutes);
 | |
| 	PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| make_Zreplacement(PyObject *object, PyObject *tzinfoarg)
 | |
| {
 | |
| 	PyObject *temp;
 | |
| 	PyObject *tzinfo = get_tzinfo_member(object);
 | |
| 	PyObject *Zreplacement = PyUnicode_FromStringAndSize(NULL, 0);
 | |
| 	if (Zreplacement == NULL)
 | |
| 		return NULL;
 | |
| 	if (tzinfo == Py_None || tzinfo == NULL)
 | |
| 		return Zreplacement;
 | |
| 
 | |
| 	assert(tzinfoarg != NULL);
 | |
| 	temp = call_tzname(tzinfo, tzinfoarg);
 | |
| 	if (temp == NULL)
 | |
| 		goto Error;
 | |
| 	if (temp == Py_None) {
 | |
| 		Py_DECREF(temp);
 | |
| 		return Zreplacement;
 | |
| 	}
 | |
| 
 | |
| 	assert(PyUnicode_Check(temp));
 | |
| 	/* Since the tzname is getting stuffed into the
 | |
| 	 * format, we have to double any % signs so that
 | |
| 	 * strftime doesn't treat them as format codes.
 | |
| 	 */
 | |
| 	Py_DECREF(Zreplacement);
 | |
| 	Zreplacement = PyObject_CallMethod(temp, "replace", "ss", "%", "%%");
 | |
| 	Py_DECREF(temp);
 | |
| 	if (Zreplacement == NULL)
 | |
| 		return NULL;
 | |
| 	if (!PyUnicode_Check(Zreplacement)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"tzname.replace() did not return a string");
 | |
| 		goto Error;
 | |
| 	}
 | |
| 	return Zreplacement;
 | |
| 
 | |
|   Error:
 | |
| 	Py_DECREF(Zreplacement);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* I sure don't want to reproduce the strftime code from the time module,
 | |
|  * so this imports the module and calls it.  All the hair is due to
 | |
|  * giving special meanings to the %z and %Z format codes via a preprocessing
 | |
|  * step on the format string.
 | |
|  * tzinfoarg is the argument to pass to the object's tzinfo method, if
 | |
|  * needed.
 | |
|  */
 | |
| static PyObject *
 | |
| wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple,
 | |
| 	      PyObject *tzinfoarg)
 | |
| {
 | |
| 	PyObject *result = NULL;	/* guilty until proved innocent */
 | |
| 
 | |
| 	PyObject *zreplacement = NULL;	/* py string, replacement for %z */
 | |
| 	PyObject *Zreplacement = NULL;	/* py string, replacement for %Z */
 | |
| 
 | |
| 	const char *pin;/* pointer to next char in input format */
 | |
|         Py_ssize_t flen;/* length of input format */
 | |
| 	char ch;	/* next char in input format */
 | |
| 
 | |
| 	PyObject *newfmt = NULL;	/* py string, the output format */
 | |
| 	char *pnew;	/* pointer to available byte in output format */
 | |
| 	int totalnew;	/* number bytes total in output format buffer,
 | |
| 			   exclusive of trailing \0 */
 | |
| 	int usednew;	/* number bytes used so far in output format buffer */
 | |
| 
 | |
| 	const char *ptoappend;/* pointer to string to append to output buffer */
 | |
| 	Py_ssize_t ntoappend;	/* # of bytes to append to output buffer */
 | |
| 
 | |
| 	assert(object && format && timetuple);
 | |
| 	assert(PyUnicode_Check(format));
 | |
| 	/* Convert the input format to a C string and size */
 | |
| 	pin = PyUnicode_AsString(format);
 | |
| 	if (!pin)
 | |
| 		return NULL;
 | |
| 	flen = PyUnicode_GetSize(format);
 | |
| 
 | |
| 	/* Give up if the year is before 1900.
 | |
| 	 * Python strftime() plays games with the year, and different
 | |
| 	 * games depending on whether envar PYTHON2K is set.  This makes
 | |
| 	 * years before 1900 a nightmare, even if the platform strftime
 | |
| 	 * supports them (and not all do).
 | |
| 	 * We could get a lot farther here by avoiding Python's strftime
 | |
| 	 * wrapper and calling the C strftime() directly, but that isn't
 | |
| 	 * an option in the Python implementation of this module.
 | |
| 	 */
 | |
| 	{
 | |
| 		long year;
 | |
| 		PyObject *pyyear = PySequence_GetItem(timetuple, 0);
 | |
| 		if (pyyear == NULL) return NULL;
 | |
| 		assert(PyLong_Check(pyyear));
 | |
| 		year = PyLong_AsLong(pyyear);
 | |
| 		Py_DECREF(pyyear);
 | |
| 		if (year < 1900) {
 | |
| 			PyErr_Format(PyExc_ValueError, "year=%ld is before "
 | |
| 				     "1900; the datetime strftime() "
 | |
| 	                             "methods require year >= 1900",
 | |
| 	                             year);
 | |
| 	                return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Scan the input format, looking for %z and %Z escapes, building
 | |
| 	 * a new format.  Since computing the replacements for those codes
 | |
| 	 * is expensive, don't unless they're actually used.
 | |
| 	 */
 | |
| 	totalnew = flen + 1;	/* realistic if no %z/%Z */
 | |
| 	newfmt = PyString_FromStringAndSize(NULL, totalnew);
 | |
| 	if (newfmt == NULL) goto Done;
 | |
| 	pnew = PyString_AsString(newfmt);
 | |
| 	usednew = 0;
 | |
| 
 | |
| 	while ((ch = *pin++) != '\0') {
 | |
| 		if (ch != '%') {
 | |
| 			ptoappend = pin - 1;
 | |
| 			ntoappend = 1;
 | |
| 		}
 | |
| 		else if ((ch = *pin++) == '\0') {
 | |
| 			/* There's a lone trailing %; doesn't make sense. */
 | |
| 			PyErr_SetString(PyExc_ValueError, "strftime format "
 | |
| 					"ends with raw %");
 | |
| 			goto Done;
 | |
| 		}
 | |
| 		/* A % has been seen and ch is the character after it. */
 | |
| 		else if (ch == 'z') {
 | |
| 			if (zreplacement == NULL) {
 | |
| 				/* format utcoffset */
 | |
| 				char buf[100];
 | |
| 				PyObject *tzinfo = get_tzinfo_member(object);
 | |
| 				zreplacement = PyString_FromStringAndSize("", 0);
 | |
| 				if (zreplacement == NULL) goto Done;
 | |
| 				if (tzinfo != Py_None && tzinfo != NULL) {
 | |
| 					assert(tzinfoarg != NULL);
 | |
| 					if (format_utcoffset(buf,
 | |
| 							     sizeof(buf),
 | |
| 							     "",
 | |
| 							     tzinfo,
 | |
| 							     tzinfoarg) < 0)
 | |
| 						goto Done;
 | |
| 					Py_DECREF(zreplacement);
 | |
| 					zreplacement =
 | |
| 					  PyString_FromStringAndSize(buf,
 | |
| 								   strlen(buf));
 | |
| 					if (zreplacement == NULL)
 | |
| 						goto Done;
 | |
| 				}
 | |
| 			}
 | |
| 			assert(zreplacement != NULL);
 | |
| 			ptoappend = PyString_AS_STRING(zreplacement);
 | |
| 			ntoappend = PyString_GET_SIZE(zreplacement);
 | |
| 		}
 | |
| 		else if (ch == 'Z') {
 | |
| 			/* format tzname */
 | |
| 			if (Zreplacement == NULL) {
 | |
| 				Zreplacement = make_Zreplacement(object,
 | |
| 								 tzinfoarg);
 | |
| 				if (Zreplacement == NULL)
 | |
| 					goto Done;
 | |
| 			}
 | |
| 			assert(Zreplacement != NULL);
 | |
| 			assert(PyUnicode_Check(Zreplacement));
 | |
| 			ptoappend = PyUnicode_AsStringAndSize(Zreplacement,
 | |
|                                                               &ntoappend);
 | |
| 			ntoappend = Py_SIZE(Zreplacement);
 | |
| 		}
 | |
| 		else {
 | |
| 			/* percent followed by neither z nor Z */
 | |
| 			ptoappend = pin - 2;
 | |
| 			ntoappend = 2;
 | |
| 		}
 | |
| 
 | |
|  		/* Append the ntoappend chars starting at ptoappend to
 | |
|  		 * the new format.
 | |
|  		 */
 | |
|  		if (ntoappend == 0)
 | |
|  			continue;
 | |
|  		assert(ptoappend != NULL);
 | |
|  		assert(ntoappend > 0);
 | |
|  		while (usednew + ntoappend > totalnew) {
 | |
|  			int bigger = totalnew << 1;
 | |
|  			if ((bigger >> 1) != totalnew) { /* overflow */
 | |
|  				PyErr_NoMemory();
 | |
|  				goto Done;
 | |
|  			}
 | |
|  			if (_PyString_Resize(&newfmt, bigger) < 0)
 | |
|  				goto Done;
 | |
|  			totalnew = bigger;
 | |
|  			pnew = PyString_AsString(newfmt) + usednew;
 | |
|  		}
 | |
| 		memcpy(pnew, ptoappend, ntoappend);
 | |
| 		pnew += ntoappend;
 | |
| 		usednew += ntoappend;
 | |
| 		assert(usednew <= totalnew);
 | |
| 	}  /* end while() */
 | |
| 
 | |
| 	if (_PyString_Resize(&newfmt, usednew) < 0)
 | |
| 		goto Done;
 | |
| 	{
 | |
| 		PyObject *format;
 | |
| 		PyObject *time = PyImport_ImportModule("time");
 | |
| 		if (time == NULL)
 | |
| 			goto Done;
 | |
| 		format = PyUnicode_FromString(PyString_AS_STRING(newfmt));
 | |
| 		if (format != NULL) {
 | |
| 			result = PyObject_CallMethod(time, "strftime", "OO",
 | |
| 						     format, timetuple);
 | |
| 			Py_DECREF(format);
 | |
| 		}
 | |
| 		Py_DECREF(time);
 | |
|     	}
 | |
|  Done:
 | |
| 	Py_XDECREF(zreplacement);
 | |
| 	Py_XDECREF(Zreplacement);
 | |
| 	Py_XDECREF(newfmt);
 | |
|     	return result;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Wrap functions from the time module.  These aren't directly available
 | |
|  * from C.  Perhaps they should be.
 | |
|  */
 | |
| 
 | |
| /* Call time.time() and return its result (a Python float). */
 | |
| static PyObject *
 | |
| time_time(void)
 | |
| {
 | |
| 	PyObject *result = NULL;
 | |
| 	PyObject *time = PyImport_ImportModule("time");
 | |
| 
 | |
| 	if (time != NULL) {
 | |
| 		result = PyObject_CallMethod(time, "time", "()");
 | |
| 		Py_DECREF(time);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Build a time.struct_time.  The weekday and day number are automatically
 | |
|  * computed from the y,m,d args.
 | |
|  */
 | |
| static PyObject *
 | |
| build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
 | |
| {
 | |
| 	PyObject *time;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	time = PyImport_ImportModule("time");
 | |
| 	if (time != NULL) {
 | |
| 		result = PyObject_CallMethod(time, "struct_time",
 | |
| 					     "((iiiiiiiii))",
 | |
| 					     y, m, d,
 | |
| 					     hh, mm, ss,
 | |
| 				 	     weekday(y, m, d),
 | |
| 				 	     days_before_month(y, m) + d,
 | |
| 				 	     dstflag);
 | |
| 		Py_DECREF(time);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Miscellaneous helpers.
 | |
|  */
 | |
| 
 | |
| /* For various reasons, we need to use tp_richcompare instead of tp_compare.
 | |
|  * The comparisons here all most naturally compute a cmp()-like result.
 | |
|  * This little helper turns that into a bool result for rich comparisons.
 | |
|  */
 | |
| static PyObject *
 | |
| diff_to_bool(int diff, int op)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 	int istrue;
 | |
| 
 | |
| 	switch (op) {
 | |
| 		case Py_EQ: istrue = diff == 0; break;
 | |
| 		case Py_NE: istrue = diff != 0; break;
 | |
| 		case Py_LE: istrue = diff <= 0; break;
 | |
| 		case Py_GE: istrue = diff >= 0; break;
 | |
| 		case Py_LT: istrue = diff < 0; break;
 | |
| 		case Py_GT: istrue = diff > 0; break;
 | |
| 		default:
 | |
| 			assert(! "op unknown");
 | |
| 			istrue = 0; /* To shut up compiler */
 | |
| 	}
 | |
| 	result = istrue ? Py_True : Py_False;
 | |
| 	Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Raises a "can't compare" TypeError and returns NULL. */
 | |
| static PyObject *
 | |
| cmperror(PyObject *a, PyObject *b)
 | |
| {
 | |
| 	PyErr_Format(PyExc_TypeError,
 | |
| 		     "can't compare %s to %s",
 | |
| 		     Py_TYPE(a)->tp_name, Py_TYPE(b)->tp_name);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Cached Python objects; these are set by the module init function.
 | |
|  */
 | |
| 
 | |
| /* Conversion factors. */
 | |
| static PyObject *us_per_us = NULL;	/* 1 */
 | |
| static PyObject *us_per_ms = NULL;	/* 1000 */
 | |
| static PyObject *us_per_second = NULL;	/* 1000000 */
 | |
| static PyObject *us_per_minute = NULL;	/* 1e6 * 60 as Python int */
 | |
| static PyObject *us_per_hour = NULL;	/* 1e6 * 3600 as Python long */
 | |
| static PyObject *us_per_day = NULL;	/* 1e6 * 3600 * 24 as Python long */
 | |
| static PyObject *us_per_week = NULL;	/* 1e6*3600*24*7 as Python long */
 | |
| static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Class implementations.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * PyDateTime_Delta implementation.
 | |
|  */
 | |
| 
 | |
| /* Convert a timedelta to a number of us,
 | |
|  * 	(24*3600*self.days + self.seconds)*1000000 + self.microseconds
 | |
|  * as a Python int or long.
 | |
|  * Doing mixed-radix arithmetic by hand instead is excruciating in C,
 | |
|  * due to ubiquitous overflow possibilities.
 | |
|  */
 | |
| static PyObject *
 | |
| delta_to_microseconds(PyDateTime_Delta *self)
 | |
| {
 | |
| 	PyObject *x1 = NULL;
 | |
| 	PyObject *x2 = NULL;
 | |
| 	PyObject *x3 = NULL;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	x1 = PyLong_FromLong(GET_TD_DAYS(self));
 | |
| 	if (x1 == NULL)
 | |
| 		goto Done;
 | |
| 	x2 = PyNumber_Multiply(x1, seconds_per_day);	/* days in seconds */
 | |
| 	if (x2 == NULL)
 | |
| 		goto Done;
 | |
| 	Py_DECREF(x1);
 | |
| 	x1 = NULL;
 | |
| 
 | |
| 	/* x2 has days in seconds */
 | |
| 	x1 = PyLong_FromLong(GET_TD_SECONDS(self));	/* seconds */
 | |
| 	if (x1 == NULL)
 | |
| 		goto Done;
 | |
| 	x3 = PyNumber_Add(x1, x2);	/* days and seconds in seconds */
 | |
| 	if (x3 == NULL)
 | |
| 		goto Done;
 | |
| 	Py_DECREF(x1);
 | |
| 	Py_DECREF(x2);
 | |
| 	x1 = x2 = NULL;
 | |
| 
 | |
| 	/* x3 has days+seconds in seconds */
 | |
| 	x1 = PyNumber_Multiply(x3, us_per_second);	/* us */
 | |
| 	if (x1 == NULL)
 | |
| 		goto Done;
 | |
| 	Py_DECREF(x3);
 | |
| 	x3 = NULL;
 | |
| 
 | |
| 	/* x1 has days+seconds in us */
 | |
| 	x2 = PyLong_FromLong(GET_TD_MICROSECONDS(self));
 | |
| 	if (x2 == NULL)
 | |
| 		goto Done;
 | |
| 	result = PyNumber_Add(x1, x2);
 | |
| 
 | |
| Done:
 | |
| 	Py_XDECREF(x1);
 | |
| 	Py_XDECREF(x2);
 | |
| 	Py_XDECREF(x3);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Convert a number of us (as a Python int or long) to a timedelta.
 | |
|  */
 | |
| static PyObject *
 | |
| microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
 | |
| {
 | |
| 	int us;
 | |
| 	int s;
 | |
| 	int d;
 | |
| 	long temp;
 | |
| 
 | |
| 	PyObject *tuple = NULL;
 | |
| 	PyObject *num = NULL;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	tuple = PyNumber_Divmod(pyus, us_per_second);
 | |
| 	if (tuple == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	num = PyTuple_GetItem(tuple, 1);	/* us */
 | |
| 	if (num == NULL)
 | |
| 		goto Done;
 | |
| 	temp = PyLong_AsLong(num);
 | |
| 	num = NULL;
 | |
| 	if (temp == -1 && PyErr_Occurred())
 | |
| 		goto Done;
 | |
| 	assert(0 <= temp && temp < 1000000);
 | |
| 	us = (int)temp;
 | |
| 	if (us < 0) {
 | |
| 		/* The divisor was positive, so this must be an error. */
 | |
| 		assert(PyErr_Occurred());
 | |
| 		goto Done;
 | |
| 	}
 | |
| 
 | |
| 	num = PyTuple_GetItem(tuple, 0);	/* leftover seconds */
 | |
| 	if (num == NULL)
 | |
| 		goto Done;
 | |
| 	Py_INCREF(num);
 | |
| 	Py_DECREF(tuple);
 | |
| 
 | |
| 	tuple = PyNumber_Divmod(num, seconds_per_day);
 | |
| 	if (tuple == NULL)
 | |
| 		goto Done;
 | |
| 	Py_DECREF(num);
 | |
| 
 | |
| 	num = PyTuple_GetItem(tuple, 1); 	/* seconds */
 | |
| 	if (num == NULL)
 | |
| 		goto Done;
 | |
| 	temp = PyLong_AsLong(num);
 | |
| 	num = NULL;
 | |
| 	if (temp == -1 && PyErr_Occurred())
 | |
| 		goto Done;
 | |
| 	assert(0 <= temp && temp < 24*3600);
 | |
| 	s = (int)temp;
 | |
| 
 | |
| 	if (s < 0) {
 | |
| 		/* The divisor was positive, so this must be an error. */
 | |
| 		assert(PyErr_Occurred());
 | |
| 		goto Done;
 | |
| 	}
 | |
| 
 | |
| 	num = PyTuple_GetItem(tuple, 0);	/* leftover days */
 | |
| 	if (num == NULL)
 | |
| 		goto Done;
 | |
| 	Py_INCREF(num);
 | |
| 	temp = PyLong_AsLong(num);
 | |
| 	if (temp == -1 && PyErr_Occurred())
 | |
| 		goto Done;
 | |
| 	d = (int)temp;
 | |
| 	if ((long)d != temp) {
 | |
| 		PyErr_SetString(PyExc_OverflowError, "normalized days too "
 | |
| 				"large to fit in a C int");
 | |
| 		goto Done;
 | |
| 	}
 | |
| 	result = new_delta_ex(d, s, us, 0, type);
 | |
| 
 | |
| Done:
 | |
| 	Py_XDECREF(tuple);
 | |
| 	Py_XDECREF(num);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| #define microseconds_to_delta(pymicros)	\
 | |
| 	microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
 | |
| 
 | |
| static PyObject *
 | |
| multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
 | |
| {
 | |
| 	PyObject *pyus_in;
 | |
| 	PyObject *pyus_out;
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	pyus_in = delta_to_microseconds(delta);
 | |
| 	if (pyus_in == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pyus_out = PyNumber_Multiply(pyus_in, intobj);
 | |
| 	Py_DECREF(pyus_in);
 | |
| 	if (pyus_out == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	result = microseconds_to_delta(pyus_out);
 | |
| 	Py_DECREF(pyus_out);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
 | |
| {
 | |
| 	PyObject *pyus_in;
 | |
| 	PyObject *pyus_out;
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	pyus_in = delta_to_microseconds(delta);
 | |
| 	if (pyus_in == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
 | |
| 	Py_DECREF(pyus_in);
 | |
| 	if (pyus_out == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	result = microseconds_to_delta(pyus_out);
 | |
| 	Py_DECREF(pyus_out);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_add(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	PyObject *result = Py_NotImplemented;
 | |
| 
 | |
| 	if (PyDelta_Check(left) && PyDelta_Check(right)) {
 | |
| 		/* delta + delta */
 | |
| 		/* The C-level additions can't overflow because of the
 | |
| 		 * invariant bounds.
 | |
| 		 */
 | |
| 		int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
 | |
| 		int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
 | |
| 		int microseconds = GET_TD_MICROSECONDS(left) +
 | |
| 				   GET_TD_MICROSECONDS(right);
 | |
| 		result = new_delta(days, seconds, microseconds, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (result == Py_NotImplemented)
 | |
| 		Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_negative(PyDateTime_Delta *self)
 | |
| {
 | |
| 	return new_delta(-GET_TD_DAYS(self),
 | |
| 			 -GET_TD_SECONDS(self),
 | |
| 			 -GET_TD_MICROSECONDS(self),
 | |
| 			 1);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_positive(PyDateTime_Delta *self)
 | |
| {
 | |
| 	/* Could optimize this (by returning self) if this isn't a
 | |
| 	 * subclass -- but who uses unary + ?  Approximately nobody.
 | |
| 	 */
 | |
| 	return new_delta(GET_TD_DAYS(self),
 | |
| 			 GET_TD_SECONDS(self),
 | |
| 			 GET_TD_MICROSECONDS(self),
 | |
| 			 0);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_abs(PyDateTime_Delta *self)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	assert(GET_TD_MICROSECONDS(self) >= 0);
 | |
| 	assert(GET_TD_SECONDS(self) >= 0);
 | |
| 
 | |
| 	if (GET_TD_DAYS(self) < 0)
 | |
| 		result = delta_negative(self);
 | |
| 	else
 | |
| 		result = delta_positive(self);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_subtract(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	PyObject *result = Py_NotImplemented;
 | |
| 
 | |
| 	if (PyDelta_Check(left) && PyDelta_Check(right)) {
 | |
| 	    	/* delta - delta */
 | |
| 	    	PyObject *minus_right = PyNumber_Negative(right);
 | |
| 	    	if (minus_right) {
 | |
| 	    		result = delta_add(left, minus_right);
 | |
| 	    		Py_DECREF(minus_right);
 | |
| 	    	}
 | |
| 	    	else
 | |
| 	    		result = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (result == Py_NotImplemented)
 | |
| 		Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_richcompare(PyObject *self, PyObject *other, int op)
 | |
| {
 | |
| 	if (PyDelta_Check(other)) {
 | |
| 		int diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
 | |
| 		if (diff == 0) {
 | |
| 			diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
 | |
| 			if (diff == 0)
 | |
| 				diff = GET_TD_MICROSECONDS(self) -
 | |
| 				       GET_TD_MICROSECONDS(other);
 | |
| 		}
 | |
| 		return diff_to_bool(diff, op);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyObject *delta_getstate(PyDateTime_Delta *self);
 | |
| 
 | |
| static long
 | |
| delta_hash(PyDateTime_Delta *self)
 | |
| {
 | |
| 	if (self->hashcode == -1) {
 | |
| 		PyObject *temp = delta_getstate(self);
 | |
| 		if (temp != NULL) {
 | |
| 			self->hashcode = PyObject_Hash(temp);
 | |
| 			Py_DECREF(temp);
 | |
| 		}
 | |
| 	}
 | |
| 	return self->hashcode;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_multiply(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	PyObject *result = Py_NotImplemented;
 | |
| 
 | |
| 	if (PyDelta_Check(left)) {
 | |
| 		/* delta * ??? */
 | |
| 		if (PyLong_Check(right))
 | |
| 			result = multiply_int_timedelta(right,
 | |
| 					(PyDateTime_Delta *) left);
 | |
| 	}
 | |
| 	else if (PyLong_Check(left))
 | |
| 		result = multiply_int_timedelta(left,
 | |
| 						(PyDateTime_Delta *) right);
 | |
| 
 | |
| 	if (result == Py_NotImplemented)
 | |
| 		Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_divide(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	PyObject *result = Py_NotImplemented;
 | |
| 
 | |
| 	if (PyDelta_Check(left)) {
 | |
| 		/* delta * ??? */
 | |
| 		if (PyLong_Check(right))
 | |
| 			result = divide_timedelta_int(
 | |
| 					(PyDateTime_Delta *)left,
 | |
| 					right);
 | |
| 	}
 | |
| 
 | |
| 	if (result == Py_NotImplemented)
 | |
| 		Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Fold in the value of the tag ("seconds", "weeks", etc) component of a
 | |
|  * timedelta constructor.  sofar is the # of microseconds accounted for
 | |
|  * so far, and there are factor microseconds per current unit, the number
 | |
|  * of which is given by num.  num * factor is added to sofar in a
 | |
|  * numerically careful way, and that's the result.  Any fractional
 | |
|  * microseconds left over (this can happen if num is a float type) are
 | |
|  * added into *leftover.
 | |
|  * Note that there are many ways this can give an error (NULL) return.
 | |
|  */
 | |
| static PyObject *
 | |
| accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
 | |
|       double *leftover)
 | |
| {
 | |
| 	PyObject *prod;
 | |
| 	PyObject *sum;
 | |
| 
 | |
| 	assert(num != NULL);
 | |
| 
 | |
| 	if (PyLong_Check(num)) {
 | |
| 		prod = PyNumber_Multiply(num, factor);
 | |
| 		if (prod == NULL)
 | |
| 			return NULL;
 | |
| 		sum = PyNumber_Add(sofar, prod);
 | |
| 		Py_DECREF(prod);
 | |
| 		return sum;
 | |
| 	}
 | |
| 
 | |
| 	if (PyFloat_Check(num)) {
 | |
| 		double dnum;
 | |
| 		double fracpart;
 | |
| 		double intpart;
 | |
| 		PyObject *x;
 | |
| 		PyObject *y;
 | |
| 
 | |
| 		/* The Plan:  decompose num into an integer part and a
 | |
| 		 * fractional part, num = intpart + fracpart.
 | |
| 		 * Then num * factor ==
 | |
| 		 *      intpart * factor + fracpart * factor
 | |
| 		 * and the LHS can be computed exactly in long arithmetic.
 | |
| 		 * The RHS is again broken into an int part and frac part.
 | |
| 		 * and the frac part is added into *leftover.
 | |
| 		 */
 | |
| 		dnum = PyFloat_AsDouble(num);
 | |
| 		if (dnum == -1.0 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		fracpart = modf(dnum, &intpart);
 | |
| 		x = PyLong_FromDouble(intpart);
 | |
| 		if (x == NULL)
 | |
| 			return NULL;
 | |
| 
 | |
| 		prod = PyNumber_Multiply(x, factor);
 | |
| 		Py_DECREF(x);
 | |
| 		if (prod == NULL)
 | |
| 			return NULL;
 | |
| 
 | |
| 		sum = PyNumber_Add(sofar, prod);
 | |
| 		Py_DECREF(prod);
 | |
| 		if (sum == NULL)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (fracpart == 0.0)
 | |
| 			return sum;
 | |
| 		/* So far we've lost no information.  Dealing with the
 | |
| 		 * fractional part requires float arithmetic, and may
 | |
| 		 * lose a little info.
 | |
| 		 */
 | |
| 		assert(PyLong_Check(factor));
 | |
| 		dnum = PyLong_AsDouble(factor);
 | |
| 
 | |
| 		dnum *= fracpart;
 | |
| 		fracpart = modf(dnum, &intpart);
 | |
| 		x = PyLong_FromDouble(intpart);
 | |
| 		if (x == NULL) {
 | |
| 			Py_DECREF(sum);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		y = PyNumber_Add(sum, x);
 | |
| 		Py_DECREF(sum);
 | |
| 		Py_DECREF(x);
 | |
| 		*leftover += fracpart;
 | |
| 		return y;
 | |
| 	}
 | |
| 
 | |
| 	PyErr_Format(PyExc_TypeError,
 | |
| 		     "unsupported type for timedelta %s component: %s",
 | |
| 		     tag, Py_TYPE(num)->tp_name);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *self = NULL;
 | |
| 
 | |
| 	/* Argument objects. */
 | |
| 	PyObject *day = NULL;
 | |
| 	PyObject *second = NULL;
 | |
| 	PyObject *us = NULL;
 | |
| 	PyObject *ms = NULL;
 | |
| 	PyObject *minute = NULL;
 | |
| 	PyObject *hour = NULL;
 | |
| 	PyObject *week = NULL;
 | |
| 
 | |
| 	PyObject *x = NULL;	/* running sum of microseconds */
 | |
| 	PyObject *y = NULL;	/* temp sum of microseconds */
 | |
| 	double leftover_us = 0.0;
 | |
| 
 | |
| 	static char *keywords[] = {
 | |
| 		"days", "seconds", "microseconds", "milliseconds",
 | |
| 		"minutes", "hours", "weeks", NULL
 | |
| 	};
 | |
| 
 | |
| 	if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
 | |
| 					keywords,
 | |
| 					&day, &second, &us,
 | |
| 					&ms, &minute, &hour, &week) == 0)
 | |
| 		goto Done;
 | |
| 
 | |
| 	x = PyLong_FromLong(0);
 | |
| 	if (x == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| #define CLEANUP 	\
 | |
| 	Py_DECREF(x);	\
 | |
| 	x = y;		\
 | |
| 	if (x == NULL)	\
 | |
| 		goto Done
 | |
| 
 | |
| 	if (us) {
 | |
| 		y = accum("microseconds", x, us, us_per_us, &leftover_us);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 	if (ms) {
 | |
| 		y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 	if (second) {
 | |
| 		y = accum("seconds", x, second, us_per_second, &leftover_us);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 	if (minute) {
 | |
| 		y = accum("minutes", x, minute, us_per_minute, &leftover_us);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 	if (hour) {
 | |
| 		y = accum("hours", x, hour, us_per_hour, &leftover_us);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 	if (day) {
 | |
| 		y = accum("days", x, day, us_per_day, &leftover_us);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 	if (week) {
 | |
| 		y = accum("weeks", x, week, us_per_week, &leftover_us);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 	if (leftover_us) {
 | |
| 		/* Round to nearest whole # of us, and add into x. */
 | |
| 		PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
 | |
| 		if (temp == NULL) {
 | |
| 			Py_DECREF(x);
 | |
| 			goto Done;
 | |
| 		}
 | |
| 		y = PyNumber_Add(x, temp);
 | |
| 		Py_DECREF(temp);
 | |
| 		CLEANUP;
 | |
| 	}
 | |
| 
 | |
| 	self = microseconds_to_delta_ex(x, type);
 | |
| 	Py_DECREF(x);
 | |
| Done:
 | |
| 	return self;
 | |
| 
 | |
| #undef CLEANUP
 | |
| }
 | |
| 
 | |
| static int
 | |
| delta_bool(PyDateTime_Delta *self)
 | |
| {
 | |
| 	return (GET_TD_DAYS(self) != 0
 | |
| 		|| GET_TD_SECONDS(self) != 0
 | |
| 		|| GET_TD_MICROSECONDS(self) != 0);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_repr(PyDateTime_Delta *self)
 | |
| {
 | |
| 	if (GET_TD_MICROSECONDS(self) != 0)
 | |
| 		return PyUnicode_FromFormat("%s(%d, %d, %d)",
 | |
| 		                            Py_TYPE(self)->tp_name,
 | |
| 		                            GET_TD_DAYS(self),
 | |
| 		                            GET_TD_SECONDS(self),
 | |
| 		                            GET_TD_MICROSECONDS(self));
 | |
| 	if (GET_TD_SECONDS(self) != 0)
 | |
| 		return PyUnicode_FromFormat("%s(%d, %d)",
 | |
| 		                            Py_TYPE(self)->tp_name,
 | |
| 		                            GET_TD_DAYS(self),
 | |
| 		                            GET_TD_SECONDS(self));
 | |
| 
 | |
| 	return PyUnicode_FromFormat("%s(%d)",
 | |
| 	                            Py_TYPE(self)->tp_name,
 | |
| 	                            GET_TD_DAYS(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_str(PyDateTime_Delta *self)
 | |
| {
 | |
| 	int us = GET_TD_MICROSECONDS(self);
 | |
| 	int seconds = GET_TD_SECONDS(self);
 | |
| 	int minutes = divmod(seconds, 60, &seconds);
 | |
| 	int hours = divmod(minutes, 60, &minutes);
 | |
| 	int days = GET_TD_DAYS(self);
 | |
| 
 | |
| 	if (days) {
 | |
| 		if (us)
 | |
| 			return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d.%06d",
 | |
| 			                            days, (days == 1 || days == -1) ? "" : "s",
 | |
| 			                            hours, minutes, seconds, us);
 | |
| 		else
 | |
| 			return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d",
 | |
| 			                            days, (days == 1 || days == -1) ? "" : "s",
 | |
| 			                            hours, minutes, seconds);
 | |
| 	} else {
 | |
| 		if (us)
 | |
| 			return PyUnicode_FromFormat("%d:%02d:%02d.%06d",
 | |
| 			                            hours, minutes, seconds, us);
 | |
| 		else
 | |
| 			return PyUnicode_FromFormat("%d:%02d:%02d",
 | |
| 			                            hours, minutes, seconds);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Pickle support, a simple use of __reduce__. */
 | |
| 
 | |
| /* __getstate__ isn't exposed */
 | |
| static PyObject *
 | |
| delta_getstate(PyDateTime_Delta *self)
 | |
| {
 | |
| 	return Py_BuildValue("iii", GET_TD_DAYS(self),
 | |
| 				    GET_TD_SECONDS(self),
 | |
| 				    GET_TD_MICROSECONDS(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| delta_reduce(PyDateTime_Delta* self)
 | |
| {
 | |
| 	return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self));
 | |
| }
 | |
| 
 | |
| #define OFFSET(field)  offsetof(PyDateTime_Delta, field)
 | |
| 
 | |
| static PyMemberDef delta_members[] = {
 | |
| 
 | |
| 	{"days",         T_INT, OFFSET(days),         READONLY,
 | |
| 	 PyDoc_STR("Number of days.")},
 | |
| 
 | |
| 	{"seconds",      T_INT, OFFSET(seconds),      READONLY,
 | |
| 	 PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
 | |
| 
 | |
| 	{"microseconds", T_INT, OFFSET(microseconds), READONLY,
 | |
| 	 PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
 | |
| 	{NULL}
 | |
| };
 | |
| 
 | |
| static PyMethodDef delta_methods[] = {
 | |
| 	{"__reduce__", (PyCFunction)delta_reduce,     METH_NOARGS,
 | |
| 	 PyDoc_STR("__reduce__() -> (cls, state)")},
 | |
| 
 | |
| 	{NULL,	NULL},
 | |
| };
 | |
| 
 | |
| static char delta_doc[] =
 | |
| PyDoc_STR("Difference between two datetime values.");
 | |
| 
 | |
| static PyNumberMethods delta_as_number = {
 | |
| 	delta_add,				/* nb_add */
 | |
| 	delta_subtract,				/* nb_subtract */
 | |
| 	delta_multiply,				/* nb_multiply */
 | |
| 	0,					/* nb_remainder */
 | |
| 	0,					/* nb_divmod */
 | |
| 	0,					/* nb_power */
 | |
| 	(unaryfunc)delta_negative,		/* nb_negative */
 | |
| 	(unaryfunc)delta_positive,		/* nb_positive */
 | |
| 	(unaryfunc)delta_abs,			/* nb_absolute */
 | |
| 	(inquiry)delta_bool,			/* nb_bool */
 | |
| 	0,					/*nb_invert*/
 | |
| 	0,					/*nb_lshift*/
 | |
| 	0,					/*nb_rshift*/
 | |
| 	0,					/*nb_and*/
 | |
| 	0,					/*nb_xor*/
 | |
| 	0,					/*nb_or*/
 | |
| 	0,					/*nb_reserved*/
 | |
| 	0,					/*nb_int*/
 | |
| 	0,					/*nb_long*/
 | |
| 	0,					/*nb_float*/
 | |
| 	0,					/*nb_oct*/
 | |
| 	0, 					/*nb_hex*/
 | |
| 	0,					/*nb_inplace_add*/
 | |
| 	0,					/*nb_inplace_subtract*/
 | |
| 	0,					/*nb_inplace_multiply*/
 | |
| 	0,					/*nb_inplace_remainder*/
 | |
| 	0,					/*nb_inplace_power*/
 | |
| 	0,					/*nb_inplace_lshift*/
 | |
| 	0,					/*nb_inplace_rshift*/
 | |
| 	0,					/*nb_inplace_and*/
 | |
| 	0,					/*nb_inplace_xor*/
 | |
| 	0,					/*nb_inplace_or*/
 | |
| 	delta_divide,				/* nb_floor_divide */
 | |
| 	0,					/* nb_true_divide */
 | |
| 	0,					/* nb_inplace_floor_divide */
 | |
| 	0,					/* nb_inplace_true_divide */
 | |
| };
 | |
| 
 | |
| static PyTypeObject PyDateTime_DeltaType = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"datetime.timedelta",				/* tp_name */
 | |
| 	sizeof(PyDateTime_Delta),			/* tp_basicsize */
 | |
| 	0,						/* tp_itemsize */
 | |
| 	0,						/* tp_dealloc */
 | |
| 	0,						/* tp_print */
 | |
| 	0,						/* tp_getattr */
 | |
| 	0,						/* tp_setattr */
 | |
| 	0,						/* tp_compare */
 | |
| 	(reprfunc)delta_repr,				/* tp_repr */
 | |
| 	&delta_as_number,				/* tp_as_number */
 | |
| 	0,						/* tp_as_sequence */
 | |
| 	0,						/* tp_as_mapping */
 | |
| 	(hashfunc)delta_hash,				/* tp_hash */
 | |
| 	0,              				/* tp_call */
 | |
| 	(reprfunc)delta_str,				/* tp_str */
 | |
| 	PyObject_GenericGetAttr,			/* tp_getattro */
 | |
| 	0,						/* tp_setattro */
 | |
| 	0,						/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,	/* tp_flags */
 | |
| 	delta_doc,					/* tp_doc */
 | |
| 	0,						/* tp_traverse */
 | |
| 	0,						/* tp_clear */
 | |
| 	delta_richcompare,				/* tp_richcompare */
 | |
| 	0,						/* tp_weaklistoffset */
 | |
| 	0,						/* tp_iter */
 | |
| 	0,						/* tp_iternext */
 | |
| 	delta_methods,					/* tp_methods */
 | |
| 	delta_members,					/* tp_members */
 | |
| 	0,						/* tp_getset */
 | |
| 	0,						/* tp_base */
 | |
| 	0,						/* tp_dict */
 | |
| 	0,						/* tp_descr_get */
 | |
| 	0,						/* tp_descr_set */
 | |
| 	0,						/* tp_dictoffset */
 | |
| 	0,						/* tp_init */
 | |
| 	0,						/* tp_alloc */
 | |
| 	delta_new,					/* tp_new */
 | |
| 	0,						/* tp_free */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * PyDateTime_Date implementation.
 | |
|  */
 | |
| 
 | |
| /* Accessor properties. */
 | |
| 
 | |
| static PyObject *
 | |
| date_year(PyDateTime_Date *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(GET_YEAR(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_month(PyDateTime_Date *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(GET_MONTH(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_day(PyDateTime_Date *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(GET_DAY(self));
 | |
| }
 | |
| 
 | |
| static PyGetSetDef date_getset[] = {
 | |
| 	{"year",        (getter)date_year},
 | |
| 	{"month",       (getter)date_month},
 | |
| 	{"day",         (getter)date_day},
 | |
| 	{NULL}
 | |
| };
 | |
| 
 | |
| /* Constructors. */
 | |
| 
 | |
| static char *date_kws[] = {"year", "month", "day", NULL};
 | |
| 
 | |
| static PyObject *
 | |
| date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *self = NULL;
 | |
| 	PyObject *state;
 | |
| 	int year;
 | |
| 	int month;
 | |
| 	int day;
 | |
| 
 | |
| 	/* Check for invocation from pickle with __getstate__ state */
 | |
| 	if (PyTuple_GET_SIZE(args) == 1 &&
 | |
| 	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
 | |
| 	    PyString_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
 | |
| 	    MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
 | |
| 	{
 | |
| 	    	PyDateTime_Date *me;
 | |
| 
 | |
| 		me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
 | |
| 		if (me != NULL) {
 | |
| 			char *pdata = PyString_AS_STRING(state);
 | |
| 			memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
 | |
| 			me->hashcode = -1;
 | |
| 		}
 | |
| 		return (PyObject *)me;
 | |
| 	}
 | |
| 
 | |
| 	if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
 | |
| 					&year, &month, &day)) {
 | |
| 		if (check_date_args(year, month, day) < 0)
 | |
| 			return NULL;
 | |
| 		self = new_date_ex(year, month, day, type);
 | |
| 	}
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| /* Return new date from localtime(t). */
 | |
| static PyObject *
 | |
| date_local_from_time_t(PyObject *cls, double ts)
 | |
| {
 | |
| 	struct tm *tm;
 | |
| 	time_t t;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	t = _PyTime_DoubleToTimet(ts);
 | |
| 	if (t == (time_t)-1 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	tm = localtime(&t);
 | |
| 	if (tm)
 | |
| 		result = PyObject_CallFunction(cls, "iii",
 | |
| 					       tm->tm_year + 1900,
 | |
| 					       tm->tm_mon + 1,
 | |
| 					       tm->tm_mday);
 | |
| 	else
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"timestamp out of range for "
 | |
| 				"platform localtime() function");
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Return new date from current time.
 | |
|  * We say this is equivalent to fromtimestamp(time.time()), and the
 | |
|  * only way to be sure of that is to *call* time.time().  That's not
 | |
|  * generally the same as calling C's time.
 | |
|  */
 | |
| static PyObject *
 | |
| date_today(PyObject *cls, PyObject *dummy)
 | |
| {
 | |
| 	PyObject *time;
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	time = time_time();
 | |
| 	if (time == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Note well:  today() is a class method, so this may not call
 | |
| 	 * date.fromtimestamp.  For example, it may call
 | |
| 	 * datetime.fromtimestamp.  That's why we need all the accuracy
 | |
| 	 * time.time() delivers; if someone were gonzo about optimization,
 | |
| 	 * date.today() could get away with plain C time().
 | |
| 	 */
 | |
| 	result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
 | |
| 	Py_DECREF(time);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Return new date from given timestamp (Python timestamp -- a double). */
 | |
| static PyObject *
 | |
| date_fromtimestamp(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	double timestamp;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	if (PyArg_ParseTuple(args, "d:fromtimestamp", ×tamp))
 | |
| 		result = date_local_from_time_t(cls, timestamp);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Return new date from proleptic Gregorian ordinal.  Raises ValueError if
 | |
|  * the ordinal is out of range.
 | |
|  */
 | |
| static PyObject *
 | |
| date_fromordinal(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	PyObject *result = NULL;
 | |
| 	int ordinal;
 | |
| 
 | |
| 	if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
 | |
| 		int year;
 | |
| 		int month;
 | |
| 		int day;
 | |
| 
 | |
| 		if (ordinal < 1)
 | |
| 			PyErr_SetString(PyExc_ValueError, "ordinal must be "
 | |
| 							  ">= 1");
 | |
| 		else {
 | |
| 			ord_to_ymd(ordinal, &year, &month, &day);
 | |
| 			result = PyObject_CallFunction(cls, "iii",
 | |
| 						       year, month, day);
 | |
| 		}
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Date arithmetic.
 | |
|  */
 | |
| 
 | |
| /* date + timedelta -> date.  If arg negate is true, subtract the timedelta
 | |
|  * instead.
 | |
|  */
 | |
| static PyObject *
 | |
| add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
 | |
| {
 | |
| 	PyObject *result = NULL;
 | |
| 	int year = GET_YEAR(date);
 | |
| 	int month = GET_MONTH(date);
 | |
| 	int deltadays = GET_TD_DAYS(delta);
 | |
| 	/* C-level overflow is impossible because |deltadays| < 1e9. */
 | |
| 	int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
 | |
| 
 | |
| 	if (normalize_date(&year, &month, &day) >= 0)
 | |
| 		result = new_date(year, month, day);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_add(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 	if (PyDate_Check(left)) {
 | |
| 		/* date + ??? */
 | |
| 		if (PyDelta_Check(right))
 | |
| 			/* date + delta */
 | |
| 			return add_date_timedelta((PyDateTime_Date *) left,
 | |
| 						  (PyDateTime_Delta *) right,
 | |
| 						  0);
 | |
| 	}
 | |
| 	else {
 | |
| 		/* ??? + date
 | |
| 		 * 'right' must be one of us, or we wouldn't have been called
 | |
| 		 */
 | |
| 		if (PyDelta_Check(left))
 | |
| 			/* delta + date */
 | |
| 			return add_date_timedelta((PyDateTime_Date *) right,
 | |
| 						  (PyDateTime_Delta *) left,
 | |
| 						  0);
 | |
| 	}
 | |
| 	Py_INCREF(Py_NotImplemented);
 | |
| 	return Py_NotImplemented;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_subtract(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 	if (PyDate_Check(left)) {
 | |
| 		if (PyDate_Check(right)) {
 | |
| 			/* date - date */
 | |
| 			int left_ord = ymd_to_ord(GET_YEAR(left),
 | |
| 						  GET_MONTH(left),
 | |
| 						  GET_DAY(left));
 | |
| 			int right_ord = ymd_to_ord(GET_YEAR(right),
 | |
| 						   GET_MONTH(right),
 | |
| 						   GET_DAY(right));
 | |
| 			return new_delta(left_ord - right_ord, 0, 0, 0);
 | |
| 		}
 | |
| 		if (PyDelta_Check(right)) {
 | |
| 			/* date - delta */
 | |
| 			return add_date_timedelta((PyDateTime_Date *) left,
 | |
| 						  (PyDateTime_Delta *) right,
 | |
| 						  1);
 | |
| 		}
 | |
| 	}
 | |
| 	Py_INCREF(Py_NotImplemented);
 | |
| 	return Py_NotImplemented;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Various ways to turn a date into a string. */
 | |
| 
 | |
| static PyObject *
 | |
| date_repr(PyDateTime_Date *self)
 | |
| {
 | |
| 	return PyUnicode_FromFormat("%s(%d, %d, %d)",
 | |
| 	                            Py_TYPE(self)->tp_name,
 | |
| 	                            GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_isoformat(PyDateTime_Date *self)
 | |
| {
 | |
| 	return PyUnicode_FromFormat("%04d-%02d-%02d",
 | |
| 	                            GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
 | |
| }
 | |
| 
 | |
| /* str() calls the appropriate isoformat() method. */
 | |
| static PyObject *
 | |
| date_str(PyDateTime_Date *self)
 | |
| {
 | |
| 	return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| date_ctime(PyDateTime_Date *self)
 | |
| {
 | |
| 	return format_ctime(self, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	/* This method can be inherited, and needs to call the
 | |
| 	 * timetuple() method appropriate to self's class.
 | |
| 	 */
 | |
| 	PyObject *result;
 | |
| 	PyObject *format;
 | |
| 	PyObject *tuple;
 | |
| 	static char *keywords[] = {"format", NULL};
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
 | |
| 					  &format))
 | |
| 		return NULL;
 | |
| 
 | |
| 	tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
 | |
| 	if (tuple == NULL)
 | |
| 		return NULL;
 | |
| 	result = wrap_strftime((PyObject *)self, format, tuple,
 | |
| 			       (PyObject *)self);
 | |
| 	Py_DECREF(tuple);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_format(PyDateTime_Date *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *format;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "U:__format__", &format))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* if the format is zero length, return str(self) */
 | |
| 	if (PyUnicode_GetSize(format) == 0)
 | |
|                 return PyObject_Str((PyObject *)self);
 | |
| 
 | |
|         return PyObject_CallMethod((PyObject *)self, "strftime", "O", format);
 | |
| }
 | |
| 
 | |
| /* ISO methods. */
 | |
| 
 | |
| static PyObject *
 | |
| date_isoweekday(PyDateTime_Date *self)
 | |
| {
 | |
| 	int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
 | |
| 
 | |
| 	return PyLong_FromLong(dow + 1);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_isocalendar(PyDateTime_Date *self)
 | |
| {
 | |
| 	int  year         = GET_YEAR(self);
 | |
| 	int  week1_monday = iso_week1_monday(year);
 | |
| 	int today         = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
 | |
| 	int  week;
 | |
| 	int  day;
 | |
| 
 | |
| 	week = divmod(today - week1_monday, 7, &day);
 | |
| 	if (week < 0) {
 | |
| 		--year;
 | |
| 		week1_monday = iso_week1_monday(year);
 | |
| 		week = divmod(today - week1_monday, 7, &day);
 | |
| 	}
 | |
| 	else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
 | |
| 		++year;
 | |
| 		week = 0;
 | |
| 	}
 | |
| 	return Py_BuildValue("iii", year, week + 1, day + 1);
 | |
| }
 | |
| 
 | |
| /* Miscellaneous methods. */
 | |
| 
 | |
| static PyObject *
 | |
| date_richcompare(PyObject *self, PyObject *other, int op)
 | |
| {
 | |
| 	if (PyDate_Check(other)) {
 | |
| 		int diff = memcmp(((PyDateTime_Date *)self)->data,
 | |
| 				  ((PyDateTime_Date *)other)->data,
 | |
| 				  _PyDateTime_DATE_DATASIZE);
 | |
| 		return diff_to_bool(diff, op);
 | |
| 	}
 | |
| 	else {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_timetuple(PyDateTime_Date *self)
 | |
| {
 | |
| 	return build_struct_time(GET_YEAR(self),
 | |
| 				 GET_MONTH(self),
 | |
| 				 GET_DAY(self),
 | |
| 				 0, 0, 0, -1);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *clone;
 | |
| 	PyObject *tuple;
 | |
| 	int year = GET_YEAR(self);
 | |
| 	int month = GET_MONTH(self);
 | |
| 	int day = GET_DAY(self);
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws,
 | |
| 					  &year, &month, &day))
 | |
| 		return NULL;
 | |
| 	tuple = Py_BuildValue("iii", year, month, day);
 | |
| 	if (tuple == NULL)
 | |
| 		return NULL;
 | |
| 	clone = date_new(Py_TYPE(self), tuple, NULL);
 | |
| 	Py_DECREF(tuple);
 | |
| 	return clone;
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	Borrowed from stringobject.c, originally it was string_hash()
 | |
| */
 | |
| static long
 | |
| generic_hash(unsigned char *data, int len)
 | |
| {
 | |
| 	register unsigned char *p;
 | |
| 	register long x;
 | |
| 
 | |
| 	p = (unsigned char *) data;
 | |
| 	x = *p << 7;
 | |
| 	while (--len >= 0)
 | |
| 		x = (1000003*x) ^ *p++;
 | |
| 	x ^= len;
 | |
| 	if (x == -1)
 | |
| 		x = -2;
 | |
| 
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *date_getstate(PyDateTime_Date *self);
 | |
| 
 | |
| static long
 | |
| date_hash(PyDateTime_Date *self)
 | |
| {
 | |
| 	if (self->hashcode == -1)
 | |
| 		self->hashcode = generic_hash(
 | |
| 			(unsigned char *)self->data, _PyDateTime_DATE_DATASIZE);
 | |
| 
 | |
| 	return self->hashcode;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_toordinal(PyDateTime_Date *self)
 | |
| {
 | |
| 	return PyLong_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
 | |
| 					 GET_DAY(self)));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_weekday(PyDateTime_Date *self)
 | |
| {
 | |
| 	int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
 | |
| 
 | |
| 	return PyLong_FromLong(dow);
 | |
| }
 | |
| 
 | |
| /* Pickle support, a simple use of __reduce__. */
 | |
| 
 | |
| /* __getstate__ isn't exposed */
 | |
| static PyObject *
 | |
| date_getstate(PyDateTime_Date *self)
 | |
| {
 | |
| 	PyObject* field;
 | |
| 	field = PyString_FromStringAndSize((char*)self->data,
 | |
| 					   _PyDateTime_DATE_DATASIZE);
 | |
| 	return Py_BuildValue("(N)", field);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| date_reduce(PyDateTime_Date *self, PyObject *arg)
 | |
| {
 | |
| 	return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self));
 | |
| }
 | |
| 
 | |
| static PyMethodDef date_methods[] = {
 | |
| 
 | |
| 	/* Class methods: */
 | |
| 
 | |
| 	{"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
 | |
| 							   METH_CLASS,
 | |
| 	 PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
 | |
| 	 	   "time.time()).")},
 | |
| 
 | |
| 	{"fromordinal", (PyCFunction)date_fromordinal,	METH_VARARGS |
 | |
| 							METH_CLASS,
 | |
| 	 PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
 | |
| 	 	   "ordinal.")},
 | |
| 
 | |
| 	{"today",         (PyCFunction)date_today,   METH_NOARGS | METH_CLASS,
 | |
| 	 PyDoc_STR("Current date or datetime:  same as "
 | |
| 	 	   "self.__class__.fromtimestamp(time.time()).")},
 | |
| 
 | |
| 	/* Instance methods: */
 | |
| 
 | |
| 	{"ctime",       (PyCFunction)date_ctime,        METH_NOARGS,
 | |
| 	 PyDoc_STR("Return ctime() style string.")},
 | |
| 
 | |
| 	{"strftime",   	(PyCFunction)date_strftime,	METH_VARARGS | METH_KEYWORDS,
 | |
| 	 PyDoc_STR("format -> strftime() style string.")},
 | |
| 
 | |
| 	{"__format__", 	(PyCFunction)date_format,	METH_VARARGS,
 | |
| 	 PyDoc_STR("Formats self with strftime.")},
 | |
| 
 | |
| 	{"timetuple",   (PyCFunction)date_timetuple,    METH_NOARGS,
 | |
|          PyDoc_STR("Return time tuple, compatible with time.localtime().")},
 | |
| 
 | |
| 	{"isocalendar", (PyCFunction)date_isocalendar,  METH_NOARGS,
 | |
| 	 PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
 | |
| 	 	   "weekday.")},
 | |
| 
 | |
| 	{"isoformat",   (PyCFunction)date_isoformat,	METH_NOARGS,
 | |
| 	 PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
 | |
| 
 | |
| 	{"isoweekday",  (PyCFunction)date_isoweekday,   METH_NOARGS,
 | |
| 	 PyDoc_STR("Return the day of the week represented by the date.\n"
 | |
| 	 	   "Monday == 1 ... Sunday == 7")},
 | |
| 
 | |
| 	{"toordinal",   (PyCFunction)date_toordinal,    METH_NOARGS,
 | |
| 	 PyDoc_STR("Return proleptic Gregorian ordinal.  January 1 of year "
 | |
| 	 	   "1 is day 1.")},
 | |
| 
 | |
| 	{"weekday",     (PyCFunction)date_weekday,      METH_NOARGS,
 | |
| 	 PyDoc_STR("Return the day of the week represented by the date.\n"
 | |
| 		   "Monday == 0 ... Sunday == 6")},
 | |
| 
 | |
| 	{"replace",     (PyCFunction)date_replace,      METH_VARARGS | METH_KEYWORDS,
 | |
| 	 PyDoc_STR("Return date with new specified fields.")},
 | |
| 
 | |
| 	{"__reduce__", (PyCFunction)date_reduce,        METH_NOARGS,
 | |
| 	 PyDoc_STR("__reduce__() -> (cls, state)")},
 | |
| 
 | |
| 	{NULL,	NULL}
 | |
| };
 | |
| 
 | |
| static char date_doc[] =
 | |
| PyDoc_STR("date(year, month, day) --> date object");
 | |
| 
 | |
| static PyNumberMethods date_as_number = {
 | |
| 	date_add,					/* nb_add */
 | |
| 	date_subtract,					/* nb_subtract */
 | |
| 	0,						/* nb_multiply */
 | |
| 	0,						/* nb_remainder */
 | |
| 	0,						/* nb_divmod */
 | |
| 	0,						/* nb_power */
 | |
| 	0,						/* nb_negative */
 | |
| 	0,						/* nb_positive */
 | |
| 	0,						/* nb_absolute */
 | |
| 	0,						/* nb_bool */
 | |
| };
 | |
| 
 | |
| static PyTypeObject PyDateTime_DateType = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"datetime.date",				/* tp_name */
 | |
| 	sizeof(PyDateTime_Date),			/* tp_basicsize */
 | |
| 	0,						/* tp_itemsize */
 | |
| 	0,						/* tp_dealloc */
 | |
| 	0,						/* tp_print */
 | |
| 	0,						/* tp_getattr */
 | |
| 	0,						/* tp_setattr */
 | |
| 	0,						/* tp_compare */
 | |
| 	(reprfunc)date_repr,				/* tp_repr */
 | |
| 	&date_as_number,				/* tp_as_number */
 | |
| 	0,						/* tp_as_sequence */
 | |
| 	0,						/* tp_as_mapping */
 | |
| 	(hashfunc)date_hash,				/* tp_hash */
 | |
| 	0,              				/* tp_call */
 | |
| 	(reprfunc)date_str,				/* tp_str */
 | |
| 	PyObject_GenericGetAttr,			/* tp_getattro */
 | |
| 	0,						/* tp_setattro */
 | |
| 	0,						/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,	/* tp_flags */
 | |
| 	date_doc,					/* tp_doc */
 | |
| 	0,						/* tp_traverse */
 | |
| 	0,						/* tp_clear */
 | |
| 	date_richcompare,				/* tp_richcompare */
 | |
| 	0,						/* tp_weaklistoffset */
 | |
| 	0,						/* tp_iter */
 | |
| 	0,						/* tp_iternext */
 | |
| 	date_methods,					/* tp_methods */
 | |
| 	0,						/* tp_members */
 | |
| 	date_getset,					/* tp_getset */
 | |
| 	0,						/* tp_base */
 | |
| 	0,						/* tp_dict */
 | |
| 	0,						/* tp_descr_get */
 | |
| 	0,						/* tp_descr_set */
 | |
| 	0,						/* tp_dictoffset */
 | |
| 	0,						/* tp_init */
 | |
| 	0,						/* tp_alloc */
 | |
| 	date_new,					/* tp_new */
 | |
| 	0,						/* tp_free */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * PyDateTime_TZInfo implementation.
 | |
|  */
 | |
| 
 | |
| /* This is a pure abstract base class, so doesn't do anything beyond
 | |
|  * raising NotImplemented exceptions.  Real tzinfo classes need
 | |
|  * to derive from this.  This is mostly for clarity, and for efficiency in
 | |
|  * datetime and time constructors (their tzinfo arguments need to
 | |
|  * be subclasses of this tzinfo class, which is easy and quick to check).
 | |
|  *
 | |
|  * Note:  For reasons having to do with pickling of subclasses, we have
 | |
|  * to allow tzinfo objects to be instantiated.  This wasn't an issue
 | |
|  * in the Python implementation (__init__() could raise NotImplementedError
 | |
|  * there without ill effect), but doing so in the C implementation hit a
 | |
|  * brick wall.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| tzinfo_nogo(const char* methodname)
 | |
| {
 | |
| 	PyErr_Format(PyExc_NotImplementedError,
 | |
| 		     "a tzinfo subclass must implement %s()",
 | |
| 		     methodname);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Methods.  A subclass must implement these. */
 | |
| 
 | |
| static PyObject *
 | |
| tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
 | |
| {
 | |
| 	return tzinfo_nogo("tzname");
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
 | |
| {
 | |
| 	return tzinfo_nogo("utcoffset");
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
 | |
| {
 | |
| 	return tzinfo_nogo("dst");
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt)
 | |
| {
 | |
| 	int y, m, d, hh, mm, ss, us;
 | |
| 
 | |
| 	PyObject *result;
 | |
| 	int off, dst;
 | |
| 	int none;
 | |
| 	int delta;
 | |
| 
 | |
| 	if (! PyDateTime_Check(dt)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"fromutc: argument must be a datetime");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
 | |
| 	    	PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
 | |
| 	    			"is not self");
 | |
| 	    	return NULL;
 | |
| 	}
 | |
| 
 | |
| 	off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none);
 | |
| 	if (off == -1 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	if (none) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
 | |
| 				"utcoffset() result required");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dst = call_dst(dt->tzinfo, (PyObject *)dt, &none);
 | |
| 	if (dst == -1 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	if (none) {
 | |
| 		PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
 | |
| 				"dst() result required");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	y = GET_YEAR(dt);
 | |
| 	m = GET_MONTH(dt);
 | |
| 	d = GET_DAY(dt);
 | |
| 	hh = DATE_GET_HOUR(dt);
 | |
| 	mm = DATE_GET_MINUTE(dt);
 | |
| 	ss = DATE_GET_SECOND(dt);
 | |
| 	us = DATE_GET_MICROSECOND(dt);
 | |
| 
 | |
| 	delta = off - dst;
 | |
| 	mm += delta;
 | |
| 	if ((mm < 0 || mm >= 60) &&
 | |
| 	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
 | |
| 		return NULL;
 | |
| 	result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
 | |
| 	if (result == NULL)
 | |
| 		return result;
 | |
| 
 | |
| 	dst = call_dst(dt->tzinfo, result, &none);
 | |
| 	if (dst == -1 && PyErr_Occurred())
 | |
| 		goto Fail;
 | |
| 	if (none)
 | |
| 		goto Inconsistent;
 | |
| 	if (dst == 0)
 | |
| 		return result;
 | |
| 
 | |
| 	mm += dst;
 | |
| 	if ((mm < 0 || mm >= 60) &&
 | |
| 	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
 | |
| 		goto Fail;
 | |
| 	Py_DECREF(result);
 | |
| 	result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
 | |
| 	return result;
 | |
| 
 | |
| Inconsistent:
 | |
| 	PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave"
 | |
| 			"inconsistent results; cannot convert");
 | |
| 
 | |
| 	/* fall thru to failure */
 | |
| Fail:
 | |
| 	Py_DECREF(result);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pickle support.  This is solely so that tzinfo subclasses can use
 | |
|  * pickling -- tzinfo itself is supposed to be uninstantiable.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| tzinfo_reduce(PyObject *self)
 | |
| {
 | |
| 	PyObject *args, *state, *tmp;
 | |
| 	PyObject *getinitargs, *getstate;
 | |
| 
 | |
| 	tmp = PyTuple_New(0);
 | |
| 	if (tmp == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	getinitargs = PyObject_GetAttrString(self, "__getinitargs__");
 | |
| 	if (getinitargs != NULL) {
 | |
| 		args = PyObject_CallObject(getinitargs, tmp);
 | |
| 		Py_DECREF(getinitargs);
 | |
| 		if (args == NULL) {
 | |
| 			Py_DECREF(tmp);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Clear();
 | |
| 		args = tmp;
 | |
| 		Py_INCREF(args);
 | |
| 	}
 | |
| 
 | |
| 	getstate = PyObject_GetAttrString(self, "__getstate__");
 | |
| 	if (getstate != NULL) {
 | |
| 		state = PyObject_CallObject(getstate, tmp);
 | |
| 		Py_DECREF(getstate);
 | |
| 		if (state == NULL) {
 | |
| 			Py_DECREF(args);
 | |
| 			Py_DECREF(tmp);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyObject **dictptr;
 | |
| 		PyErr_Clear();
 | |
| 		state = Py_None;
 | |
| 		dictptr = _PyObject_GetDictPtr(self);
 | |
| 		if (dictptr && *dictptr && PyDict_Size(*dictptr))
 | |
| 			state = *dictptr;
 | |
| 		Py_INCREF(state);
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(tmp);
 | |
| 
 | |
| 	if (state == Py_None) {
 | |
| 		Py_DECREF(state);
 | |
| 		return Py_BuildValue("(ON)", Py_TYPE(self), args);
 | |
| 	}
 | |
| 	else
 | |
| 		return Py_BuildValue("(ONN)", Py_TYPE(self), args, state);
 | |
| }
 | |
| 
 | |
| static PyMethodDef tzinfo_methods[] = {
 | |
| 
 | |
| 	{"tzname",	(PyCFunction)tzinfo_tzname,		METH_O,
 | |
| 	 PyDoc_STR("datetime -> string name of time zone.")},
 | |
| 
 | |
| 	{"utcoffset",	(PyCFunction)tzinfo_utcoffset,		METH_O,
 | |
| 	 PyDoc_STR("datetime -> minutes east of UTC (negative for "
 | |
| 	 	   "west of UTC).")},
 | |
| 
 | |
| 	{"dst",		(PyCFunction)tzinfo_dst,		METH_O,
 | |
| 	 PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
 | |
| 
 | |
| 	{"fromutc",	(PyCFunction)tzinfo_fromutc,		METH_O,
 | |
| 	 PyDoc_STR("datetime in UTC -> datetime in local time.")},
 | |
| 
 | |
| 	{"__reduce__",  (PyCFunction)tzinfo_reduce,             METH_NOARGS,
 | |
| 	 PyDoc_STR("-> (cls, state)")},
 | |
| 
 | |
| 	{NULL, NULL}
 | |
| };
 | |
| 
 | |
| static char tzinfo_doc[] =
 | |
| PyDoc_STR("Abstract base class for time zone info objects.");
 | |
| 
 | |
| static PyTypeObject PyDateTime_TZInfoType = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"datetime.tzinfo",			/* tp_name */
 | |
| 	sizeof(PyDateTime_TZInfo),		/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	0,					/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	0,					/* tp_repr */
 | |
| 	0,					/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	0,					/* tp_hash */
 | |
| 	0,              			/* tp_call */
 | |
| 	0,					/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
 | |
| 	tzinfo_doc,				/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	0,					/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	tzinfo_methods,				/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	0,					/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	0,					/* tp_alloc */
 | |
| 	PyType_GenericNew,			/* tp_new */
 | |
| 	0,					/* tp_free */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * PyDateTime_Time implementation.
 | |
|  */
 | |
| 
 | |
| /* Accessor properties.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| time_hour(PyDateTime_Time *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(TIME_GET_HOUR(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_minute(PyDateTime_Time *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(TIME_GET_MINUTE(self));
 | |
| }
 | |
| 
 | |
| /* The name time_second conflicted with some platform header file. */
 | |
| static PyObject *
 | |
| py_time_second(PyDateTime_Time *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(TIME_GET_SECOND(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_microsecond(PyDateTime_Time *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(TIME_GET_MICROSECOND(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_tzinfo(PyDateTime_Time *self, void *unused)
 | |
| {
 | |
| 	PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
 | |
| 	Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyGetSetDef time_getset[] = {
 | |
| 	{"hour",        (getter)time_hour},
 | |
| 	{"minute",      (getter)time_minute},
 | |
| 	{"second",      (getter)py_time_second},
 | |
| 	{"microsecond", (getter)time_microsecond},
 | |
| 	{"tzinfo",	(getter)time_tzinfo},
 | |
| 	{NULL}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Constructors.
 | |
|  */
 | |
| 
 | |
| static char *time_kws[] = {"hour", "minute", "second", "microsecond",
 | |
| 			   "tzinfo", NULL};
 | |
| 
 | |
| static PyObject *
 | |
| time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *self = NULL;
 | |
| 	PyObject *state;
 | |
| 	int hour = 0;
 | |
| 	int minute = 0;
 | |
| 	int second = 0;
 | |
| 	int usecond = 0;
 | |
| 	PyObject *tzinfo = Py_None;
 | |
| 
 | |
| 	/* Check for invocation from pickle with __getstate__ state */
 | |
| 	if (PyTuple_GET_SIZE(args) >= 1 &&
 | |
| 	    PyTuple_GET_SIZE(args) <= 2 &&
 | |
| 	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
 | |
| 	    PyString_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
 | |
| 	    ((unsigned char) (PyString_AS_STRING(state)[0])) < 24)
 | |
| 	{
 | |
| 		PyDateTime_Time *me;
 | |
| 		char aware;
 | |
| 
 | |
| 		if (PyTuple_GET_SIZE(args) == 2) {
 | |
| 			tzinfo = PyTuple_GET_ITEM(args, 1);
 | |
| 			if (check_tzinfo_subclass(tzinfo) < 0) {
 | |
| 				PyErr_SetString(PyExc_TypeError, "bad "
 | |
| 					"tzinfo state arg");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		aware = (char)(tzinfo != Py_None);
 | |
| 		me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
 | |
| 		if (me != NULL) {
 | |
| 			char *pdata = PyString_AS_STRING(state);
 | |
| 
 | |
| 			memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
 | |
| 			me->hashcode = -1;
 | |
| 			me->hastzinfo = aware;
 | |
| 			if (aware) {
 | |
| 				Py_INCREF(tzinfo);
 | |
| 				me->tzinfo = tzinfo;
 | |
| 			}
 | |
| 		}
 | |
| 		return (PyObject *)me;
 | |
| 	}
 | |
| 
 | |
| 	if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws,
 | |
| 					&hour, &minute, &second, &usecond,
 | |
| 					&tzinfo)) {
 | |
| 		if (check_time_args(hour, minute, second, usecond) < 0)
 | |
| 			return NULL;
 | |
| 		if (check_tzinfo_subclass(tzinfo) < 0)
 | |
| 			return NULL;
 | |
| 		self = new_time_ex(hour, minute, second, usecond, tzinfo,
 | |
| 				   type);
 | |
| 	}
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destructor.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| time_dealloc(PyDateTime_Time *self)
 | |
| {
 | |
| 	if (HASTZINFO(self)) {
 | |
| 		Py_XDECREF(self->tzinfo);
 | |
| 	}
 | |
| 	Py_TYPE(self)->tp_free((PyObject *)self);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indirect access to tzinfo methods.
 | |
|  */
 | |
| 
 | |
| /* These are all METH_NOARGS, so don't need to check the arglist. */
 | |
| static PyObject *
 | |
| time_utcoffset(PyDateTime_Time *self, PyObject *unused) {
 | |
| 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
 | |
| 				   "utcoffset", Py_None);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_dst(PyDateTime_Time *self, PyObject *unused) {
 | |
| 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
 | |
| 				   "dst", Py_None);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_tzname(PyDateTime_Time *self, PyObject *unused) {
 | |
| 	return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
 | |
| 			   Py_None);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Various ways to turn a time into a string.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| time_repr(PyDateTime_Time *self)
 | |
| {
 | |
| 	const char *type_name = Py_TYPE(self)->tp_name;
 | |
| 	int h = TIME_GET_HOUR(self);
 | |
| 	int m = TIME_GET_MINUTE(self);
 | |
| 	int s = TIME_GET_SECOND(self);
 | |
| 	int us = TIME_GET_MICROSECOND(self);
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	if (us)
 | |
| 		result = PyUnicode_FromFormat("%s(%d, %d, %d, %d)",
 | |
| 		                              type_name, h, m, s, us);
 | |
| 	else if (s)
 | |
| 		result = PyUnicode_FromFormat("%s(%d, %d, %d)",
 | |
| 		                              type_name, h, m, s);
 | |
| 	else
 | |
| 		result = PyUnicode_FromFormat("%s(%d, %d)", type_name, h, m);
 | |
| 	if (result != NULL && HASTZINFO(self))
 | |
| 		result = append_keyword_tzinfo(result, self->tzinfo);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_str(PyDateTime_Time *self)
 | |
| {
 | |
| 	return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_isoformat(PyDateTime_Time *self, PyObject *unused)
 | |
| {
 | |
| 	char buf[100];
 | |
| 	PyObject *result;
 | |
| 	int us = TIME_GET_MICROSECOND(self);;
 | |
| 
 | |
| 	if (us)
 | |
| 		result = PyUnicode_FromFormat("%02d:%02d:%02d.%06d",
 | |
| 		                              TIME_GET_HOUR(self),
 | |
| 		                              TIME_GET_MINUTE(self),
 | |
| 		                              TIME_GET_SECOND(self),
 | |
| 		                              us);
 | |
| 	else
 | |
| 		result = PyUnicode_FromFormat("%02d:%02d:%02d",
 | |
| 		                              TIME_GET_HOUR(self),
 | |
| 		                              TIME_GET_MINUTE(self),
 | |
| 		                              TIME_GET_SECOND(self));
 | |
| 
 | |
| 	if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None)
 | |
| 		return result;
 | |
| 
 | |
| 	/* We need to append the UTC offset. */
 | |
| 	if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
 | |
| 			     Py_None) < 0) {
 | |
| 		Py_DECREF(result);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buf));
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *result;
 | |
| 	PyObject *format;
 | |
| 	PyObject *tuple;
 | |
| 	static char *keywords[] = {"format", NULL};
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
 | |
| 					  &format))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Python's strftime does insane things with the year part of the
 | |
| 	 * timetuple.  The year is forced to (the otherwise nonsensical)
 | |
| 	 * 1900 to worm around that.
 | |
| 	 */
 | |
| 	tuple = Py_BuildValue("iiiiiiiii",
 | |
| 		              1900, 1, 1, /* year, month, day */
 | |
| 			      TIME_GET_HOUR(self),
 | |
| 			      TIME_GET_MINUTE(self),
 | |
| 			      TIME_GET_SECOND(self),
 | |
| 			      0, 1, -1); /* weekday, daynum, dst */
 | |
| 	if (tuple == NULL)
 | |
| 		return NULL;
 | |
| 	assert(PyTuple_Size(tuple) == 9);
 | |
| 	result = wrap_strftime((PyObject *)self, format, tuple, Py_None);
 | |
| 	Py_DECREF(tuple);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_format(PyDateTime_Time *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *format;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "U:__format__", &format))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* if the format is zero length, return str(self) */
 | |
| 	if (PyUnicode_GetSize(format) == 0)
 | |
|                 return PyObject_Str((PyObject *)self);
 | |
| 
 | |
|         return PyObject_CallMethod((PyObject *)self, "strftime", "O", format);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Miscellaneous methods.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| time_richcompare(PyObject *self, PyObject *other, int op)
 | |
| {
 | |
| 	int diff;
 | |
| 	naivety n1, n2;
 | |
| 	int offset1, offset2;
 | |
| 
 | |
| 	if (! PyTime_Check(other)) {
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 	if (classify_two_utcoffsets(self, &offset1, &n1, Py_None,
 | |
| 				    other, &offset2, &n2, Py_None) < 0)
 | |
| 		return NULL;
 | |
| 	assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
 | |
| 	/* If they're both naive, or both aware and have the same offsets,
 | |
| 	 * we get off cheap.  Note that if they're both naive, offset1 ==
 | |
| 	 * offset2 == 0 at this point.
 | |
| 	 */
 | |
| 	if (n1 == n2 && offset1 == offset2) {
 | |
| 		diff = memcmp(((PyDateTime_Time *)self)->data,
 | |
| 			      ((PyDateTime_Time *)other)->data,
 | |
| 			      _PyDateTime_TIME_DATASIZE);
 | |
| 		return diff_to_bool(diff, op);
 | |
| 	}
 | |
| 
 | |
| 	if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
 | |
| 		assert(offset1 != offset2);	/* else last "if" handled it */
 | |
| 		/* Convert everything except microseconds to seconds.  These
 | |
| 		 * can't overflow (no more than the # of seconds in 2 days).
 | |
| 		 */
 | |
| 		offset1 = TIME_GET_HOUR(self) * 3600 +
 | |
| 			  (TIME_GET_MINUTE(self) - offset1) * 60 +
 | |
| 			  TIME_GET_SECOND(self);
 | |
| 		offset2 = TIME_GET_HOUR(other) * 3600 +
 | |
| 			  (TIME_GET_MINUTE(other) - offset2) * 60 +
 | |
| 			  TIME_GET_SECOND(other);
 | |
| 		diff = offset1 - offset2;
 | |
| 		if (diff == 0)
 | |
| 			diff = TIME_GET_MICROSECOND(self) -
 | |
| 			       TIME_GET_MICROSECOND(other);
 | |
| 		return diff_to_bool(diff, op);
 | |
| 	}
 | |
| 
 | |
| 	assert(n1 != n2);
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 			"can't compare offset-naive and "
 | |
| 			"offset-aware times");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static long
 | |
| time_hash(PyDateTime_Time *self)
 | |
| {
 | |
| 	if (self->hashcode == -1) {
 | |
| 		naivety n;
 | |
| 		int offset;
 | |
| 		PyObject *temp;
 | |
| 
 | |
| 		n = classify_utcoffset((PyObject *)self, Py_None, &offset);
 | |
| 		assert(n != OFFSET_UNKNOWN);
 | |
| 		if (n == OFFSET_ERROR)
 | |
| 			return -1;
 | |
| 
 | |
| 		/* Reduce this to a hash of another object. */
 | |
| 		if (offset == 0) {
 | |
| 			self->hashcode = generic_hash(
 | |
| 				(unsigned char *)self->data, _PyDateTime_TIME_DATASIZE);
 | |
| 			return self->hashcode;
 | |
| 		}
 | |
| 		else {
 | |
| 			int hour;
 | |
| 			int minute;
 | |
| 
 | |
| 			assert(n == OFFSET_AWARE);
 | |
| 			assert(HASTZINFO(self));
 | |
| 			hour = divmod(TIME_GET_HOUR(self) * 60 +
 | |
| 					TIME_GET_MINUTE(self) - offset,
 | |
| 				      60,
 | |
| 				      &minute);
 | |
| 			if (0 <= hour && hour < 24)
 | |
| 				temp = new_time(hour, minute,
 | |
| 						TIME_GET_SECOND(self),
 | |
| 						TIME_GET_MICROSECOND(self),
 | |
| 						Py_None);
 | |
| 			else
 | |
| 				temp = Py_BuildValue("iiii",
 | |
| 					   hour, minute,
 | |
| 					   TIME_GET_SECOND(self),
 | |
| 					   TIME_GET_MICROSECOND(self));
 | |
| 		}
 | |
| 		if (temp != NULL) {
 | |
| 			self->hashcode = PyObject_Hash(temp);
 | |
| 			Py_DECREF(temp);
 | |
| 		}
 | |
| 	}
 | |
| 	return self->hashcode;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *clone;
 | |
| 	PyObject *tuple;
 | |
| 	int hh = TIME_GET_HOUR(self);
 | |
| 	int mm = TIME_GET_MINUTE(self);
 | |
| 	int ss = TIME_GET_SECOND(self);
 | |
| 	int us = TIME_GET_MICROSECOND(self);
 | |
| 	PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace",
 | |
| 					  time_kws,
 | |
| 					  &hh, &mm, &ss, &us, &tzinfo))
 | |
| 		return NULL;
 | |
| 	tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo);
 | |
| 	if (tuple == NULL)
 | |
| 		return NULL;
 | |
| 	clone = time_new(Py_TYPE(self), tuple, NULL);
 | |
| 	Py_DECREF(tuple);
 | |
| 	return clone;
 | |
| }
 | |
| 
 | |
| static int
 | |
| time_bool(PyDateTime_Time *self)
 | |
| {
 | |
| 	int offset;
 | |
| 	int none;
 | |
| 
 | |
| 	if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
 | |
| 		/* Since utcoffset is in whole minutes, nothing can
 | |
| 		 * alter the conclusion that this is nonzero.
 | |
| 		 */
 | |
| 		return 1;
 | |
| 	}
 | |
| 	offset = 0;
 | |
| 	if (HASTZINFO(self) && self->tzinfo != Py_None) {
 | |
| 		offset = call_utcoffset(self->tzinfo, Py_None, &none);
 | |
| 		if (offset == -1 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 	}
 | |
| 	return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
 | |
| }
 | |
| 
 | |
| /* Pickle support, a simple use of __reduce__. */
 | |
| 
 | |
| /* Let basestate be the non-tzinfo data string.
 | |
|  * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
 | |
|  * So it's a tuple in any (non-error) case.
 | |
|  * __getstate__ isn't exposed.
 | |
|  */
 | |
| static PyObject *
 | |
| time_getstate(PyDateTime_Time *self)
 | |
| {
 | |
| 	PyObject *basestate;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	basestate =  PyString_FromStringAndSize((char *)self->data,
 | |
| 						_PyDateTime_TIME_DATASIZE);
 | |
| 	if (basestate != NULL) {
 | |
| 		if (! HASTZINFO(self) || self->tzinfo == Py_None)
 | |
| 			result = PyTuple_Pack(1, basestate);
 | |
| 		else
 | |
| 			result = PyTuple_Pack(2, basestate, self->tzinfo);
 | |
| 		Py_DECREF(basestate);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| time_reduce(PyDateTime_Time *self, PyObject *arg)
 | |
| {
 | |
| 	return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self));
 | |
| }
 | |
| 
 | |
| static PyMethodDef time_methods[] = {
 | |
| 
 | |
| 	{"isoformat",   (PyCFunction)time_isoformat,	METH_NOARGS,
 | |
| 	 PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
 | |
| 	 	   "[+HH:MM].")},
 | |
| 
 | |
| 	{"strftime",   	(PyCFunction)time_strftime,	METH_VARARGS | METH_KEYWORDS,
 | |
| 	 PyDoc_STR("format -> strftime() style string.")},
 | |
| 
 | |
| 	{"__format__", 	(PyCFunction)time_format,	METH_VARARGS,
 | |
| 	 PyDoc_STR("Formats self with strftime.")},
 | |
| 
 | |
| 	{"utcoffset",	(PyCFunction)time_utcoffset,	METH_NOARGS,
 | |
| 	 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
 | |
| 
 | |
| 	{"tzname",	(PyCFunction)time_tzname,	METH_NOARGS,
 | |
| 	 PyDoc_STR("Return self.tzinfo.tzname(self).")},
 | |
| 
 | |
| 	{"dst",		(PyCFunction)time_dst,		METH_NOARGS,
 | |
| 	 PyDoc_STR("Return self.tzinfo.dst(self).")},
 | |
| 
 | |
| 	{"replace",     (PyCFunction)time_replace,	METH_VARARGS | METH_KEYWORDS,
 | |
| 	 PyDoc_STR("Return time with new specified fields.")},
 | |
| 
 | |
| 	{"__reduce__", (PyCFunction)time_reduce,        METH_NOARGS,
 | |
| 	 PyDoc_STR("__reduce__() -> (cls, state)")},
 | |
| 
 | |
| 	{NULL,	NULL}
 | |
| };
 | |
| 
 | |
| static char time_doc[] =
 | |
| PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
 | |
| \n\
 | |
| All arguments are optional. tzinfo may be None, or an instance of\n\
 | |
| a tzinfo subclass. The remaining arguments may be ints or longs.\n");
 | |
| 
 | |
| static PyNumberMethods time_as_number = {
 | |
| 	0,					/* nb_add */
 | |
| 	0,					/* nb_subtract */
 | |
| 	0,					/* nb_multiply */
 | |
| 	0,					/* nb_remainder */
 | |
| 	0,					/* nb_divmod */
 | |
| 	0,					/* nb_power */
 | |
| 	0,					/* nb_negative */
 | |
| 	0,					/* nb_positive */
 | |
| 	0,					/* nb_absolute */
 | |
| 	(inquiry)time_bool,			/* nb_bool */
 | |
| };
 | |
| 
 | |
| static PyTypeObject PyDateTime_TimeType = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"datetime.time",			/* tp_name */
 | |
| 	sizeof(PyDateTime_Time),		/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	(destructor)time_dealloc,		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	(reprfunc)time_repr,			/* tp_repr */
 | |
| 	&time_as_number,			/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)time_hash,			/* tp_hash */
 | |
| 	0,              			/* tp_call */
 | |
| 	(reprfunc)time_str,			/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
 | |
| 	time_doc,				/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	time_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	time_methods,				/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	time_getset,				/* tp_getset */
 | |
| 	0,					/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	time_alloc,				/* tp_alloc */
 | |
| 	time_new,				/* tp_new */
 | |
| 	0,					/* tp_free */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * PyDateTime_DateTime implementation.
 | |
|  */
 | |
| 
 | |
| /* Accessor properties.  Properties for day, month, and year are inherited
 | |
|  * from date.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| datetime_hour(PyDateTime_DateTime *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(DATE_GET_HOUR(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_minute(PyDateTime_DateTime *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(DATE_GET_MINUTE(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_second(PyDateTime_DateTime *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(DATE_GET_SECOND(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_microsecond(PyDateTime_DateTime *self, void *unused)
 | |
| {
 | |
| 	return PyLong_FromLong(DATE_GET_MICROSECOND(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
 | |
| {
 | |
| 	PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
 | |
| 	Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyGetSetDef datetime_getset[] = {
 | |
| 	{"hour",        (getter)datetime_hour},
 | |
| 	{"minute",      (getter)datetime_minute},
 | |
| 	{"second",      (getter)datetime_second},
 | |
| 	{"microsecond", (getter)datetime_microsecond},
 | |
| 	{"tzinfo",	(getter)datetime_tzinfo},
 | |
| 	{NULL}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Constructors.
 | |
|  */
 | |
| 
 | |
| static char *datetime_kws[] = {
 | |
| 	"year", "month", "day", "hour", "minute", "second",
 | |
| 	"microsecond", "tzinfo", NULL
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *self = NULL;
 | |
| 	PyObject *state;
 | |
| 	int year;
 | |
| 	int month;
 | |
| 	int day;
 | |
| 	int hour = 0;
 | |
| 	int minute = 0;
 | |
| 	int second = 0;
 | |
| 	int usecond = 0;
 | |
| 	PyObject *tzinfo = Py_None;
 | |
| 
 | |
| 	/* Check for invocation from pickle with __getstate__ state */
 | |
| 	if (PyTuple_GET_SIZE(args) >= 1 &&
 | |
| 	    PyTuple_GET_SIZE(args) <= 2 &&
 | |
| 	    PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
 | |
| 	    PyString_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
 | |
| 	    MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
 | |
| 	{
 | |
| 		PyDateTime_DateTime *me;
 | |
| 		char aware;
 | |
| 
 | |
| 		if (PyTuple_GET_SIZE(args) == 2) {
 | |
| 			tzinfo = PyTuple_GET_ITEM(args, 1);
 | |
| 			if (check_tzinfo_subclass(tzinfo) < 0) {
 | |
| 				PyErr_SetString(PyExc_TypeError, "bad "
 | |
| 					"tzinfo state arg");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		aware = (char)(tzinfo != Py_None);
 | |
| 		me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
 | |
| 		if (me != NULL) {
 | |
| 			char *pdata = PyString_AS_STRING(state);
 | |
| 
 | |
| 			memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
 | |
| 			me->hashcode = -1;
 | |
| 			me->hastzinfo = aware;
 | |
| 			if (aware) {
 | |
| 				Py_INCREF(tzinfo);
 | |
| 				me->tzinfo = tzinfo;
 | |
| 			}
 | |
| 		}
 | |
| 		return (PyObject *)me;
 | |
| 	}
 | |
| 
 | |
| 	if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws,
 | |
| 					&year, &month, &day, &hour, &minute,
 | |
| 					&second, &usecond, &tzinfo)) {
 | |
| 		if (check_date_args(year, month, day) < 0)
 | |
| 			return NULL;
 | |
| 		if (check_time_args(hour, minute, second, usecond) < 0)
 | |
| 			return NULL;
 | |
| 		if (check_tzinfo_subclass(tzinfo) < 0)
 | |
| 			return NULL;
 | |
| 		self = new_datetime_ex(year, month, day,
 | |
| 				    	hour, minute, second, usecond,
 | |
| 				    	tzinfo, type);
 | |
| 	}
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| /* TM_FUNC is the shared type of localtime() and gmtime(). */
 | |
| typedef struct tm *(*TM_FUNC)(const time_t *timer);
 | |
| 
 | |
| /* Internal helper.
 | |
|  * Build datetime from a time_t and a distinct count of microseconds.
 | |
|  * Pass localtime or gmtime for f, to control the interpretation of timet.
 | |
|  */
 | |
| static PyObject *
 | |
| datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
 | |
| 			   PyObject *tzinfo)
 | |
| {
 | |
| 	struct tm *tm;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	tm = f(&timet);
 | |
| 	if (tm) {
 | |
| 		/* The platform localtime/gmtime may insert leap seconds,
 | |
| 		 * indicated by tm->tm_sec > 59.  We don't care about them,
 | |
| 		 * except to the extent that passing them on to the datetime
 | |
| 		 * constructor would raise ValueError for a reason that
 | |
| 		 * made no sense to the user.
 | |
| 		 */
 | |
| 		if (tm->tm_sec > 59)
 | |
| 			tm->tm_sec = 59;
 | |
| 		result = PyObject_CallFunction(cls, "iiiiiiiO",
 | |
| 					       tm->tm_year + 1900,
 | |
| 					       tm->tm_mon + 1,
 | |
| 					       tm->tm_mday,
 | |
| 					       tm->tm_hour,
 | |
| 					       tm->tm_min,
 | |
| 					       tm->tm_sec,
 | |
| 					       us,
 | |
| 					       tzinfo);
 | |
| 	}
 | |
| 	else
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"timestamp out of range for "
 | |
| 				"platform localtime()/gmtime() function");
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Internal helper.
 | |
|  * Build datetime from a Python timestamp.  Pass localtime or gmtime for f,
 | |
|  * to control the interpretation of the timestamp.  Since a double doesn't
 | |
|  * have enough bits to cover a datetime's full range of precision, it's
 | |
|  * better to call datetime_from_timet_and_us provided you have a way
 | |
|  * to get that much precision (e.g., C time() isn't good enough).
 | |
|  */
 | |
| static PyObject *
 | |
| datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp,
 | |
| 			PyObject *tzinfo)
 | |
| {
 | |
| 	time_t timet;
 | |
| 	double fraction;
 | |
| 	int us;
 | |
| 
 | |
| 	timet = _PyTime_DoubleToTimet(timestamp);
 | |
| 	if (timet == (time_t)-1 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	fraction = timestamp - (double)timet;
 | |
| 	us = (int)round_to_long(fraction * 1e6);
 | |
| 	if (us < 0) {
 | |
| 		/* Truncation towards zero is not what we wanted
 | |
| 		   for negative numbers (Python's mod semantics) */
 | |
| 		timet -= 1;
 | |
| 		us += 1000000;
 | |
| 	}
 | |
| 	/* If timestamp is less than one microsecond smaller than a
 | |
| 	 * full second, round up. Otherwise, ValueErrors are raised
 | |
| 	 * for some floats. */
 | |
| 	if (us == 1000000) {
 | |
| 		timet += 1;
 | |
| 		us = 0;
 | |
| 	}
 | |
| 	return datetime_from_timet_and_us(cls, f, timet, us, tzinfo);
 | |
| }
 | |
| 
 | |
| /* Internal helper.
 | |
|  * Build most accurate possible datetime for current time.  Pass localtime or
 | |
|  * gmtime for f as appropriate.
 | |
|  */
 | |
| static PyObject *
 | |
| datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
 | |
| {
 | |
| #ifdef HAVE_GETTIMEOFDAY
 | |
| 	struct timeval t;
 | |
| 
 | |
| #ifdef GETTIMEOFDAY_NO_TZ
 | |
| 	gettimeofday(&t);
 | |
| #else
 | |
| 	gettimeofday(&t, (struct timezone *)NULL);
 | |
| #endif
 | |
| 	return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec,
 | |
| 					  tzinfo);
 | |
| 
 | |
| #else	/* ! HAVE_GETTIMEOFDAY */
 | |
| 	/* No flavor of gettimeofday exists on this platform.  Python's
 | |
| 	 * time.time() does a lot of other platform tricks to get the
 | |
| 	 * best time it can on the platform, and we're not going to do
 | |
| 	 * better than that (if we could, the better code would belong
 | |
| 	 * in time.time()!)  We're limited by the precision of a double,
 | |
| 	 * though.
 | |
| 	 */
 | |
| 	PyObject *time;
 | |
| 	double dtime;
 | |
| 
 | |
| 	time = time_time();
 | |
|     	if (time == NULL)
 | |
|     		return NULL;
 | |
| 	dtime = PyFloat_AsDouble(time);
 | |
| 	Py_DECREF(time);
 | |
| 	if (dtime == -1.0 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	return datetime_from_timestamp(cls, f, dtime, tzinfo);
 | |
| #endif	/* ! HAVE_GETTIMEOFDAY */
 | |
| }
 | |
| 
 | |
| /* Return best possible local time -- this isn't constrained by the
 | |
|  * precision of a timestamp.
 | |
|  */
 | |
| static PyObject *
 | |
| datetime_now(PyObject *cls, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *self;
 | |
| 	PyObject *tzinfo = Py_None;
 | |
| 	static char *keywords[] = {"tz", NULL};
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
 | |
| 					  &tzinfo))
 | |
| 		return NULL;
 | |
| 	if (check_tzinfo_subclass(tzinfo) < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	self = datetime_best_possible(cls,
 | |
| 				      tzinfo == Py_None ? localtime : gmtime,
 | |
| 				      tzinfo);
 | |
| 	if (self != NULL && tzinfo != Py_None) {
 | |
| 		/* Convert UTC to tzinfo's zone. */
 | |
| 		PyObject *temp = self;
 | |
| 		self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
 | |
| 		Py_DECREF(temp);
 | |
| 	}
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| /* Return best possible UTC time -- this isn't constrained by the
 | |
|  * precision of a timestamp.
 | |
|  */
 | |
| static PyObject *
 | |
| datetime_utcnow(PyObject *cls, PyObject *dummy)
 | |
| {
 | |
| 	return datetime_best_possible(cls, gmtime, Py_None);
 | |
| }
 | |
| 
 | |
| /* Return new local datetime from timestamp (Python timestamp -- a double). */
 | |
| static PyObject *
 | |
| datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *self;
 | |
| 	double timestamp;
 | |
| 	PyObject *tzinfo = Py_None;
 | |
| 	static char *keywords[] = {"timestamp", "tz", NULL};
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
 | |
| 					  keywords, ×tamp, &tzinfo))
 | |
| 		return NULL;
 | |
| 	if (check_tzinfo_subclass(tzinfo) < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	self = datetime_from_timestamp(cls,
 | |
| 				       tzinfo == Py_None ? localtime : gmtime,
 | |
| 				       timestamp,
 | |
| 				       tzinfo);
 | |
| 	if (self != NULL && tzinfo != Py_None) {
 | |
| 		/* Convert UTC to tzinfo's zone. */
 | |
| 		PyObject *temp = self;
 | |
| 		self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
 | |
| 		Py_DECREF(temp);
 | |
| 	}
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| /* Return new UTC datetime from timestamp (Python timestamp -- a double). */
 | |
| static PyObject *
 | |
| datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	double timestamp;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	if (PyArg_ParseTuple(args, "d:utcfromtimestamp", ×tamp))
 | |
| 		result = datetime_from_timestamp(cls, gmtime, timestamp,
 | |
| 						 Py_None);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Return new datetime from time.strptime(). */
 | |
| static PyObject *
 | |
| datetime_strptime(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	PyObject *result = NULL, *obj, *module;
 | |
|         const Py_UNICODE *string, *format;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "uu:strptime", &string, &format))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((module = PyImport_ImportModule("time")) == NULL)
 | |
| 		return NULL;
 | |
| 	obj = PyObject_CallMethod(module, "strptime", "uu", string, format);
 | |
| 	Py_DECREF(module);
 | |
| 
 | |
| 	if (obj != NULL) {
 | |
| 		int i, good_timetuple = 1, overflow;
 | |
| 		long int ia[6];
 | |
| 		if (PySequence_Check(obj) && PySequence_Size(obj) >= 6)
 | |
| 			for (i=0; i < 6; i++) {
 | |
| 				PyObject *p = PySequence_GetItem(obj, i);
 | |
| 				if (p == NULL) {
 | |
| 					Py_DECREF(obj);
 | |
| 					return NULL;
 | |
| 				}
 | |
| 				if (PyLong_CheckExact(p)) {
 | |
| 					ia[i] = PyLong_AsLongAndOverflow(p, &overflow);
 | |
| 					if (overflow)
 | |
| 						good_timetuple = 0;
 | |
| 				}
 | |
| 				else
 | |
| 					good_timetuple = 0;
 | |
| 				Py_DECREF(p);
 | |
| 			}
 | |
| 		else
 | |
| 			good_timetuple = 0;
 | |
| 		if (good_timetuple)
 | |
| 			result = PyObject_CallFunction(cls, "iiiiii",
 | |
| 				ia[0], ia[1], ia[2], ia[3], ia[4], ia[5]);
 | |
| 		else
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 				"unexpected value from time.strptime");
 | |
| 		Py_DECREF(obj);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Return new datetime from date/datetime and time arguments. */
 | |
| static PyObject *
 | |
| datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
 | |
| {
 | |
|  	static char *keywords[] = {"date", "time", NULL};
 | |
| 	PyObject *date;
 | |
| 	PyObject *time;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
 | |
| 					&PyDateTime_DateType, &date,
 | |
| 					&PyDateTime_TimeType, &time)) {
 | |
| 		PyObject *tzinfo = Py_None;
 | |
| 
 | |
| 		if (HASTZINFO(time))
 | |
| 			tzinfo = ((PyDateTime_Time *)time)->tzinfo;
 | |
| 		result = PyObject_CallFunction(cls, "iiiiiiiO",
 | |
| 						GET_YEAR(date),
 | |
| 				    		GET_MONTH(date),
 | |
| 						GET_DAY(date),
 | |
| 				    		TIME_GET_HOUR(time),
 | |
| 				    		TIME_GET_MINUTE(time),
 | |
| 				    		TIME_GET_SECOND(time),
 | |
| 				    		TIME_GET_MICROSECOND(time),
 | |
| 				    		tzinfo);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destructor.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| datetime_dealloc(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	if (HASTZINFO(self)) {
 | |
| 		Py_XDECREF(self->tzinfo);
 | |
| 	}
 | |
| 	Py_TYPE(self)->tp_free((PyObject *)self);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indirect access to tzinfo methods.
 | |
|  */
 | |
| 
 | |
| /* These are all METH_NOARGS, so don't need to check the arglist. */
 | |
| static PyObject *
 | |
| datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) {
 | |
| 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
 | |
| 				   "utcoffset", (PyObject *)self);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_dst(PyDateTime_DateTime *self, PyObject *unused) {
 | |
| 	return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
 | |
| 				   "dst", (PyObject *)self);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) {
 | |
| 	return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
 | |
| 			   (PyObject *)self);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * datetime arithmetic.
 | |
|  */
 | |
| 
 | |
| /* factor must be 1 (to add) or -1 (to subtract).  The result inherits
 | |
|  * the tzinfo state of date.
 | |
|  */
 | |
| static PyObject *
 | |
| add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
 | |
| 		       int factor)
 | |
| {
 | |
| 	/* Note that the C-level additions can't overflow, because of
 | |
| 	 * invariant bounds on the member values.
 | |
| 	 */
 | |
| 	int year = GET_YEAR(date);
 | |
| 	int month = GET_MONTH(date);
 | |
| 	int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
 | |
| 	int hour = DATE_GET_HOUR(date);
 | |
| 	int minute = DATE_GET_MINUTE(date);
 | |
| 	int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
 | |
| 	int microsecond = DATE_GET_MICROSECOND(date) +
 | |
| 			  GET_TD_MICROSECONDS(delta) * factor;
 | |
| 
 | |
| 	assert(factor == 1 || factor == -1);
 | |
| 	if (normalize_datetime(&year, &month, &day,
 | |
| 			       &hour, &minute, &second, µsecond) < 0)
 | |
| 		return NULL;
 | |
| 	else
 | |
| 		return new_datetime(year, month, day,
 | |
| 				    hour, minute, second, microsecond,
 | |
| 				    HASTZINFO(date) ? date->tzinfo : Py_None);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_add(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	if (PyDateTime_Check(left)) {
 | |
| 		/* datetime + ??? */
 | |
| 		if (PyDelta_Check(right))
 | |
| 			/* datetime + delta */
 | |
| 			return add_datetime_timedelta(
 | |
| 					(PyDateTime_DateTime *)left,
 | |
| 					(PyDateTime_Delta *)right,
 | |
| 					1);
 | |
| 	}
 | |
| 	else if (PyDelta_Check(left)) {
 | |
| 		/* delta + datetime */
 | |
| 		return add_datetime_timedelta((PyDateTime_DateTime *) right,
 | |
| 					      (PyDateTime_Delta *) left,
 | |
| 					      1);
 | |
| 	}
 | |
| 	Py_INCREF(Py_NotImplemented);
 | |
| 	return Py_NotImplemented;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_subtract(PyObject *left, PyObject *right)
 | |
| {
 | |
| 	PyObject *result = Py_NotImplemented;
 | |
| 
 | |
| 	if (PyDateTime_Check(left)) {
 | |
| 		/* datetime - ??? */
 | |
| 		if (PyDateTime_Check(right)) {
 | |
| 			/* datetime - datetime */
 | |
| 			naivety n1, n2;
 | |
| 			int offset1, offset2;
 | |
| 			int delta_d, delta_s, delta_us;
 | |
| 
 | |
| 			if (classify_two_utcoffsets(left, &offset1, &n1, left,
 | |
| 						    right, &offset2, &n2,
 | |
| 						    right) < 0)
 | |
| 				return NULL;
 | |
| 			assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
 | |
| 			if (n1 != n2) {
 | |
| 				PyErr_SetString(PyExc_TypeError,
 | |
| 					"can't subtract offset-naive and "
 | |
| 					"offset-aware datetimes");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			delta_d = ymd_to_ord(GET_YEAR(left),
 | |
| 					     GET_MONTH(left),
 | |
| 					     GET_DAY(left)) -
 | |
| 				  ymd_to_ord(GET_YEAR(right),
 | |
| 					     GET_MONTH(right),
 | |
| 					     GET_DAY(right));
 | |
| 			/* These can't overflow, since the values are
 | |
| 			 * normalized.  At most this gives the number of
 | |
| 			 * seconds in one day.
 | |
| 			 */
 | |
| 			delta_s = (DATE_GET_HOUR(left) -
 | |
| 				   DATE_GET_HOUR(right)) * 3600 +
 | |
| 			          (DATE_GET_MINUTE(left) -
 | |
| 			           DATE_GET_MINUTE(right)) * 60 +
 | |
| 				  (DATE_GET_SECOND(left) -
 | |
| 				   DATE_GET_SECOND(right));
 | |
| 			delta_us = DATE_GET_MICROSECOND(left) -
 | |
| 				   DATE_GET_MICROSECOND(right);
 | |
| 			/* (left - offset1) - (right - offset2) =
 | |
| 			 * (left - right) + (offset2 - offset1)
 | |
| 			 */
 | |
| 			delta_s += (offset2 - offset1) * 60;
 | |
| 			result = new_delta(delta_d, delta_s, delta_us, 1);
 | |
| 		}
 | |
| 		else if (PyDelta_Check(right)) {
 | |
| 			/* datetime - delta */
 | |
| 			result = add_datetime_timedelta(
 | |
| 					(PyDateTime_DateTime *)left,
 | |
| 					(PyDateTime_Delta *)right,
 | |
| 					-1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (result == Py_NotImplemented)
 | |
| 		Py_INCREF(result);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Various ways to turn a datetime into a string. */
 | |
| 
 | |
| static PyObject *
 | |
| datetime_repr(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	const char *type_name = Py_TYPE(self)->tp_name;
 | |
| 	PyObject *baserepr;
 | |
| 
 | |
| 	if (DATE_GET_MICROSECOND(self)) {
 | |
| 		baserepr = PyUnicode_FromFormat(
 | |
| 			      "%s(%d, %d, %d, %d, %d, %d, %d)",
 | |
| 			      type_name,
 | |
| 			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
 | |
| 			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
 | |
| 			      DATE_GET_SECOND(self),
 | |
| 			      DATE_GET_MICROSECOND(self));
 | |
| 	}
 | |
| 	else if (DATE_GET_SECOND(self)) {
 | |
| 		baserepr = PyUnicode_FromFormat(
 | |
| 			      "%s(%d, %d, %d, %d, %d, %d)",
 | |
| 			      type_name,
 | |
| 			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
 | |
| 			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
 | |
| 			      DATE_GET_SECOND(self));
 | |
| 	}
 | |
| 	else {
 | |
| 		baserepr = PyUnicode_FromFormat(
 | |
| 			      "%s(%d, %d, %d, %d, %d)",
 | |
| 			      type_name,
 | |
| 			      GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
 | |
| 			      DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
 | |
| 	}
 | |
| 	if (baserepr == NULL || ! HASTZINFO(self))
 | |
| 		return baserepr;
 | |
| 	return append_keyword_tzinfo(baserepr, self->tzinfo);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_str(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	int sep = 'T';
 | |
| 	static char *keywords[] = {"sep", NULL};
 | |
| 	char buffer[100];
 | |
| 	PyObject *result;
 | |
| 	int us = DATE_GET_MICROSECOND(self);
 | |
| 
 | |
| 	if (!PyArg_ParseTupleAndKeywords(args, kw, "|C:isoformat", keywords, &sep))
 | |
| 		return NULL;
 | |
| 	if (us)
 | |
| 		result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d.%06d",
 | |
| 		                              GET_YEAR(self), GET_MONTH(self),
 | |
| 		                              GET_DAY(self), (int)sep,
 | |
| 		                              DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
 | |
| 		                              DATE_GET_SECOND(self), us);
 | |
| 	else
 | |
| 		result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d",
 | |
| 		                              GET_YEAR(self), GET_MONTH(self),
 | |
| 		                              GET_DAY(self), (int)sep,
 | |
| 		                              DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
 | |
| 		                              DATE_GET_SECOND(self));
 | |
| 
 | |
| 	if (!result || !HASTZINFO(self))
 | |
| 		return result;
 | |
| 
 | |
| 	/* We need to append the UTC offset. */
 | |
| 	if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
 | |
| 			     (PyObject *)self) < 0) {
 | |
| 		Py_DECREF(result);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buffer));
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_ctime(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	return format_ctime((PyDateTime_Date *)self,
 | |
| 			    DATE_GET_HOUR(self),
 | |
| 			    DATE_GET_MINUTE(self),
 | |
| 			    DATE_GET_SECOND(self));
 | |
| }
 | |
| 
 | |
| /* Miscellaneous methods. */
 | |
| 
 | |
| static PyObject *
 | |
| datetime_richcompare(PyObject *self, PyObject *other, int op)
 | |
| {
 | |
| 	int diff;
 | |
| 	naivety n1, n2;
 | |
| 	int offset1, offset2;
 | |
| 
 | |
| 	if (! PyDateTime_Check(other)) {
 | |
| 		if (PyDate_Check(other)) {
 | |
| 			/* Prevent invocation of date_richcompare.  We want to
 | |
| 			   return NotImplemented here to give the other object
 | |
| 			   a chance.  But since DateTime is a subclass of
 | |
| 			   Date, if the other object is a Date, it would
 | |
| 			   compute an ordering based on the date part alone,
 | |
| 			   and we don't want that.  So force unequal or
 | |
| 			   uncomparable here in that case. */
 | |
| 			if (op == Py_EQ)
 | |
| 				Py_RETURN_FALSE;
 | |
| 			if (op == Py_NE)
 | |
| 				Py_RETURN_TRUE;
 | |
| 			return cmperror(self, other);
 | |
| 		}
 | |
| 		Py_INCREF(Py_NotImplemented);
 | |
| 		return Py_NotImplemented;
 | |
| 	}
 | |
| 
 | |
| 	if (classify_two_utcoffsets(self, &offset1, &n1, self,
 | |
| 				    other, &offset2, &n2, other) < 0)
 | |
| 		return NULL;
 | |
| 	assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
 | |
|  	/* If they're both naive, or both aware and have the same offsets,
 | |
| 	 * we get off cheap.  Note that if they're both naive, offset1 ==
 | |
| 	 * offset2 == 0 at this point.
 | |
| 	 */
 | |
| 	if (n1 == n2 && offset1 == offset2) {
 | |
| 		diff = memcmp(((PyDateTime_DateTime *)self)->data,
 | |
| 			      ((PyDateTime_DateTime *)other)->data,
 | |
| 			      _PyDateTime_DATETIME_DATASIZE);
 | |
| 		return diff_to_bool(diff, op);
 | |
| 	}
 | |
| 
 | |
| 	if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
 | |
| 		PyDateTime_Delta *delta;
 | |
| 
 | |
| 		assert(offset1 != offset2);	/* else last "if" handled it */
 | |
| 		delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
 | |
| 							       other);
 | |
| 		if (delta == NULL)
 | |
| 			return NULL;
 | |
| 		diff = GET_TD_DAYS(delta);
 | |
| 		if (diff == 0)
 | |
| 			diff = GET_TD_SECONDS(delta) |
 | |
| 			       GET_TD_MICROSECONDS(delta);
 | |
| 		Py_DECREF(delta);
 | |
| 		return diff_to_bool(diff, op);
 | |
| 	}
 | |
| 
 | |
| 	assert(n1 != n2);
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 			"can't compare offset-naive and "
 | |
| 			"offset-aware datetimes");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static long
 | |
| datetime_hash(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	if (self->hashcode == -1) {
 | |
| 		naivety n;
 | |
| 		int offset;
 | |
| 		PyObject *temp;
 | |
| 
 | |
| 		n = classify_utcoffset((PyObject *)self, (PyObject *)self,
 | |
| 				       &offset);
 | |
| 		assert(n != OFFSET_UNKNOWN);
 | |
| 		if (n == OFFSET_ERROR)
 | |
| 			return -1;
 | |
| 
 | |
| 		/* Reduce this to a hash of another object. */
 | |
| 		if (n == OFFSET_NAIVE) {
 | |
| 			self->hashcode = generic_hash(
 | |
| 				(unsigned char *)self->data, _PyDateTime_DATETIME_DATASIZE);
 | |
| 			return self->hashcode;
 | |
| 		}
 | |
| 		else {
 | |
| 			int days;
 | |
| 			int seconds;
 | |
| 
 | |
| 			assert(n == OFFSET_AWARE);
 | |
| 			assert(HASTZINFO(self));
 | |
| 			days = ymd_to_ord(GET_YEAR(self),
 | |
| 					  GET_MONTH(self),
 | |
| 					  GET_DAY(self));
 | |
| 			seconds = DATE_GET_HOUR(self) * 3600 +
 | |
| 				  (DATE_GET_MINUTE(self) - offset) * 60 +
 | |
| 				  DATE_GET_SECOND(self);
 | |
| 			temp = new_delta(days,
 | |
| 					 seconds,
 | |
| 					 DATE_GET_MICROSECOND(self),
 | |
| 					 1);
 | |
| 		}
 | |
| 		if (temp != NULL) {
 | |
| 			self->hashcode = PyObject_Hash(temp);
 | |
| 			Py_DECREF(temp);
 | |
| 		}
 | |
| 	}
 | |
| 	return self->hashcode;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	PyObject *clone;
 | |
| 	PyObject *tuple;
 | |
| 	int y = GET_YEAR(self);
 | |
| 	int m = GET_MONTH(self);
 | |
| 	int d = GET_DAY(self);
 | |
| 	int hh = DATE_GET_HOUR(self);
 | |
| 	int mm = DATE_GET_MINUTE(self);
 | |
| 	int ss = DATE_GET_SECOND(self);
 | |
| 	int us = DATE_GET_MICROSECOND(self);
 | |
| 	PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace",
 | |
| 					  datetime_kws,
 | |
| 					  &y, &m, &d, &hh, &mm, &ss, &us,
 | |
| 					  &tzinfo))
 | |
| 		return NULL;
 | |
| 	tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo);
 | |
| 	if (tuple == NULL)
 | |
| 		return NULL;
 | |
| 	clone = datetime_new(Py_TYPE(self), tuple, NULL);
 | |
| 	Py_DECREF(tuple);
 | |
| 	return clone;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
 | |
| {
 | |
| 	int y, m, d, hh, mm, ss, us;
 | |
| 	PyObject *result;
 | |
| 	int offset, none;
 | |
| 
 | |
| 	PyObject *tzinfo;
 | |
| 	static char *keywords[] = {"tz", NULL};
 | |
| 
 | |
| 	if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords,
 | |
| 					  &PyDateTime_TZInfoType, &tzinfo))
 | |
| 		return NULL;
 | |
| 
 | |
|         if (!HASTZINFO(self) || self->tzinfo == Py_None)
 | |
|         	goto NeedAware;
 | |
| 
 | |
|         /* Conversion to self's own time zone is a NOP. */
 | |
| 	if (self->tzinfo == tzinfo) {
 | |
| 		Py_INCREF(self);
 | |
| 		return (PyObject *)self;
 | |
| 	}
 | |
| 
 | |
|         /* Convert self to UTC. */
 | |
|         offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
 | |
|         if (offset == -1 && PyErr_Occurred())
 | |
|         	return NULL;
 | |
|         if (none)
 | |
|         	goto NeedAware;
 | |
| 
 | |
| 	y = GET_YEAR(self);
 | |
| 	m = GET_MONTH(self);
 | |
| 	d = GET_DAY(self);
 | |
| 	hh = DATE_GET_HOUR(self);
 | |
| 	mm = DATE_GET_MINUTE(self);
 | |
| 	ss = DATE_GET_SECOND(self);
 | |
| 	us = DATE_GET_MICROSECOND(self);
 | |
| 
 | |
| 	mm -= offset;
 | |
| 	if ((mm < 0 || mm >= 60) &&
 | |
| 	    normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Attach new tzinfo and let fromutc() do the rest. */
 | |
| 	result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo);
 | |
| 	if (result != NULL) {
 | |
| 		PyObject *temp = result;
 | |
| 
 | |
| 		result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp);
 | |
| 		Py_DECREF(temp);
 | |
| 	}
 | |
| 	return result;
 | |
| 
 | |
| NeedAware:
 | |
| 	PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to "
 | |
| 					  "a naive datetime");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_timetuple(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	int dstflag = -1;
 | |
| 
 | |
| 	if (HASTZINFO(self) && self->tzinfo != Py_None) {
 | |
| 		int none;
 | |
| 
 | |
| 		dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
 | |
| 		if (dstflag == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (none)
 | |
| 			dstflag = -1;
 | |
| 		else if (dstflag != 0)
 | |
| 			dstflag = 1;
 | |
| 
 | |
| 	}
 | |
| 	return build_struct_time(GET_YEAR(self),
 | |
| 				 GET_MONTH(self),
 | |
| 				 GET_DAY(self),
 | |
| 				 DATE_GET_HOUR(self),
 | |
| 				 DATE_GET_MINUTE(self),
 | |
| 				 DATE_GET_SECOND(self),
 | |
| 				 dstflag);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_getdate(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	return new_date(GET_YEAR(self),
 | |
| 			GET_MONTH(self),
 | |
| 			GET_DAY(self));
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_gettime(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	return new_time(DATE_GET_HOUR(self),
 | |
| 			DATE_GET_MINUTE(self),
 | |
| 			DATE_GET_SECOND(self),
 | |
| 			DATE_GET_MICROSECOND(self),
 | |
| 			Py_None);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_gettimetz(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	return new_time(DATE_GET_HOUR(self),
 | |
| 			DATE_GET_MINUTE(self),
 | |
| 			DATE_GET_SECOND(self),
 | |
| 			DATE_GET_MICROSECOND(self),
 | |
| 			HASTZINFO(self) ? self->tzinfo : Py_None);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_utctimetuple(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	int y = GET_YEAR(self);
 | |
| 	int m = GET_MONTH(self);
 | |
| 	int d = GET_DAY(self);
 | |
| 	int hh = DATE_GET_HOUR(self);
 | |
| 	int mm = DATE_GET_MINUTE(self);
 | |
| 	int ss = DATE_GET_SECOND(self);
 | |
| 	int us = 0;	/* microseconds are ignored in a timetuple */
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	if (HASTZINFO(self) && self->tzinfo != Py_None) {
 | |
| 		int none;
 | |
| 
 | |
| 		offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
 | |
| 		if (offset == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	/* Even if offset is 0, don't call timetuple() -- tm_isdst should be
 | |
| 	 * 0 in a UTC timetuple regardless of what dst() says.
 | |
| 	 */
 | |
| 	if (offset) {
 | |
| 		/* Subtract offset minutes & normalize. */
 | |
| 		int stat;
 | |
| 
 | |
| 		mm -= offset;
 | |
| 		stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
 | |
| 		if (stat < 0) {
 | |
| 			/* At the edges, it's possible we overflowed
 | |
| 			 * beyond MINYEAR or MAXYEAR.
 | |
| 			 */
 | |
| 			if (PyErr_ExceptionMatches(PyExc_OverflowError))
 | |
| 				PyErr_Clear();
 | |
| 			else
 | |
| 				return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return build_struct_time(y, m, d, hh, mm, ss, 0);
 | |
| }
 | |
| 
 | |
| /* Pickle support, a simple use of __reduce__. */
 | |
| 
 | |
| /* Let basestate be the non-tzinfo data string.
 | |
|  * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
 | |
|  * So it's a tuple in any (non-error) case.
 | |
|  * __getstate__ isn't exposed.
 | |
|  */
 | |
| static PyObject *
 | |
| datetime_getstate(PyDateTime_DateTime *self)
 | |
| {
 | |
| 	PyObject *basestate;
 | |
| 	PyObject *result = NULL;
 | |
| 
 | |
| 	basestate = PyString_FromStringAndSize((char *)self->data,
 | |
| 					       _PyDateTime_DATETIME_DATASIZE);
 | |
| 	if (basestate != NULL) {
 | |
| 		if (! HASTZINFO(self) || self->tzinfo == Py_None)
 | |
| 			result = PyTuple_Pack(1, basestate);
 | |
| 		else
 | |
| 			result = PyTuple_Pack(2, basestate, self->tzinfo);
 | |
| 		Py_DECREF(basestate);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
 | |
| {
 | |
| 	return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self));
 | |
| }
 | |
| 
 | |
| static PyMethodDef datetime_methods[] = {
 | |
| 
 | |
| 	/* Class methods: */
 | |
| 
 | |
| 	{"now",         (PyCFunction)datetime_now,
 | |
| 	 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
 | |
| 	 PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
 | |
| 
 | |
| 	{"utcnow",         (PyCFunction)datetime_utcnow,
 | |
| 	 METH_NOARGS | METH_CLASS,
 | |
| 	 PyDoc_STR("Return a new datetime representing UTC day and time.")},
 | |
| 
 | |
| 	{"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
 | |
| 	 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
 | |
| 	 PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
 | |
| 
 | |
| 	{"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
 | |
| 	 METH_VARARGS | METH_CLASS,
 | |
| 	 PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
 | |
| 	 	   "(like time.time()).")},
 | |
| 
 | |
| 	{"strptime", (PyCFunction)datetime_strptime,
 | |
| 	 METH_VARARGS | METH_CLASS,
 | |
| 	 PyDoc_STR("string, format -> new datetime parsed from a string "
 | |
| 	 	   "(like time.strptime()).")},
 | |
| 
 | |
| 	{"combine", (PyCFunction)datetime_combine,
 | |
| 	 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
 | |
| 	 PyDoc_STR("date, time -> datetime with same date and time fields")},
 | |
| 
 | |
| 	/* Instance methods: */
 | |
| 
 | |
| 	{"date",   (PyCFunction)datetime_getdate, METH_NOARGS,
 | |
|          PyDoc_STR("Return date object with same year, month and day.")},
 | |
| 
 | |
| 	{"time",   (PyCFunction)datetime_gettime, METH_NOARGS,
 | |
|          PyDoc_STR("Return time object with same time but with tzinfo=None.")},
 | |
| 
 | |
| 	{"timetz",   (PyCFunction)datetime_gettimetz, METH_NOARGS,
 | |
|          PyDoc_STR("Return time object with same time and tzinfo.")},
 | |
| 
 | |
| 	{"ctime",       (PyCFunction)datetime_ctime,	METH_NOARGS,
 | |
| 	 PyDoc_STR("Return ctime() style string.")},
 | |
| 
 | |
| 	{"timetuple",   (PyCFunction)datetime_timetuple, METH_NOARGS,
 | |
|          PyDoc_STR("Return time tuple, compatible with time.localtime().")},
 | |
| 
 | |
| 	{"utctimetuple",   (PyCFunction)datetime_utctimetuple, METH_NOARGS,
 | |
|          PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
 | |
| 
 | |
| 	{"isoformat",   (PyCFunction)datetime_isoformat, METH_VARARGS | METH_KEYWORDS,
 | |
| 	 PyDoc_STR("[sep] -> string in ISO 8601 format, "
 | |
| 	 	   "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
 | |
| 	 	   "sep is used to separate the year from the time, and "
 | |
| 	 	   "defaults to 'T'.")},
 | |
| 
 | |
| 	{"utcoffset",	(PyCFunction)datetime_utcoffset, METH_NOARGS,
 | |
| 	 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
 | |
| 
 | |
| 	{"tzname",	(PyCFunction)datetime_tzname,	METH_NOARGS,
 | |
| 	 PyDoc_STR("Return self.tzinfo.tzname(self).")},
 | |
| 
 | |
| 	{"dst",		(PyCFunction)datetime_dst, METH_NOARGS,
 | |
| 	 PyDoc_STR("Return self.tzinfo.dst(self).")},
 | |
| 
 | |
| 	{"replace",     (PyCFunction)datetime_replace,	METH_VARARGS | METH_KEYWORDS,
 | |
| 	 PyDoc_STR("Return datetime with new specified fields.")},
 | |
| 
 | |
| 	{"astimezone",  (PyCFunction)datetime_astimezone, METH_VARARGS | METH_KEYWORDS,
 | |
| 	 PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
 | |
| 
 | |
| 	{"__reduce__", (PyCFunction)datetime_reduce,     METH_NOARGS,
 | |
| 	 PyDoc_STR("__reduce__() -> (cls, state)")},
 | |
| 
 | |
| 	{NULL,	NULL}
 | |
| };
 | |
| 
 | |
| static char datetime_doc[] =
 | |
| PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
 | |
| \n\
 | |
| The year, month and day arguments are required. tzinfo may be None, or an\n\
 | |
| instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
 | |
| 
 | |
| static PyNumberMethods datetime_as_number = {
 | |
| 	datetime_add,				/* nb_add */
 | |
| 	datetime_subtract,			/* nb_subtract */
 | |
| 	0,					/* nb_multiply */
 | |
| 	0,					/* nb_remainder */
 | |
| 	0,					/* nb_divmod */
 | |
| 	0,					/* nb_power */
 | |
| 	0,					/* nb_negative */
 | |
| 	0,					/* nb_positive */
 | |
| 	0,					/* nb_absolute */
 | |
| 	0,					/* nb_bool */
 | |
| };
 | |
| 
 | |
| static PyTypeObject PyDateTime_DateTimeType = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"datetime.datetime",			/* tp_name */
 | |
| 	sizeof(PyDateTime_DateTime),		/* tp_basicsize */
 | |
| 	0,					/* tp_itemsize */
 | |
| 	(destructor)datetime_dealloc,		/* tp_dealloc */
 | |
| 	0,					/* tp_print */
 | |
| 	0,					/* tp_getattr */
 | |
| 	0,					/* tp_setattr */
 | |
| 	0,					/* tp_compare */
 | |
| 	(reprfunc)datetime_repr,		/* tp_repr */
 | |
| 	&datetime_as_number,			/* tp_as_number */
 | |
| 	0,					/* tp_as_sequence */
 | |
| 	0,					/* tp_as_mapping */
 | |
| 	(hashfunc)datetime_hash,		/* tp_hash */
 | |
| 	0,              			/* tp_call */
 | |
| 	(reprfunc)datetime_str,			/* tp_str */
 | |
| 	PyObject_GenericGetAttr,		/* tp_getattro */
 | |
| 	0,					/* tp_setattro */
 | |
| 	0,					/* tp_as_buffer */
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
 | |
| 	datetime_doc,				/* tp_doc */
 | |
| 	0,					/* tp_traverse */
 | |
| 	0,					/* tp_clear */
 | |
| 	datetime_richcompare,			/* tp_richcompare */
 | |
| 	0,					/* tp_weaklistoffset */
 | |
| 	0,					/* tp_iter */
 | |
| 	0,					/* tp_iternext */
 | |
| 	datetime_methods,			/* tp_methods */
 | |
| 	0,					/* tp_members */
 | |
| 	datetime_getset,			/* tp_getset */
 | |
| 	&PyDateTime_DateType,			/* tp_base */
 | |
| 	0,					/* tp_dict */
 | |
| 	0,					/* tp_descr_get */
 | |
| 	0,					/* tp_descr_set */
 | |
| 	0,					/* tp_dictoffset */
 | |
| 	0,					/* tp_init */
 | |
| 	datetime_alloc,				/* tp_alloc */
 | |
| 	datetime_new,				/* tp_new */
 | |
| 	0,					/* tp_free */
 | |
| };
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Module methods and initialization.
 | |
|  */
 | |
| 
 | |
| static PyMethodDef module_methods[] = {
 | |
| 	{NULL, NULL}
 | |
| };
 | |
| 
 | |
| /* C API.  Clients get at this via PyDateTime_IMPORT, defined in
 | |
|  * datetime.h.
 | |
|  */
 | |
| static PyDateTime_CAPI CAPI = {
 | |
|         &PyDateTime_DateType,
 | |
|         &PyDateTime_DateTimeType,
 | |
|         &PyDateTime_TimeType,
 | |
|         &PyDateTime_DeltaType,
 | |
|         &PyDateTime_TZInfoType,
 | |
|         new_date_ex,
 | |
|         new_datetime_ex,
 | |
|         new_time_ex,
 | |
|         new_delta_ex,
 | |
|         datetime_fromtimestamp,
 | |
|         date_fromtimestamp
 | |
| };
 | |
| 
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| initdatetime(void)
 | |
| {
 | |
| 	PyObject *m;	/* a module object */
 | |
| 	PyObject *d;	/* its dict */
 | |
| 	PyObject *x;
 | |
| 
 | |
| 	m = Py_InitModule3("datetime", module_methods,
 | |
| 			   "Fast implementation of the datetime type.");
 | |
| 	if (m == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	if (PyType_Ready(&PyDateTime_DateType) < 0)
 | |
| 		return;
 | |
| 	if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
 | |
| 		return;
 | |
| 	if (PyType_Ready(&PyDateTime_DeltaType) < 0)
 | |
| 		return;
 | |
| 	if (PyType_Ready(&PyDateTime_TimeType) < 0)
 | |
| 		return;
 | |
| 	if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* timedelta values */
 | |
| 	d = PyDateTime_DeltaType.tp_dict;
 | |
| 
 | |
| 	x = new_delta(0, 0, 1, 0);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	/* date values */
 | |
| 	d = PyDateTime_DateType.tp_dict;
 | |
| 
 | |
| 	x = new_date(1, 1, 1);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_date(MAXYEAR, 12, 31);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_delta(1, 0, 0, 0);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	/* time values */
 | |
| 	d = PyDateTime_TimeType.tp_dict;
 | |
| 
 | |
| 	x = new_time(0, 0, 0, 0, Py_None);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_time(23, 59, 59, 999999, Py_None);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_delta(0, 0, 1, 0);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	/* datetime values */
 | |
| 	d = PyDateTime_DateTimeType.tp_dict;
 | |
| 
 | |
| 	x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	x = new_delta(0, 0, 1, 0);
 | |
| 	if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
 | |
| 		return;
 | |
| 	Py_DECREF(x);
 | |
| 
 | |
| 	/* module initialization */
 | |
| 	PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
 | |
| 	PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
 | |
| 
 | |
| 	Py_INCREF(&PyDateTime_DateType);
 | |
| 	PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
 | |
| 
 | |
| 	Py_INCREF(&PyDateTime_DateTimeType);
 | |
| 	PyModule_AddObject(m, "datetime",
 | |
| 			   (PyObject *)&PyDateTime_DateTimeType);
 | |
| 
 | |
| 	Py_INCREF(&PyDateTime_TimeType);
 | |
| 	PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
 | |
| 
 | |
| 	Py_INCREF(&PyDateTime_DeltaType);
 | |
| 	PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
 | |
| 
 | |
| 	Py_INCREF(&PyDateTime_TZInfoType);
 | |
| 	PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
 | |
| 
 | |
|         x = PyCObject_FromVoidPtrAndDesc(&CAPI, (void*) DATETIME_API_MAGIC,
 | |
|                 NULL);
 | |
|         if (x == NULL)
 | |
|             return;
 | |
|         PyModule_AddObject(m, "datetime_CAPI", x);
 | |
| 
 | |
| 	/* A 4-year cycle has an extra leap day over what we'd get from
 | |
| 	 * pasting together 4 single years.
 | |
| 	 */
 | |
| 	assert(DI4Y == 4 * 365 + 1);
 | |
| 	assert(DI4Y == days_before_year(4+1));
 | |
| 
 | |
| 	/* Similarly, a 400-year cycle has an extra leap day over what we'd
 | |
| 	 * get from pasting together 4 100-year cycles.
 | |
| 	 */
 | |
| 	assert(DI400Y == 4 * DI100Y + 1);
 | |
| 	assert(DI400Y == days_before_year(400+1));
 | |
| 
 | |
| 	/* OTOH, a 100-year cycle has one fewer leap day than we'd get from
 | |
| 	 * pasting together 25 4-year cycles.
 | |
| 	 */
 | |
| 	assert(DI100Y == 25 * DI4Y - 1);
 | |
| 	assert(DI100Y == days_before_year(100+1));
 | |
| 
 | |
| 	us_per_us = PyLong_FromLong(1);
 | |
| 	us_per_ms = PyLong_FromLong(1000);
 | |
| 	us_per_second = PyLong_FromLong(1000000);
 | |
| 	us_per_minute = PyLong_FromLong(60000000);
 | |
| 	seconds_per_day = PyLong_FromLong(24 * 3600);
 | |
| 	if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
 | |
| 	    us_per_minute == NULL || seconds_per_day == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* The rest are too big for 32-bit ints, but even
 | |
| 	 * us_per_week fits in 40 bits, so doubles should be exact.
 | |
| 	 */
 | |
| 	us_per_hour = PyLong_FromDouble(3600000000.0);
 | |
| 	us_per_day = PyLong_FromDouble(86400000000.0);
 | |
| 	us_per_week = PyLong_FromDouble(604800000000.0);
 | |
| 	if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
 | |
| 		return;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
| Some time zone algebra.  For a datetime x, let
 | |
|     x.n = x stripped of its timezone -- its naive time.
 | |
|     x.o = x.utcoffset(), and assuming that doesn't raise an exception or
 | |
|           return None
 | |
|     x.d = x.dst(), and assuming that doesn't raise an exception or
 | |
|           return None
 | |
|     x.s = x's standard offset, x.o - x.d
 | |
| 
 | |
| Now some derived rules, where k is a duration (timedelta).
 | |
| 
 | |
| 1. x.o = x.s + x.d
 | |
|    This follows from the definition of x.s.
 | |
| 
 | |
| 2. If x and y have the same tzinfo member, x.s = y.s.
 | |
|    This is actually a requirement, an assumption we need to make about
 | |
|    sane tzinfo classes.
 | |
| 
 | |
| 3. The naive UTC time corresponding to x is x.n - x.o.
 | |
|    This is again a requirement for a sane tzinfo class.
 | |
| 
 | |
| 4. (x+k).s = x.s
 | |
|    This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
 | |
| 
 | |
| 5. (x+k).n = x.n + k
 | |
|    Again follows from how arithmetic is defined.
 | |
| 
 | |
| Now we can explain tz.fromutc(x).  Let's assume it's an interesting case
 | |
| (meaning that the various tzinfo methods exist, and don't blow up or return
 | |
| None when called).
 | |
| 
 | |
| The function wants to return a datetime y with timezone tz, equivalent to x.
 | |
| x is already in UTC.
 | |
| 
 | |
| By #3, we want
 | |
| 
 | |
|     y.n - y.o = x.n                             [1]
 | |
| 
 | |
| The algorithm starts by attaching tz to x.n, and calling that y.  So
 | |
| x.n = y.n at the start.  Then it wants to add a duration k to y, so that [1]
 | |
| becomes true; in effect, we want to solve [2] for k:
 | |
| 
 | |
|    (y+k).n - (y+k).o = x.n                      [2]
 | |
| 
 | |
| By #1, this is the same as
 | |
| 
 | |
|    (y+k).n - ((y+k).s + (y+k).d) = x.n          [3]
 | |
| 
 | |
| By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
 | |
| Substituting that into [3],
 | |
| 
 | |
|    x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
 | |
|    k - (y+k).s - (y+k).d = 0; rearranging,
 | |
|    k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
 | |
|    k = y.s - (y+k).d
 | |
| 
 | |
| On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
 | |
| approximate k by ignoring the (y+k).d term at first.  Note that k can't be
 | |
| very large, since all offset-returning methods return a duration of magnitude
 | |
| less than 24 hours.  For that reason, if y is firmly in std time, (y+k).d must
 | |
| be 0, so ignoring it has no consequence then.
 | |
| 
 | |
| In any case, the new value is
 | |
| 
 | |
|     z = y + y.s                                 [4]
 | |
| 
 | |
| It's helpful to step back at look at [4] from a higher level:  it's simply
 | |
| mapping from UTC to tz's standard time.
 | |
| 
 | |
| At this point, if
 | |
| 
 | |
|     z.n - z.o = x.n                             [5]
 | |
| 
 | |
| we have an equivalent time, and are almost done.  The insecurity here is
 | |
| at the start of daylight time.  Picture US Eastern for concreteness.  The wall
 | |
| time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
 | |
| sense then.  The docs ask that an Eastern tzinfo class consider such a time to
 | |
| be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
 | |
| on the day DST starts.  We want to return the 1:MM EST spelling because that's
 | |
| the only spelling that makes sense on the local wall clock.
 | |
| 
 | |
| In fact, if [5] holds at this point, we do have the standard-time spelling,
 | |
| but that takes a bit of proof.  We first prove a stronger result.  What's the
 | |
| difference between the LHS and RHS of [5]?  Let
 | |
| 
 | |
|     diff = x.n - (z.n - z.o)                    [6]
 | |
| 
 | |
| Now
 | |
|     z.n =                       by [4]
 | |
|     (y + y.s).n =               by #5
 | |
|     y.n + y.s =                 since y.n = x.n
 | |
|     x.n + y.s =                 since z and y are have the same tzinfo member,
 | |
|                                     y.s = z.s by #2
 | |
|     x.n + z.s
 | |
| 
 | |
| Plugging that back into [6] gives
 | |
| 
 | |
|     diff =
 | |
|     x.n - ((x.n + z.s) - z.o) =     expanding
 | |
|     x.n - x.n - z.s + z.o =         cancelling
 | |
|     - z.s + z.o =                   by #2
 | |
|     z.d
 | |
| 
 | |
| So diff = z.d.
 | |
| 
 | |
| If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
 | |
| spelling we wanted in the endcase described above.  We're done.  Contrarily,
 | |
| if z.d = 0, then we have a UTC equivalent, and are also done.
 | |
| 
 | |
| If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
 | |
| add to z (in effect, z is in tz's standard time, and we need to shift the
 | |
| local clock into tz's daylight time).
 | |
| 
 | |
| Let
 | |
| 
 | |
|     z' = z + z.d = z + diff                     [7]
 | |
| 
 | |
| and we can again ask whether
 | |
| 
 | |
|     z'.n - z'.o = x.n                           [8]
 | |
| 
 | |
| If so, we're done.  If not, the tzinfo class is insane, according to the
 | |
| assumptions we've made.  This also requires a bit of proof.  As before, let's
 | |
| compute the difference between the LHS and RHS of [8] (and skipping some of
 | |
| the justifications for the kinds of substitutions we've done several times
 | |
| already):
 | |
| 
 | |
|     diff' = x.n - (z'.n - z'.o) =           replacing z'.n via [7]
 | |
|             x.n  - (z.n + diff - z'.o) =    replacing diff via [6]
 | |
|             x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
 | |
|             x.n - z.n - x.n + z.n - z.o + z'.o =    cancel x.n
 | |
|             - z.n + z.n - z.o + z'.o =              cancel z.n
 | |
|             - z.o + z'.o =                      #1 twice
 | |
|             -z.s - z.d + z'.s + z'.d =          z and z' have same tzinfo
 | |
|             z'.d - z.d
 | |
| 
 | |
| So z' is UTC-equivalent to x iff z'.d = z.d at this point.  If they are equal,
 | |
| we've found the UTC-equivalent so are done.  In fact, we stop with [7] and
 | |
| return z', not bothering to compute z'.d.
 | |
| 
 | |
| How could z.d and z'd differ?  z' = z + z.d [7], so merely moving z' by
 | |
| a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
 | |
| would have to change the result dst() returns:  we start in DST, and moving
 | |
| a little further into it takes us out of DST.
 | |
| 
 | |
| There isn't a sane case where this can happen.  The closest it gets is at
 | |
| the end of DST, where there's an hour in UTC with no spelling in a hybrid
 | |
| tzinfo class.  In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT.  During
 | |
| that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
 | |
| UTC) because the docs insist on that, but 0:MM is taken as being in daylight
 | |
| time (4:MM UTC).  There is no local time mapping to 5:MM UTC.  The local
 | |
| clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
 | |
| standard time.  Since that's what the local clock *does*, we want to map both
 | |
| UTC hours 5:MM and 6:MM to 1:MM Eastern.  The result is ambiguous
 | |
| in local time, but so it goes -- it's the way the local clock works.
 | |
| 
 | |
| When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
 | |
| so z=0:MM.  z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
 | |
| z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
 | |
| (correctly) concludes that z' is not UTC-equivalent to x.
 | |
| 
 | |
| Because we know z.d said z was in daylight time (else [5] would have held and
 | |
| we would have stopped then), and we know z.d != z'.d (else [8] would have held
 | |
| and we would have stopped then), and there are only 2 possible values dst() can
 | |
| return in Eastern, it follows that z'.d must be 0 (which it is in the example,
 | |
| but the reasoning doesn't depend on the example -- it depends on there being
 | |
| two possible dst() outcomes, one zero and the other non-zero).  Therefore
 | |
| z' must be in standard time, and is the spelling we want in this case.
 | |
| 
 | |
| Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
 | |
| concerned (because it takes z' as being in standard time rather than the
 | |
| daylight time we intend here), but returning it gives the real-life "local
 | |
| clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
 | |
| tz.
 | |
| 
 | |
| When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
 | |
| the 1:MM standard time spelling we want.
 | |
| 
 | |
| So how can this break?  One of the assumptions must be violated.  Two
 | |
| possibilities:
 | |
| 
 | |
| 1) [2] effectively says that y.s is invariant across all y belong to a given
 | |
|    time zone.  This isn't true if, for political reasons or continental drift,
 | |
|    a region decides to change its base offset from UTC.
 | |
| 
 | |
| 2) There may be versions of "double daylight" time where the tail end of
 | |
|    the analysis gives up a step too early.  I haven't thought about that
 | |
|    enough to say.
 | |
| 
 | |
| In any case, it's clear that the default fromutc() is strong enough to handle
 | |
| "almost all" time zones:  so long as the standard offset is invariant, it
 | |
| doesn't matter if daylight time transition points change from year to year, or
 | |
| if daylight time is skipped in some years; it doesn't matter how large or
 | |
| small dst() may get within its bounds; and it doesn't even matter if some
 | |
| perverse time zone returns a negative dst()).  So a breaking case must be
 | |
| pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
 | |
| --------------------------------------------------------------------------- */
 | 
