mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 19:34:08 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			325 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			325 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
:mod:`random` --- Generate pseudo-random numbers
 | 
						|
================================================
 | 
						|
 | 
						|
.. module:: random
 | 
						|
   :synopsis: Generate pseudo-random numbers with various common distributions.
 | 
						|
 | 
						|
 | 
						|
This module implements pseudo-random number generators for various
 | 
						|
distributions.
 | 
						|
 | 
						|
.. seealso::
 | 
						|
 | 
						|
   Latest version of the :source:`random module Python source code
 | 
						|
   <Lib/random.py>`
 | 
						|
 | 
						|
For integers, there is uniform selection from a range. For sequences, there is
 | 
						|
uniform selection of a random element, a function to generate a random
 | 
						|
permutation of a list in-place, and a function for random sampling without
 | 
						|
replacement.
 | 
						|
 | 
						|
On the real line, there are functions to compute uniform, normal (Gaussian),
 | 
						|
lognormal, negative exponential, gamma, and beta distributions. For generating
 | 
						|
distributions of angles, the von Mises distribution is available.
 | 
						|
 | 
						|
Almost all module functions depend on the basic function :func:`random`, which
 | 
						|
generates a random float uniformly in the semi-open range [0.0, 1.0).  Python
 | 
						|
uses the Mersenne Twister as the core generator.  It produces 53-bit precision
 | 
						|
floats and has a period of 2\*\*19937-1.  The underlying implementation in C is
 | 
						|
both fast and threadsafe.  The Mersenne Twister is one of the most extensively
 | 
						|
tested random number generators in existence.  However, being completely
 | 
						|
deterministic, it is not suitable for all purposes, and is completely unsuitable
 | 
						|
for cryptographic purposes.
 | 
						|
 | 
						|
The functions supplied by this module are actually bound methods of a hidden
 | 
						|
instance of the :class:`random.Random` class.  You can instantiate your own
 | 
						|
instances of :class:`Random` to get generators that don't share state.
 | 
						|
 | 
						|
Class :class:`Random` can also be subclassed if you want to use a different
 | 
						|
basic generator of your own devising: in that case, override the :meth:`random`,
 | 
						|
:meth:`seed`, :meth:`getstate`, and :meth:`setstate` methods.
 | 
						|
Optionally, a new generator can supply a :meth:`getrandbits` method --- this
 | 
						|
allows :meth:`randrange` to produce selections over an arbitrarily large range.
 | 
						|
 | 
						|
The :mod:`random` module also provides the :class:`SystemRandom` class which
 | 
						|
uses the system function :func:`os.urandom` to generate random numbers
 | 
						|
from sources provided by the operating system.
 | 
						|
 | 
						|
Bookkeeping functions:
 | 
						|
 | 
						|
 | 
						|
.. function:: seed([x], version=2)
 | 
						|
 | 
						|
   Initialize the random number generator.
 | 
						|
 | 
						|
   If *x* is omitted or ``None``, the current system time is used.  If
 | 
						|
   randomness sources are provided by the operating system, they are used
 | 
						|
   instead of the system time (see the :func:`os.urandom` function for details
 | 
						|
   on availability).
 | 
						|
 | 
						|
   If *x* is an int, it is used directly.
 | 
						|
 | 
						|
   With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray`
 | 
						|
   object gets converted to an :class:`int` and all of its bits are used.  With version 1,
 | 
						|
   the :func:`hash` of *x* is used instead.
 | 
						|
 | 
						|
   .. versionchanged:: 3.2
 | 
						|
      Moved to the version 2 scheme which uses all of the bits in a string seed.
 | 
						|
 | 
						|
.. function:: getstate()
 | 
						|
 | 
						|
   Return an object capturing the current internal state of the generator.  This
 | 
						|
   object can be passed to :func:`setstate` to restore the state.
 | 
						|
 | 
						|
 | 
						|
.. function:: setstate(state)
 | 
						|
 | 
						|
   *state* should have been obtained from a previous call to :func:`getstate`, and
 | 
						|
   :func:`setstate` restores the internal state of the generator to what it was at
 | 
						|
   the time :func:`setstate` was called.
 | 
						|
 | 
						|
 | 
						|
.. function:: getrandbits(k)
 | 
						|
 | 
						|
   Returns a Python integer with *k* random bits. This method is supplied with
 | 
						|
   the MersenneTwister generator and some other generators may also provide it
 | 
						|
   as an optional part of the API. When available, :meth:`getrandbits` enables
 | 
						|
   :meth:`randrange` to handle arbitrarily large ranges.
 | 
						|
 | 
						|
 | 
						|
Functions for integers:
 | 
						|
 | 
						|
.. function:: randrange([start,] stop[, step])
 | 
						|
 | 
						|
   Return a randomly selected element from ``range(start, stop, step)``.  This is
 | 
						|
   equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
 | 
						|
   range object.
 | 
						|
 | 
						|
   The positional argument pattern matches that of :func:`range`.  Keyword arguments
 | 
						|
   should not be used because the function may use them in unexpected ways.
 | 
						|
 | 
						|
   .. versionchanged:: 3.2
 | 
						|
      :meth:`randrange` is more sophisticated about producing equally distributed
 | 
						|
      values.  Formerly it used a style like ``int(random()*n)`` which could produce
 | 
						|
      slightly uneven distributions.
 | 
						|
 | 
						|
.. function:: randint(a, b)
 | 
						|
 | 
						|
   Return a random integer *N* such that ``a <= N <= b``.  Alias for
 | 
						|
   ``randrange(a, b+1)``.
 | 
						|
 | 
						|
 | 
						|
Functions for sequences:
 | 
						|
 | 
						|
.. function:: choice(seq)
 | 
						|
 | 
						|
   Return a random element from the non-empty sequence *seq*. If *seq* is empty,
 | 
						|
   raises :exc:`IndexError`.
 | 
						|
 | 
						|
 | 
						|
.. function:: shuffle(x[, random])
 | 
						|
 | 
						|
   Shuffle the sequence *x* in place. The optional argument *random* is a
 | 
						|
   0-argument function returning a random float in [0.0, 1.0); by default, this is
 | 
						|
   the function :func:`random`.
 | 
						|
 | 
						|
   Note that for even rather small ``len(x)``, the total number of permutations of
 | 
						|
   *x* is larger than the period of most random number generators; this implies
 | 
						|
   that most permutations of a long sequence can never be generated.
 | 
						|
 | 
						|
 | 
						|
.. function:: sample(population, k)
 | 
						|
 | 
						|
   Return a *k* length list of unique elements chosen from the population sequence
 | 
						|
   or set. Used for random sampling without replacement.
 | 
						|
 | 
						|
   Returns a new list containing elements from the population while leaving the
 | 
						|
   original population unchanged.  The resulting list is in selection order so that
 | 
						|
   all sub-slices will also be valid random samples.  This allows raffle winners
 | 
						|
   (the sample) to be partitioned into grand prize and second place winners (the
 | 
						|
   subslices).
 | 
						|
 | 
						|
   Members of the population need not be :term:`hashable` or unique.  If the population
 | 
						|
   contains repeats, then each occurrence is a possible selection in the sample.
 | 
						|
 | 
						|
   To choose a sample from a range of integers, use an :func:`range` object as an
 | 
						|
   argument.  This is especially fast and space efficient for sampling from a large
 | 
						|
   population:  ``sample(range(10000000), 60)``.
 | 
						|
 | 
						|
The following functions generate specific real-valued distributions. Function
 | 
						|
parameters are named after the corresponding variables in the distribution's
 | 
						|
equation, as used in common mathematical practice; most of these equations can
 | 
						|
be found in any statistics text.
 | 
						|
 | 
						|
 | 
						|
.. function:: random()
 | 
						|
 | 
						|
   Return the next random floating point number in the range [0.0, 1.0).
 | 
						|
 | 
						|
 | 
						|
.. function:: uniform(a, b)
 | 
						|
 | 
						|
   Return a random floating point number *N* such that ``a <= N <= b`` for
 | 
						|
   ``a <= b`` and ``b <= N <= a`` for ``b < a``.
 | 
						|
 | 
						|
   The end-point value ``b`` may or may not be included in the range
 | 
						|
   depending on floating-point rounding in the equation ``a + (b-a) * random()``.
 | 
						|
 | 
						|
.. function:: triangular(low, high, mode)
 | 
						|
 | 
						|
   Return a random floating point number *N* such that ``low <= N <= high`` and
 | 
						|
   with the specified *mode* between those bounds.  The *low* and *high* bounds
 | 
						|
   default to zero and one.  The *mode* argument defaults to the midpoint
 | 
						|
   between the bounds, giving a symmetric distribution.
 | 
						|
 | 
						|
 | 
						|
.. function:: betavariate(alpha, beta)
 | 
						|
 | 
						|
   Beta distribution.  Conditions on the parameters are ``alpha > 0`` and
 | 
						|
   ``beta > 0``. Returned values range between 0 and 1.
 | 
						|
 | 
						|
 | 
						|
.. function:: expovariate(lambd)
 | 
						|
 | 
						|
   Exponential distribution.  *lambd* is 1.0 divided by the desired
 | 
						|
   mean.  It should be nonzero.  (The parameter would be called
 | 
						|
   "lambda", but that is a reserved word in Python.)  Returned values
 | 
						|
   range from 0 to positive infinity if *lambd* is positive, and from
 | 
						|
   negative infinity to 0 if *lambd* is negative.
 | 
						|
 | 
						|
 | 
						|
.. function:: gammavariate(alpha, beta)
 | 
						|
 | 
						|
   Gamma distribution.  (*Not* the gamma function!)  Conditions on the
 | 
						|
   parameters are ``alpha > 0`` and ``beta > 0``.
 | 
						|
 | 
						|
 | 
						|
.. function:: gauss(mu, sigma)
 | 
						|
 | 
						|
   Gaussian distribution.  *mu* is the mean, and *sigma* is the standard
 | 
						|
   deviation.  This is slightly faster than the :func:`normalvariate` function
 | 
						|
   defined below.
 | 
						|
 | 
						|
 | 
						|
.. function:: lognormvariate(mu, sigma)
 | 
						|
 | 
						|
   Log normal distribution.  If you take the natural logarithm of this
 | 
						|
   distribution, you'll get a normal distribution with mean *mu* and standard
 | 
						|
   deviation *sigma*.  *mu* can have any value, and *sigma* must be greater than
 | 
						|
   zero.
 | 
						|
 | 
						|
 | 
						|
.. function:: normalvariate(mu, sigma)
 | 
						|
 | 
						|
   Normal distribution.  *mu* is the mean, and *sigma* is the standard deviation.
 | 
						|
 | 
						|
 | 
						|
.. function:: vonmisesvariate(mu, kappa)
 | 
						|
 | 
						|
   *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
 | 
						|
   is the concentration parameter, which must be greater than or equal to zero.  If
 | 
						|
   *kappa* is equal to zero, this distribution reduces to a uniform random angle
 | 
						|
   over the range 0 to 2\*\ *pi*.
 | 
						|
 | 
						|
 | 
						|
.. function:: paretovariate(alpha)
 | 
						|
 | 
						|
   Pareto distribution.  *alpha* is the shape parameter.
 | 
						|
 | 
						|
 | 
						|
.. function:: weibullvariate(alpha, beta)
 | 
						|
 | 
						|
   Weibull distribution.  *alpha* is the scale parameter and *beta* is the shape
 | 
						|
   parameter.
 | 
						|
 | 
						|
 | 
						|
Alternative Generator:
 | 
						|
 | 
						|
.. class:: SystemRandom([seed])
 | 
						|
 | 
						|
   Class that uses the :func:`os.urandom` function for generating random numbers
 | 
						|
   from sources provided by the operating system. Not available on all systems.
 | 
						|
   Does not rely on software state, and sequences are not reproducible. Accordingly,
 | 
						|
   the :meth:`seed` method has no effect and is ignored.
 | 
						|
   The :meth:`getstate` and :meth:`setstate` methods raise
 | 
						|
   :exc:`NotImplementedError` if called.
 | 
						|
 | 
						|
 | 
						|
.. seealso::
 | 
						|
 | 
						|
   M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
 | 
						|
   equidistributed uniform pseudorandom number generator", ACM Transactions on
 | 
						|
   Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
 | 
						|
 | 
						|
 | 
						|
   `Complementary-Multiply-with-Carry recipe
 | 
						|
   <http://code.activestate.com/recipes/576707/>`_ for a compatible alternative
 | 
						|
   random number generator with a long period and comparatively simple update
 | 
						|
   operations.
 | 
						|
 | 
						|
 | 
						|
Notes on Reproducibility
 | 
						|
========================
 | 
						|
 | 
						|
Sometimes it is useful to be able to reproduce the sequences given by a pseudo
 | 
						|
random number generator.  By re-using a seed value, the same sequence should be
 | 
						|
reproducible from run to run as long as multiple threads are not running.
 | 
						|
 | 
						|
Most of the random module's algorithms and seeding functions are subject to
 | 
						|
change across Python versions, but two aspects are guaranteed not to change:
 | 
						|
 | 
						|
* If a new seeding method is added, then a backward compatible seeder will be
 | 
						|
  offered.
 | 
						|
 | 
						|
* The generator's :meth:`random` method will continue to produce the same
 | 
						|
  sequence when the compatible seeder is given the same seed.
 | 
						|
 | 
						|
.. _random-examples:
 | 
						|
 | 
						|
Examples and Recipes
 | 
						|
====================
 | 
						|
 | 
						|
Basic usage::
 | 
						|
 | 
						|
   >>> random.random()                      # Random float x, 0.0 <= x < 1.0
 | 
						|
   0.37444887175646646
 | 
						|
 | 
						|
   >>> random.uniform(1, 10)                # Random float x, 1.0 <= x < 10.0
 | 
						|
   1.1800146073117523
 | 
						|
 | 
						|
   >>> random.randrange(10)                 # Integer from 0 to 9
 | 
						|
   7
 | 
						|
 | 
						|
   >>> random.randrange(0, 101, 2)          # Even integer from 0 to 100
 | 
						|
   26
 | 
						|
 | 
						|
   >>> random.choice('abcdefghij')          # Single random element
 | 
						|
   'c'
 | 
						|
 | 
						|
   >>> items = [1, 2, 3, 4, 5, 6, 7]
 | 
						|
   >>> random.shuffle(items)
 | 
						|
   >>> items
 | 
						|
   [7, 3, 2, 5, 6, 4, 1]
 | 
						|
 | 
						|
   >>> random.sample([1, 2, 3, 4, 5],  3)   # Three samples without replacement
 | 
						|
   [4, 1, 5]
 | 
						|
 | 
						|
A common task is to make a :func:`random.choice` with weighted probababilites.
 | 
						|
 | 
						|
If the weights are small integer ratios, a simple technique is to build a sample
 | 
						|
population with repeats::
 | 
						|
 | 
						|
    >>> weighted_choices = [('Red', 3), ('Blue', 2), ('Yellow', 1), ('Green', 4)]
 | 
						|
    >>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
 | 
						|
    >>> random.choice(population)
 | 
						|
    'Green'
 | 
						|
 | 
						|
A more general approach is to arrange the weights in a cumulative distribution
 | 
						|
with :func:`itertools.accumulate`, and then locate the random value with
 | 
						|
:func:`bisect.bisect`::
 | 
						|
 | 
						|
    >>> choices, weights = zip(*weighted_choices)
 | 
						|
    >>> cumdist = list(itertools.accumulate(weights))
 | 
						|
    >>> x = random.random() * cumdist[-1]
 | 
						|
    >>> choices[bisect.bisect(cumdist, x)]
 | 
						|
    'Blue'
 |