mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 18:07:37 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			275 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			275 lines
		
	
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable file
		
	
	
	
	
| # Complex numbers
 | |
| # ---------------
 | |
| 
 | |
| # This module represents complex numbers as instances of the class Complex.
 | |
| # A Complex instance z has two data attribues, z.re (the real part) and z.im
 | |
| # (the imaginary part).  In fact, z.re and z.im can have any value -- all
 | |
| # arithmetic operators work regardless of the type of z.re and z.im (as long
 | |
| # as they support numerical operations).
 | |
| #
 | |
| # The following functions exist (Complex is actually a class):
 | |
| # Complex([re [,im]) -> creates a complex number from a real and an imaginary part
 | |
| # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
 | |
| # Polar([r [,phi [,fullcircle]]]) ->
 | |
| #	the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
 | |
| #	(r and phi default to 0)
 | |
| #
 | |
| # Complex numbers have the following methods:
 | |
| # z.abs() -> absolute value of z
 | |
| # z.radius() == z.abs()
 | |
| # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
 | |
| # z.phi([fullcircle]) == z.angle(fullcircle)
 | |
| #
 | |
| # These standard functions and unary operators accept complex arguments:
 | |
| # abs(z)
 | |
| # -z
 | |
| # +z
 | |
| # not z
 | |
| # repr(z) == `z`
 | |
| # str(z)
 | |
| # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
 | |
| #            the result equals hash(z.re)
 | |
| # Note that hex(z) and oct(z) are not defined.
 | |
| #
 | |
| # These conversions accept complex arguments only if their imaginary part is zero:
 | |
| # int(z)
 | |
| # long(z)
 | |
| # float(z)
 | |
| #
 | |
| # The following operators accept two complex numbers, or one complex number
 | |
| # and one real number (int, long or float):
 | |
| # z1 + z2
 | |
| # z1 - z2
 | |
| # z1 * z2
 | |
| # z1 / z2
 | |
| # pow(z1, z2)
 | |
| # cmp(z1, z2)
 | |
| # Note that z1 % z2 and divmod(z1, z2) are not defined,
 | |
| # nor are shift and mask operations.
 | |
| #
 | |
| # The standard module math does not support complex numbers.
 | |
| # (I suppose it would be easy to implement a cmath module.)
 | |
| #
 | |
| # Idea:
 | |
| # add a class Polar(r, phi) and mixed-mode arithmetic which
 | |
| # chooses the most appropriate type for the result:
 | |
| # Complex for +,-,cmp
 | |
| # Polar   for *,/,pow
 | |
| 
 | |
| 
 | |
| import types, math
 | |
| 
 | |
| if not hasattr(math, 'hypot'):
 | |
| 	def hypot(x, y):
 | |
| 		# XXX I know there's a way to compute this without possibly causing
 | |
| 		# overflow, but I can't remember what it is right now...
 | |
| 		return math.sqrt(x*x + y*y)
 | |
| 	math.hypot = hypot
 | |
| 
 | |
| twopi = math.pi*2.0
 | |
| halfpi = math.pi/2.0
 | |
| 
 | |
| def IsComplex(obj):
 | |
| 	return hasattr(obj, 're') and hasattr(obj, 'im')
 | |
| 
 | |
| def Polar(r = 0, phi = 0, fullcircle = twopi):
 | |
| 	phi = phi * (twopi / fullcircle)
 | |
| 	return Complex(math.cos(phi)*r, math.sin(phi)*r)
 | |
| 
 | |
| class Complex:
 | |
| 
 | |
| 	def __init__(self, re=0, im=0):
 | |
| 		if IsComplex(re):
 | |
| 			im = im + re.im
 | |
| 			re = re.re
 | |
| 		if IsComplex(im):
 | |
| 			re = re - im.im
 | |
| 			im = im.re
 | |
| 		self.re = re
 | |
| 		self.im = im
 | |
| 
 | |
| 	def __setattr__(self, name, value):
 | |
| 		if hasattr(self, name):
 | |
| 			raise TypeError, "Complex numbers have set-once attributes"
 | |
| 		self.__dict__[name] = value
 | |
| 
 | |
| 	def __repr__(self):
 | |
| 		if not self.im:
 | |
| 			return 'Complex(%s)' % `self.re`
 | |
| 		else:
 | |
| 			return 'Complex(%s, %s)' % (`self.re`, `self.im`)
 | |
| 
 | |
| 	def __str__(self):
 | |
| 		if not self.im:
 | |
| 			return `self.re`
 | |
| 		else:
 | |
| 			return 'Complex(%s, %s)' % (`self.re`, `self.im`)
 | |
| 
 | |
| 	def __coerce__(self, other):
 | |
| 		if IsComplex(other):
 | |
| 			return self, other
 | |
| 		return self, Complex(other)	# May fail
 | |
| 
 | |
| 	def __cmp__(self, other):
 | |
| 		return cmp(self.re, other.re) or cmp(self.im, other.im)
 | |
| 
 | |
| 	def __hash__(self):
 | |
| 		if not self.im: return hash(self.re)
 | |
| 		mod = sys.maxint + 1L
 | |
| 		return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
 | |
| 
 | |
| 	def __neg__(self):
 | |
| 		return Complex(-self.re, -self.im)
 | |
| 
 | |
| 	def __pos__(self):
 | |
| 		return self
 | |
| 
 | |
| 	def __abs__(self):
 | |
| 		return math.hypot(self.re, self.im)
 | |
| 		##return math.sqrt(self.re*self.re + self.im*self.im)
 | |
| 
 | |
| 
 | |
| 	def __int__(self):
 | |
| 		if self.im:
 | |
| 			raise ValueError, "can't convert Complex with nonzero im to int"
 | |
| 		return int(self.re)
 | |
| 
 | |
| 	def __long__(self):
 | |
| 		if self.im:
 | |
| 			raise ValueError, "can't convert Complex with nonzero im to long"
 | |
| 		return long(self.re)
 | |
| 
 | |
| 	def __float__(self):
 | |
| 		if self.im:
 | |
| 			raise ValueError, "can't convert Complex with nonzero im to float"
 | |
| 		return float(self.re)
 | |
| 
 | |
| 	def __nonzero__(self):
 | |
| 		return not (self.re == self.im == 0)
 | |
| 
 | |
| 	abs = radius = __abs__
 | |
| 
 | |
| 	def angle(self, fullcircle = twopi):
 | |
| 		return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
 | |
| 
 | |
| 	phi = angle
 | |
| 
 | |
| 	def __add__(self, other):
 | |
| 		return Complex(self.re + other.re, self.im + other.im)
 | |
| 
 | |
| 	__radd__ = __add__
 | |
| 
 | |
| 	def __sub__(self, other):
 | |
| 		return Complex(self.re - other.re, self.im - other.im)
 | |
| 
 | |
| 	def __rsub__(self, other):
 | |
| 		return Complex(other.re - self.re, other.im - self.im)
 | |
| 
 | |
| 	def __mul__(self, other):
 | |
| 		return Complex(self.re*other.re - self.im*other.im,
 | |
| 		               self.re*other.im + self.im*other.re)
 | |
| 
 | |
| 	__rmul__ = __mul__
 | |
| 
 | |
| 	def __div__(self, other):
 | |
| 		# Deviating from the general principle of not forcing re or im
 | |
| 		# to be floats, we cast to float here, otherwise division
 | |
| 		# of Complex numbers with integer re and im parts would use
 | |
| 		# the (truncating) integer division
 | |
| 		d = float(other.re*other.re + other.im*other.im)
 | |
| 		if not d: raise ZeroDivisionError, 'Complex division'
 | |
| 		return Complex((self.re*other.re + self.im*other.im) / d,
 | |
| 		               (self.im*other.re - self.re*other.im) / d)
 | |
| 
 | |
| 	def __rdiv__(self, other):
 | |
| 		return other / self
 | |
| 
 | |
| 	def __pow__(self, n, z=None):
 | |
| 		if z is not None:
 | |
| 			raise TypeError, 'Complex does not support ternary pow()'
 | |
| 		if IsComplex(n):
 | |
| 			if n.im: raise TypeError, 'Complex to the Complex power'
 | |
| 			n = n.re
 | |
| 		r = pow(self.abs(), n)
 | |
| 		phi = n*self.angle()
 | |
| 		return Complex(math.cos(phi)*r, math.sin(phi)*r)
 | |
| 	
 | |
| 	def __rpow__(self, base):
 | |
| 		return pow(base, self)
 | |
| 
 | |
| 
 | |
| # Everything below this point is part of the test suite
 | |
| 
 | |
| def checkop(expr, a, b, value, fuzz = 1e-6):
 | |
| 	import sys
 | |
| 	print '       ', a, 'and', b,
 | |
| 	try:
 | |
| 		result = eval(expr)
 | |
| 	except:
 | |
| 		result = sys.exc_type
 | |
| 	print '->', result
 | |
| 	if (type(result) == type('') or type(value) == type('')):
 | |
| 		ok = result == value
 | |
| 	else:
 | |
| 		ok = abs(result - value) <= fuzz
 | |
| 	if not ok:
 | |
| 		print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
 | |
| 
 | |
| 
 | |
| def test():
 | |
| 	testsuite = {
 | |
| 		'a+b': [
 | |
| 			(1, 10, 11),
 | |
| 			(1, Complex(0,10), Complex(1,10)),
 | |
| 			(Complex(0,10), 1, Complex(1,10)),
 | |
| 			(Complex(0,10), Complex(1), Complex(1,10)),
 | |
| 			(Complex(1), Complex(0,10), Complex(1,10)),
 | |
| 		],
 | |
| 		'a-b': [
 | |
| 			(1, 10, -9),
 | |
| 			(1, Complex(0,10), Complex(1,-10)),
 | |
| 			(Complex(0,10), 1, Complex(-1,10)),
 | |
| 			(Complex(0,10), Complex(1), Complex(-1,10)),
 | |
| 			(Complex(1), Complex(0,10), Complex(1,-10)),
 | |
| 		],
 | |
| 		'a*b': [
 | |
| 			(1, 10, 10),
 | |
| 			(1, Complex(0,10), Complex(0, 10)),
 | |
| 			(Complex(0,10), 1, Complex(0,10)),
 | |
| 			(Complex(0,10), Complex(1), Complex(0,10)),
 | |
| 			(Complex(1), Complex(0,10), Complex(0,10)),
 | |
| 		],
 | |
| 		'a/b': [
 | |
| 			(1., 10, 0.1),
 | |
| 			(1, Complex(0,10), Complex(0, -0.1)),
 | |
| 			(Complex(0, 10), 1, Complex(0, 10)),
 | |
| 			(Complex(0, 10), Complex(1), Complex(0, 10)),
 | |
| 			(Complex(1), Complex(0,10), Complex(0, -0.1)),
 | |
| 		],
 | |
| 		'pow(a,b)': [
 | |
| 			(1, 10, 1),
 | |
| 			(1, Complex(0,10), 'TypeError'),
 | |
| 			(Complex(0,10), 1, Complex(0,10)),
 | |
| 			(Complex(0,10), Complex(1), Complex(0,10)),
 | |
| 			(Complex(1), Complex(0,10), 'TypeError'),
 | |
| 			(2, Complex(4,0), 16),
 | |
| 		],
 | |
| 		'cmp(a,b)': [
 | |
| 			(1, 10, -1),
 | |
| 			(1, Complex(0,10), 1),
 | |
| 			(Complex(0,10), 1, -1),
 | |
| 			(Complex(0,10), Complex(1), -1),
 | |
| 			(Complex(1), Complex(0,10), 1),
 | |
| 		],
 | |
| 	}
 | |
| 	exprs = testsuite.keys()
 | |
| 	exprs.sort()
 | |
| 	for expr in exprs:
 | |
| 		print expr + ':'
 | |
| 		t = (expr,)
 | |
| 		for item in testsuite[expr]:
 | |
| 			apply(checkop, t+item)
 | |
| 	
 | |
| 
 | |
| if __name__ == '__main__':
 | |
| 	test()
 | 
