mirror of
https://github.com/python/cpython.git
synced 2025-07-27 13:14:41 +00:00

This adds support for comparing pystats collected from two different builds. - The `--json-output` can be used to load in a set of raw stats and output a JSON file. - Two of these JSON files can be provided on the next run, and then comparative results between the two are output.
636 lines
24 KiB
Python
636 lines
24 KiB
Python
"""Print a summary of specialization stats for all files in the
|
|
default stats folders.
|
|
"""
|
|
|
|
import argparse
|
|
import collections
|
|
import json
|
|
import os.path
|
|
import opcode
|
|
from datetime import date
|
|
import itertools
|
|
import sys
|
|
|
|
if os.name == "nt":
|
|
DEFAULT_DIR = "c:\\temp\\py_stats\\"
|
|
else:
|
|
DEFAULT_DIR = "/tmp/py_stats/"
|
|
|
|
#Create list of all instruction names
|
|
specialized = iter(opcode._specialized_instructions)
|
|
opname = ["<0>"]
|
|
for name in opcode.opname[1:]:
|
|
if name.startswith("<"):
|
|
try:
|
|
name = next(specialized)
|
|
except StopIteration:
|
|
pass
|
|
opname.append(name)
|
|
|
|
# opcode_name --> opcode
|
|
# Sort alphabetically.
|
|
opmap = {name: i for i, name in enumerate(opname)}
|
|
opmap = dict(sorted(opmap.items()))
|
|
|
|
TOTAL = "specialization.deferred", "specialization.hit", "specialization.miss", "execution_count"
|
|
|
|
def join_rows(a_rows, b_rows):
|
|
"""
|
|
Joins two tables together, side-by-side, where the first column in each is a
|
|
common key.
|
|
"""
|
|
if len(a_rows) == 0 and len(b_rows) == 0:
|
|
return []
|
|
|
|
if len(a_rows):
|
|
a_ncols = list(set(len(x) for x in a_rows))
|
|
if len(a_ncols) != 1:
|
|
raise ValueError("Table a is ragged")
|
|
|
|
if len(b_rows):
|
|
b_ncols = list(set(len(x) for x in b_rows))
|
|
if len(b_ncols) != 1:
|
|
raise ValueError("Table b is ragged")
|
|
|
|
if len(a_rows) and len(b_rows) and a_ncols[0] != b_ncols[0]:
|
|
raise ValueError("Tables have different widths")
|
|
|
|
if len(a_rows):
|
|
ncols = a_ncols[0]
|
|
else:
|
|
ncols = b_ncols[0]
|
|
|
|
default = [""] * (ncols - 1)
|
|
a_data = {x[0]: x[1:] for x in a_rows}
|
|
b_data = {x[0]: x[1:] for x in b_rows}
|
|
|
|
if len(a_data) != len(a_rows) or len(b_data) != len(b_rows):
|
|
raise ValueError("Duplicate keys")
|
|
|
|
# To preserve ordering, use A's keys as is and then add any in B that aren't
|
|
# in A
|
|
keys = list(a_data.keys()) + [k for k in b_data.keys() if k not in a_data]
|
|
return [(k, *a_data.get(k, default), *b_data.get(k, default)) for k in keys]
|
|
|
|
def calculate_specialization_stats(family_stats, total):
|
|
rows = []
|
|
for key in sorted(family_stats):
|
|
if key.startswith("specialization.failure_kinds"):
|
|
continue
|
|
if key in ("specialization.hit", "specialization.miss"):
|
|
label = key[len("specialization."):]
|
|
elif key == "execution_count":
|
|
label = "unquickened"
|
|
elif key in ("specialization.success", "specialization.failure", "specializable"):
|
|
continue
|
|
elif key.startswith("pair"):
|
|
continue
|
|
else:
|
|
label = key
|
|
rows.append((f"{label:>12}", f"{family_stats[key]:>12}", f"{100*family_stats[key]/total:0.1f}%"))
|
|
return rows
|
|
|
|
def calculate_specialization_success_failure(family_stats):
|
|
total_attempts = 0
|
|
for key in ("specialization.success", "specialization.failure"):
|
|
total_attempts += family_stats.get(key, 0)
|
|
rows = []
|
|
if total_attempts:
|
|
for key in ("specialization.success", "specialization.failure"):
|
|
label = key[len("specialization."):]
|
|
label = label[0].upper() + label[1:]
|
|
val = family_stats.get(key, 0)
|
|
rows.append((label, val, f"{100*val/total_attempts:0.1f}%"))
|
|
return rows
|
|
|
|
def calculate_specialization_failure_kinds(name, family_stats, defines):
|
|
total_failures = family_stats.get("specialization.failure", 0)
|
|
failure_kinds = [ 0 ] * 30
|
|
for key in family_stats:
|
|
if not key.startswith("specialization.failure_kind"):
|
|
continue
|
|
_, index = key[:-1].split("[")
|
|
index = int(index)
|
|
failure_kinds[index] = family_stats[key]
|
|
failures = [(value, index) for (index, value) in enumerate(failure_kinds)]
|
|
failures.sort(reverse=True)
|
|
rows = []
|
|
for value, index in failures:
|
|
if not value:
|
|
continue
|
|
rows.append((kind_to_text(index, defines, name), value, f"{100*value/total_failures:0.1f}%"))
|
|
return rows
|
|
|
|
def print_specialization_stats(name, family_stats, defines):
|
|
if "specializable" not in family_stats:
|
|
return
|
|
total = sum(family_stats.get(kind, 0) for kind in TOTAL)
|
|
if total == 0:
|
|
return
|
|
with Section(name, 3, f"specialization stats for {name} family"):
|
|
rows = calculate_specialization_stats(family_stats, total)
|
|
emit_table(("Kind", "Count", "Ratio"), rows)
|
|
rows = calculate_specialization_success_failure(family_stats)
|
|
if rows:
|
|
print_title("Specialization attempts", 4)
|
|
emit_table(("", "Count:", "Ratio:"), rows)
|
|
rows = calculate_specialization_failure_kinds(name, family_stats, defines)
|
|
emit_table(("Failure kind", "Count:", "Ratio:"), rows)
|
|
|
|
def print_comparative_specialization_stats(name, base_family_stats, head_family_stats, defines):
|
|
if "specializable" not in base_family_stats:
|
|
return
|
|
|
|
base_total = sum(base_family_stats.get(kind, 0) for kind in TOTAL)
|
|
head_total = sum(head_family_stats.get(kind, 0) for kind in TOTAL)
|
|
if base_total + head_total == 0:
|
|
return
|
|
with Section(name, 3, f"specialization stats for {name} family"):
|
|
base_rows = calculate_specialization_stats(base_family_stats, base_total)
|
|
head_rows = calculate_specialization_stats(head_family_stats, head_total)
|
|
emit_table(
|
|
("Kind", "Base Count", "Base Ratio", "Head Count", "Head Ratio"),
|
|
join_rows(base_rows, head_rows)
|
|
)
|
|
base_rows = calculate_specialization_success_failure(base_family_stats)
|
|
head_rows = calculate_specialization_success_failure(head_family_stats)
|
|
rows = join_rows(base_rows, head_rows)
|
|
if rows:
|
|
print_title("Specialization attempts", 4)
|
|
emit_table(("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), rows)
|
|
base_rows = calculate_specialization_failure_kinds(name, base_family_stats, defines)
|
|
head_rows = calculate_specialization_failure_kinds(name, head_family_stats, defines)
|
|
emit_table(
|
|
("Failure kind", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
|
|
join_rows(base_rows, head_rows)
|
|
)
|
|
|
|
def gather_stats(input):
|
|
# Note the output of this function must be JSON-serializable
|
|
|
|
if os.path.isfile(input):
|
|
with open(input, "r") as fd:
|
|
return json.load(fd)
|
|
elif os.path.isdir(input):
|
|
stats = collections.Counter()
|
|
for filename in os.listdir(input):
|
|
with open(os.path.join(input, filename)) as fd:
|
|
for line in fd:
|
|
try:
|
|
key, value = line.split(":")
|
|
except ValueError:
|
|
print(f"Unparsable line: '{line.strip()}' in {filename}", file=sys.stderr)
|
|
continue
|
|
key = key.strip()
|
|
value = int(value)
|
|
stats[key] += value
|
|
return stats
|
|
else:
|
|
raise ValueError(f"{input:r} is not a file or directory path")
|
|
|
|
def extract_opcode_stats(stats):
|
|
opcode_stats = [ {} for _ in range(256) ]
|
|
for key, value in stats.items():
|
|
if not key.startswith("opcode"):
|
|
continue
|
|
n, _, rest = key[7:].partition("]")
|
|
opcode_stats[int(n)][rest.strip(".")] = value
|
|
return opcode_stats
|
|
|
|
def parse_kinds(spec_src, prefix="SPEC_FAIL"):
|
|
defines = collections.defaultdict(list)
|
|
start = "#define " + prefix + "_"
|
|
for line in spec_src:
|
|
line = line.strip()
|
|
if not line.startswith(start):
|
|
continue
|
|
line = line[len(start):]
|
|
name, val = line.split()
|
|
defines[int(val.strip())].append(name.strip())
|
|
return defines
|
|
|
|
def pretty(defname):
|
|
return defname.replace("_", " ").lower()
|
|
|
|
def kind_to_text(kind, defines, opname):
|
|
if kind < 7:
|
|
return pretty(defines[kind][0])
|
|
if opname.endswith("ATTR"):
|
|
opname = "ATTR"
|
|
if opname.endswith("SUBSCR"):
|
|
opname = "SUBSCR"
|
|
for name in defines[kind]:
|
|
if name.startswith(opname):
|
|
return pretty(name[len(opname)+1:])
|
|
return "kind " + str(kind)
|
|
|
|
def categorized_counts(opcode_stats):
|
|
basic = 0
|
|
specialized = 0
|
|
not_specialized = 0
|
|
specialized_instructions = {
|
|
op for op in opcode._specialized_instructions
|
|
if "__" not in op and "ADAPTIVE" not in op}
|
|
adaptive_instructions = {
|
|
op for op in opcode._specialized_instructions
|
|
if "ADAPTIVE" in op}
|
|
for i, opcode_stat in enumerate(opcode_stats):
|
|
if "execution_count" not in opcode_stat:
|
|
continue
|
|
count = opcode_stat['execution_count']
|
|
name = opname[i]
|
|
if "specializable" in opcode_stat:
|
|
not_specialized += count
|
|
elif name in adaptive_instructions:
|
|
not_specialized += count
|
|
elif name in specialized_instructions:
|
|
miss = opcode_stat.get("specialization.miss", 0)
|
|
not_specialized += miss
|
|
specialized += count - miss
|
|
else:
|
|
basic += count
|
|
return basic, not_specialized, specialized
|
|
|
|
def print_title(name, level=2):
|
|
print("#"*level, name)
|
|
print()
|
|
|
|
class Section:
|
|
|
|
def __init__(self, title, level=2, summary=None):
|
|
self.title = title
|
|
self.level = level
|
|
if summary is None:
|
|
self.summary = title.lower()
|
|
else:
|
|
self.summary = summary
|
|
|
|
def __enter__(self):
|
|
print_title(self.title, self.level)
|
|
print("<details>")
|
|
print("<summary>", self.summary, "</summary>")
|
|
print()
|
|
return self
|
|
|
|
def __exit__(*args):
|
|
print()
|
|
print("</details>")
|
|
print()
|
|
|
|
def to_str(x):
|
|
if isinstance(x, int):
|
|
return format(x, ",d")
|
|
else:
|
|
return str(x)
|
|
|
|
def emit_table(header, rows):
|
|
width = len(header)
|
|
header_line = "|"
|
|
under_line = "|"
|
|
for item in header:
|
|
under = "---"
|
|
if item.endswith(":"):
|
|
item = item[:-1]
|
|
under += ":"
|
|
header_line += item + " | "
|
|
under_line += under + "|"
|
|
print(header_line)
|
|
print(under_line)
|
|
for row in rows:
|
|
if width is not None and len(row) != width:
|
|
raise ValueError("Wrong number of elements in row '" + str(row) + "'")
|
|
print("|", " | ".join(to_str(i) for i in row), "|")
|
|
print()
|
|
|
|
def calculate_execution_counts(opcode_stats, total):
|
|
counts = []
|
|
for i, opcode_stat in enumerate(opcode_stats):
|
|
if "execution_count" in opcode_stat:
|
|
count = opcode_stat['execution_count']
|
|
miss = 0
|
|
if "specializable" not in opcode_stat:
|
|
miss = opcode_stat.get("specialization.miss")
|
|
counts.append((count, opname[i], miss))
|
|
counts.sort(reverse=True)
|
|
cumulative = 0
|
|
rows = []
|
|
for (count, name, miss) in counts:
|
|
cumulative += count
|
|
if miss:
|
|
miss = f"{100*miss/count:0.1f}%"
|
|
else:
|
|
miss = ""
|
|
rows.append((name, count, f"{100*count/total:0.1f}%",
|
|
f"{100*cumulative/total:0.1f}%", miss))
|
|
return rows
|
|
|
|
def emit_execution_counts(opcode_stats, total):
|
|
with Section("Execution counts", summary="execution counts for all instructions"):
|
|
rows = calculate_execution_counts(opcode_stats, total)
|
|
emit_table(
|
|
("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"),
|
|
rows
|
|
)
|
|
|
|
def emit_comparative_execution_counts(
|
|
base_opcode_stats, base_total, head_opcode_stats, head_total
|
|
):
|
|
with Section("Execution counts", summary="execution counts for all instructions"):
|
|
base_rows = calculate_execution_counts(base_opcode_stats, base_total)
|
|
head_rows = calculate_execution_counts(head_opcode_stats, head_total)
|
|
base_data = dict((x[0], x[1:]) for x in base_rows)
|
|
head_data = dict((x[0], x[1:]) for x in head_rows)
|
|
opcodes = set(base_data.keys()) | set(head_data.keys())
|
|
|
|
rows = []
|
|
default = [0, "0.0%", "0.0%", 0]
|
|
for opcode in opcodes:
|
|
base_entry = base_data.get(opcode, default)
|
|
head_entry = head_data.get(opcode, default)
|
|
if base_entry[0] == 0:
|
|
change = 1
|
|
else:
|
|
change = (head_entry[0] - base_entry[0]) / base_entry[0]
|
|
rows.append(
|
|
(opcode, base_entry[0], head_entry[0],
|
|
f"{100*change:0.1f}%"))
|
|
|
|
rows.sort(key=lambda x: -abs(float(x[-1][:-1])))
|
|
|
|
emit_table(
|
|
("Name", "Base Count:", "Head Count:", "Change:"),
|
|
rows
|
|
)
|
|
|
|
def get_defines():
|
|
spec_path = os.path.join(os.path.dirname(__file__), "../../Python/specialize.c")
|
|
with open(spec_path) as spec_src:
|
|
defines = parse_kinds(spec_src)
|
|
return defines
|
|
|
|
def emit_specialization_stats(opcode_stats):
|
|
defines = get_defines()
|
|
with Section("Specialization stats", summary="specialization stats by family"):
|
|
for i, opcode_stat in enumerate(opcode_stats):
|
|
name = opname[i]
|
|
print_specialization_stats(name, opcode_stat, defines)
|
|
|
|
def emit_comparative_specialization_stats(base_opcode_stats, head_opcode_stats):
|
|
defines = get_defines()
|
|
with Section("Specialization stats", summary="specialization stats by family"):
|
|
for i, (base_opcode_stat, head_opcode_stat) in enumerate(zip(base_opcode_stats, head_opcode_stats)):
|
|
name = opname[i]
|
|
print_comparative_specialization_stats(name, base_opcode_stat, head_opcode_stat, defines)
|
|
|
|
def calculate_specialization_effectiveness(opcode_stats, total):
|
|
basic, not_specialized, specialized = categorized_counts(opcode_stats)
|
|
return [
|
|
("Basic", basic, f"{basic*100/total:0.1f}%"),
|
|
("Not specialized", not_specialized, f"{not_specialized*100/total:0.1f}%"),
|
|
("Specialized", specialized, f"{specialized*100/total:0.1f}%"),
|
|
]
|
|
|
|
def emit_specialization_overview(opcode_stats, total):
|
|
with Section("Specialization effectiveness"):
|
|
rows = calculate_specialization_effectiveness(opcode_stats, total)
|
|
emit_table(("Instructions", "Count:", "Ratio:"), rows)
|
|
for title, field in (("Deferred", "specialization.deferred"), ("Misses", "specialization.miss")):
|
|
total = 0
|
|
counts = []
|
|
for i, opcode_stat in enumerate(opcode_stats):
|
|
value = opcode_stat.get(field, 0)
|
|
counts.append((value, opname[i]))
|
|
total += value
|
|
counts.sort(reverse=True)
|
|
if total:
|
|
with Section(f"{title} by instruction", 3):
|
|
rows = [ (name, count, f"{100*count/total:0.1f}%") for (count, name) in counts[:10] ]
|
|
emit_table(("Name", "Count:", "Ratio:"), rows)
|
|
|
|
def emit_comparative_specialization_overview(base_opcode_stats, base_total, head_opcode_stats, head_total):
|
|
with Section("Specialization effectiveness"):
|
|
base_rows = calculate_specialization_effectiveness(base_opcode_stats, base_total)
|
|
head_rows = calculate_specialization_effectiveness(head_opcode_stats, head_total)
|
|
emit_table(
|
|
("Instructions", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
|
|
join_rows(base_rows, head_rows)
|
|
)
|
|
|
|
def get_stats_defines():
|
|
stats_path = os.path.join(os.path.dirname(__file__), "../../Include/pystats.h")
|
|
with open(stats_path) as stats_src:
|
|
defines = parse_kinds(stats_src, prefix="EVAL_CALL")
|
|
return defines
|
|
|
|
def calculate_call_stats(stats):
|
|
defines = get_stats_defines()
|
|
total = 0
|
|
for key, value in stats.items():
|
|
if "Calls to" in key:
|
|
total += value
|
|
rows = []
|
|
for key, value in stats.items():
|
|
if "Calls to" in key:
|
|
rows.append((key, value, f"{100*value/total:0.1f}%"))
|
|
elif key.startswith("Calls "):
|
|
name, index = key[:-1].split("[")
|
|
index = int(index)
|
|
label = name + " (" + pretty(defines[index][0]) + ")"
|
|
rows.append((label, value, f"{100*value/total:0.1f}%"))
|
|
for key, value in stats.items():
|
|
if key.startswith("Frame"):
|
|
rows.append((key, value, f"{100*value/total:0.1f}%"))
|
|
return rows
|
|
|
|
def emit_call_stats(stats):
|
|
with Section("Call stats", summary="Inlined calls and frame stats"):
|
|
rows = calculate_call_stats(stats)
|
|
emit_table(("", "Count:", "Ratio:"), rows)
|
|
|
|
def emit_comparative_call_stats(base_stats, head_stats):
|
|
with Section("Call stats", summary="Inlined calls and frame stats"):
|
|
base_rows = calculate_call_stats(base_stats)
|
|
head_rows = calculate_call_stats(head_stats)
|
|
rows = join_rows(base_rows, head_rows)
|
|
rows.sort(key=lambda x: -float(x[-1][:-1]))
|
|
emit_table(
|
|
("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
|
|
rows
|
|
)
|
|
|
|
def calculate_object_stats(stats):
|
|
total_materializations = stats.get("Object new values")
|
|
total_allocations = stats.get("Object allocations") + stats.get("Object allocations from freelist")
|
|
total_increfs = stats.get("Object interpreter increfs") + stats.get("Object increfs")
|
|
total_decrefs = stats.get("Object interpreter decrefs") + stats.get("Object decrefs")
|
|
rows = []
|
|
for key, value in stats.items():
|
|
if key.startswith("Object"):
|
|
if "materialize" in key:
|
|
ratio = f"{100*value/total_materializations:0.1f}%"
|
|
elif "allocations" in key:
|
|
ratio = f"{100*value/total_allocations:0.1f}%"
|
|
elif "increfs" in key:
|
|
ratio = f"{100*value/total_increfs:0.1f}%"
|
|
elif "decrefs" in key:
|
|
ratio = f"{100*value/total_decrefs:0.1f}%"
|
|
else:
|
|
ratio = ""
|
|
label = key[6:].strip()
|
|
label = label[0].upper() + label[1:]
|
|
rows.append((label, value, ratio))
|
|
return rows
|
|
|
|
def emit_object_stats(stats):
|
|
with Section("Object stats", summary="allocations, frees and dict materializatons"):
|
|
rows = calculate_object_stats(stats)
|
|
emit_table(("", "Count:", "Ratio:"), rows)
|
|
|
|
def emit_comparative_object_stats(base_stats, head_stats):
|
|
with Section("Object stats", summary="allocations, frees and dict materializatons"):
|
|
base_rows = calculate_object_stats(base_stats)
|
|
head_rows = calculate_object_stats(head_stats)
|
|
emit_table(("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), join_rows(base_rows, head_rows))
|
|
|
|
def get_total(opcode_stats):
|
|
total = 0
|
|
for opcode_stat in opcode_stats:
|
|
if "execution_count" in opcode_stat:
|
|
total += opcode_stat['execution_count']
|
|
return total
|
|
|
|
def emit_pair_counts(opcode_stats, total):
|
|
pair_counts = []
|
|
for i, opcode_stat in enumerate(opcode_stats):
|
|
if i == 0:
|
|
continue
|
|
for key, value in opcode_stat.items():
|
|
if key.startswith("pair_count"):
|
|
x, _, _ = key[11:].partition("]")
|
|
if value:
|
|
pair_counts.append((value, (i, int(x))))
|
|
with Section("Pair counts", summary="Pair counts for top 100 pairs"):
|
|
pair_counts.sort(reverse=True)
|
|
cumulative = 0
|
|
rows = []
|
|
for (count, pair) in itertools.islice(pair_counts, 100):
|
|
i, j = pair
|
|
cumulative += count
|
|
rows.append((opname[i] + " " + opname[j], count, f"{100*count/total:0.1f}%",
|
|
f"{100*cumulative/total:0.1f}%"))
|
|
emit_table(("Pair", "Count:", "Self:", "Cumulative:"),
|
|
rows
|
|
)
|
|
with Section("Predecessor/Successor Pairs", summary="Top 5 predecessors and successors of each opcode"):
|
|
predecessors = collections.defaultdict(collections.Counter)
|
|
successors = collections.defaultdict(collections.Counter)
|
|
total_predecessors = collections.Counter()
|
|
total_successors = collections.Counter()
|
|
for count, (first, second) in pair_counts:
|
|
if count:
|
|
predecessors[second][first] = count
|
|
successors[first][second] = count
|
|
total_predecessors[second] += count
|
|
total_successors[first] += count
|
|
for name, i in opmap.items():
|
|
total1 = total_predecessors[i]
|
|
total2 = total_successors[i]
|
|
if total1 == 0 and total2 == 0:
|
|
continue
|
|
pred_rows = succ_rows = ()
|
|
if total1:
|
|
pred_rows = [(opname[pred], count, f"{count/total1:.1%}")
|
|
for (pred, count) in predecessors[i].most_common(5)]
|
|
if total2:
|
|
succ_rows = [(opname[succ], count, f"{count/total2:.1%}")
|
|
for (succ, count) in successors[i].most_common(5)]
|
|
with Section(name, 3, f"Successors and predecessors for {name}"):
|
|
emit_table(("Predecessors", "Count:", "Percentage:"),
|
|
pred_rows
|
|
)
|
|
emit_table(("Successors", "Count:", "Percentage:"),
|
|
succ_rows
|
|
)
|
|
|
|
def output_single_stats(stats):
|
|
opcode_stats = extract_opcode_stats(stats)
|
|
total = get_total(opcode_stats)
|
|
emit_execution_counts(opcode_stats, total)
|
|
emit_pair_counts(opcode_stats, total)
|
|
emit_specialization_stats(opcode_stats)
|
|
emit_specialization_overview(opcode_stats, total)
|
|
emit_call_stats(stats)
|
|
emit_object_stats(stats)
|
|
|
|
def output_comparative_stats(base_stats, head_stats):
|
|
base_opcode_stats = extract_opcode_stats(base_stats)
|
|
base_total = get_total(base_opcode_stats)
|
|
|
|
head_opcode_stats = extract_opcode_stats(head_stats)
|
|
head_total = get_total(head_opcode_stats)
|
|
|
|
emit_comparative_execution_counts(
|
|
base_opcode_stats, base_total, head_opcode_stats, head_total
|
|
)
|
|
emit_comparative_specialization_stats(
|
|
base_opcode_stats, head_opcode_stats
|
|
)
|
|
emit_comparative_specialization_overview(
|
|
base_opcode_stats, base_total, head_opcode_stats, head_total
|
|
)
|
|
emit_comparative_call_stats(base_stats, head_stats)
|
|
emit_comparative_object_stats(base_stats, head_stats)
|
|
|
|
def output_stats(inputs, json_output=None):
|
|
if len(inputs) == 1:
|
|
stats = gather_stats(inputs[0])
|
|
if json_output is not None:
|
|
json.dump(stats, json_output)
|
|
output_single_stats(stats)
|
|
elif len(inputs) == 2:
|
|
if json_output is not None:
|
|
raise ValueError(
|
|
"Can not output to JSON when there are multiple inputs"
|
|
)
|
|
|
|
base_stats = gather_stats(inputs[0])
|
|
head_stats = gather_stats(inputs[1])
|
|
output_comparative_stats(base_stats, head_stats)
|
|
|
|
print("---")
|
|
print("Stats gathered on:", date.today())
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Summarize pystats results")
|
|
|
|
parser.add_argument(
|
|
"inputs",
|
|
nargs="*",
|
|
type=str,
|
|
default=[DEFAULT_DIR],
|
|
help=f"""
|
|
Input source(s).
|
|
For each entry, if a .json file, the output provided by --json-output from a previous run;
|
|
if a directory, a directory containing raw pystats .txt files.
|
|
If one source is provided, its stats are printed.
|
|
If two sources are provided, comparative stats are printed.
|
|
Default is {DEFAULT_DIR}.
|
|
"""
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--json-output",
|
|
nargs="?",
|
|
type=argparse.FileType("w"),
|
|
help="Output complete raw results to the given JSON file."
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if len(args.inputs) > 2:
|
|
raise ValueError("0-2 arguments may be provided.")
|
|
|
|
output_stats(args.inputs, json_output=args.json_output)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|