mirror of
				https://github.com/python/cpython.git
				synced 2025-10-29 17:38:56 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			580 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			580 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Random objects */
 | |
| 
 | |
| /* ------------------------------------------------------------------
 | |
|    The code in this module was based on a download from:
 | |
| 	  http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html
 | |
| 
 | |
|    It was modified in 2002 by Raymond Hettinger as follows:
 | |
| 
 | |
| 	* the principal computational lines untouched except for tabbing.
 | |
| 
 | |
| 	* renamed genrand_res53() to random_random() and wrapped
 | |
| 	  in python calling/return code.
 | |
| 
 | |
| 	* genrand_int32() and the helper functions, init_genrand()
 | |
| 	  and init_by_array(), were declared static, wrapped in
 | |
| 	  Python calling/return code.  also, their global data
 | |
| 	  references were replaced with structure references.
 | |
| 
 | |
| 	* unused functions from the original were deleted.
 | |
| 	  new, original C python code was added to implement the
 | |
| 	  Random() interface.
 | |
| 
 | |
|    The following are the verbatim comments from the original code:
 | |
| 
 | |
|    A C-program for MT19937, with initialization improved 2002/1/26.
 | |
|    Coded by Takuji Nishimura and Makoto Matsumoto.
 | |
| 
 | |
|    Before using, initialize the state by using init_genrand(seed)
 | |
|    or init_by_array(init_key, key_length).
 | |
| 
 | |
|    Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 | |
|    All rights reserved.
 | |
| 
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions
 | |
|    are met:
 | |
| 
 | |
|      1. Redistributions of source code must retain the above copyright
 | |
| 	notice, this list of conditions and the following disclaimer.
 | |
| 
 | |
|      2. Redistributions in binary form must reproduce the above copyright
 | |
| 	notice, this list of conditions and the following disclaimer in the
 | |
| 	documentation and/or other materials provided with the distribution.
 | |
| 
 | |
|      3. The names of its contributors may not be used to endorse or promote
 | |
| 	products derived from this software without specific prior written
 | |
| 	permission.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | |
|    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| 
 | |
|    Any feedback is very welcome.
 | |
|    http://www.math.keio.ac.jp/matumoto/emt.html
 | |
|    email: matumoto@math.keio.ac.jp
 | |
| */
 | |
| 
 | |
| /* ---------------------------------------------------------------*/
 | |
| 
 | |
| #include "Python.h"
 | |
| #include <time.h>		/* for seeding to current time */
 | |
| 
 | |
| /* Period parameters -- These are all magic.  Don't change. */
 | |
| #define N 624
 | |
| #define M 397
 | |
| #define MATRIX_A 0x9908b0dfUL	/* constant vector a */
 | |
| #define UPPER_MASK 0x80000000UL /* most significant w-r bits */
 | |
| #define LOWER_MASK 0x7fffffffUL /* least significant r bits */
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD
 | |
| 	unsigned long state[N];
 | |
| 	int index;
 | |
| } RandomObject;
 | |
| 
 | |
| static PyTypeObject Random_Type;
 | |
| 
 | |
| #define RandomObject_Check(v)	   ((v)->ob_type == &Random_Type)
 | |
| 
 | |
| 
 | |
| /* Random methods */
 | |
| 
 | |
| 
 | |
| /* generates a random number on [0,0xffffffff]-interval */
 | |
| static unsigned long
 | |
| genrand_int32(RandomObject *self)
 | |
| {
 | |
| 	unsigned long y;
 | |
| 	static unsigned long mag01[2]={0x0UL, MATRIX_A};
 | |
| 	/* mag01[x] = x * MATRIX_A  for x=0,1 */
 | |
| 	unsigned long *mt;
 | |
| 
 | |
| 	mt = self->state;
 | |
| 	if (self->index >= N) { /* generate N words at one time */
 | |
| 		int kk;
 | |
| 
 | |
| 		for (kk=0;kk<N-M;kk++) {
 | |
| 			y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 | |
| 			mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
 | |
| 		}
 | |
| 		for (;kk<N-1;kk++) {
 | |
| 			y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 | |
| 			mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
 | |
| 		}
 | |
| 		y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
 | |
| 		mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
 | |
| 
 | |
| 		self->index = 0;
 | |
| 	}
 | |
| 
 | |
|     y = mt[self->index++];
 | |
|     y ^= (y >> 11);
 | |
|     y ^= (y << 7) & 0x9d2c5680UL;
 | |
|     y ^= (y << 15) & 0xefc60000UL;
 | |
|     y ^= (y >> 18);
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| /* random_random is the function named genrand_res53 in the original code;
 | |
|  * generates a random number on [0,1) with 53-bit resolution; note that
 | |
|  * 9007199254740992 == 2**53; I assume they're spelling "/2**53" as
 | |
|  * multiply-by-reciprocal in the (likely vain) hope that the compiler will
 | |
|  * optimize the division away at compile-time.  67108864 is 2**26.  In
 | |
|  * effect, a contains 27 random bits shifted left 26, and b fills in the
 | |
|  * lower 26 bits of the 53-bit numerator.
 | |
|  * The orginal code credited Isaku Wada for this algorithm, 2002/01/09.
 | |
|  */
 | |
| static PyObject *
 | |
| random_random(RandomObject *self)
 | |
| {
 | |
| 	unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6;
 | |
|     	return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0));
 | |
| }
 | |
| 
 | |
| /* initializes mt[N] with a seed */
 | |
| static void
 | |
| init_genrand(RandomObject *self, unsigned long s)
 | |
| {
 | |
| 	int mti;
 | |
| 	unsigned long *mt;
 | |
| 
 | |
| 	mt = self->state;
 | |
| 	mt[0]= s & 0xffffffffUL;
 | |
| 	for (mti=1; mti<N; mti++) {
 | |
| 		mt[mti] =
 | |
| 		(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
 | |
| 		/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
 | |
| 		/* In the previous versions, MSBs of the seed affect   */
 | |
| 		/* only MSBs of the array mt[]. 		       */
 | |
| 		/* 2002/01/09 modified by Makoto Matsumoto	       */
 | |
| 		mt[mti] &= 0xffffffffUL;
 | |
| 		/* for >32 bit machines */
 | |
| 	}
 | |
| 	self->index = mti;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* initialize by an array with array-length */
 | |
| /* init_key is the array for initializing keys */
 | |
| /* key_length is its length */
 | |
| static PyObject *
 | |
| init_by_array(RandomObject *self, unsigned long init_key[], unsigned long key_length)
 | |
| {
 | |
| 	unsigned int i, j, k;	/* was signed in the original code. RDH 12/16/2002 */
 | |
| 	unsigned long *mt;
 | |
| 
 | |
| 	mt = self->state;
 | |
| 	init_genrand(self, 19650218UL);
 | |
| 	i=1; j=0;
 | |
| 	k = (N>key_length ? N : key_length);
 | |
| 	for (; k; k--) {
 | |
| 		mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
 | |
| 			 + init_key[j] + j; /* non linear */
 | |
| 		mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
 | |
| 		i++; j++;
 | |
| 		if (i>=N) { mt[0] = mt[N-1]; i=1; }
 | |
| 		if (j>=key_length) j=0;
 | |
| 	}
 | |
| 	for (k=N-1; k; k--) {
 | |
| 		mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
 | |
| 			 - i; /* non linear */
 | |
| 		mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
 | |
| 		i++;
 | |
| 		if (i>=N) { mt[0] = mt[N-1]; i=1; }
 | |
| 	}
 | |
| 
 | |
|     mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
 | |
|     Py_INCREF(Py_None);
 | |
|     return Py_None;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The rest is Python-specific code, neither part of, nor derived from, the
 | |
|  * Twister download.
 | |
|  */
 | |
| 
 | |
| static PyObject *
 | |
| random_seed(RandomObject *self, PyObject *args)
 | |
| {
 | |
| 	PyObject *result = NULL;	/* guilty until proved innocent */
 | |
| 	PyObject *masklower = NULL;
 | |
| 	PyObject *thirtytwo = NULL;
 | |
| 	PyObject *n = NULL;
 | |
| 	unsigned long *key = NULL;
 | |
| 	unsigned long keymax;		/* # of allocated slots in key */
 | |
| 	unsigned long keyused;		/* # of used slots in key */
 | |
| 	int err;
 | |
| 
 | |
| 	PyObject *arg = NULL;
 | |
| 
 | |
| 	if (!PyArg_UnpackTuple(args, "seed", 0, 1, &arg))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (arg == NULL || arg == Py_None) {
 | |
| 		time_t now;
 | |
| 
 | |
| 		time(&now);
 | |
| 		init_genrand(self, (unsigned long)now);
 | |
| 		Py_INCREF(Py_None);
 | |
| 		return Py_None;
 | |
| 	}
 | |
| 	/* If the arg is an int or long, use its absolute value; else use
 | |
| 	 * the absolute value of its hash code.
 | |
| 	 */
 | |
| 	if (PyInt_Check(arg) || PyLong_Check(arg))
 | |
| 		n = PyNumber_Absolute(arg);
 | |
| 	else {
 | |
| 		long hash = PyObject_Hash(arg);
 | |
| 		if (hash == -1)
 | |
| 			goto Done;
 | |
| 		n = PyLong_FromUnsignedLong((unsigned long)hash);
 | |
| 	}
 | |
| 	if (n == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	/* Now split n into 32-bit chunks, from the right.  Each piece is
 | |
| 	 * stored into key, which has a capacity of keymax chunks, of which
 | |
| 	 * keyused are filled.  Alas, the repeated shifting makes this a
 | |
| 	 * quadratic-time algorithm; we'd really like to use
 | |
| 	 * _PyLong_AsByteArray here, but then we'd have to break into the
 | |
| 	 * long representation to figure out how big an array was needed
 | |
| 	 * in advance.
 | |
| 	 */
 | |
| 	keymax = 8; 	/* arbitrary; grows later if needed */
 | |
| 	keyused = 0;
 | |
| 	key = (unsigned long *)PyMem_Malloc(keymax * sizeof(*key));
 | |
| 	if (key == NULL)
 | |
| 		goto Done;
 | |
| 
 | |
| 	masklower = PyLong_FromUnsignedLong(0xffffffffU);
 | |
| 	if (masklower == NULL)
 | |
| 		goto Done;
 | |
| 	thirtytwo = PyInt_FromLong(32L);
 | |
| 	if (thirtytwo == NULL)
 | |
| 		goto Done;
 | |
| 	while ((err=PyObject_IsTrue(n))) {
 | |
| 		PyObject *newn;
 | |
| 		PyObject *pychunk;
 | |
| 		unsigned long chunk;
 | |
| 
 | |
| 		if (err == -1)
 | |
| 			goto Done;
 | |
| 		pychunk = PyNumber_And(n, masklower);
 | |
| 		if (pychunk == NULL)
 | |
| 			goto Done;
 | |
| 		chunk = PyLong_AsUnsignedLong(pychunk);
 | |
| 		Py_DECREF(pychunk);
 | |
| 		if (chunk == (unsigned long)-1 && PyErr_Occurred())
 | |
| 			goto Done;
 | |
| 		newn = PyNumber_Rshift(n, thirtytwo);
 | |
| 		if (newn == NULL)
 | |
| 			goto Done;
 | |
| 		Py_DECREF(n);
 | |
| 		n = newn;
 | |
| 		if (keyused >= keymax) {
 | |
| 			unsigned long bigger = keymax << 1;
 | |
| 			if ((bigger >> 1) != keymax) {
 | |
| 				PyErr_NoMemory();
 | |
| 				goto Done;
 | |
| 			}
 | |
| 			key = (unsigned long *)PyMem_Realloc(key,
 | |
| 						bigger * sizeof(*key));
 | |
| 			if (key == NULL)
 | |
| 				goto Done;
 | |
| 			keymax = bigger;
 | |
| 		}
 | |
| 		assert(keyused < keymax);
 | |
| 		key[keyused++] = chunk;
 | |
| 	}
 | |
| 
 | |
| 	if (keyused == 0)
 | |
| 		key[keyused++] = 0UL;
 | |
| 	result = init_by_array(self, key, keyused);
 | |
| Done:
 | |
| 	Py_XDECREF(masklower);
 | |
| 	Py_XDECREF(thirtytwo);
 | |
| 	Py_XDECREF(n);
 | |
| 	PyMem_Free(key);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| random_getstate(RandomObject *self)
 | |
| {
 | |
| 	PyObject *state;
 | |
| 	PyObject *element;
 | |
| 	int i;
 | |
| 
 | |
| 	state = PyTuple_New(N+1);
 | |
| 	if (state == NULL)
 | |
| 		return NULL;
 | |
| 	for (i=0; i<N ; i++) {
 | |
| 		element = PyInt_FromLong((long)(self->state[i]));
 | |
| 		if (element == NULL)
 | |
| 			goto Fail;
 | |
| 		PyTuple_SET_ITEM(state, i, element);
 | |
| 	}
 | |
| 	element = PyInt_FromLong((long)(self->index));
 | |
| 	if (element == NULL)
 | |
| 		goto Fail;
 | |
| 	PyTuple_SET_ITEM(state, i, element);
 | |
| 	return state;
 | |
| 
 | |
| Fail:
 | |
| 	Py_DECREF(state);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| random_setstate(RandomObject *self, PyObject *state)
 | |
| {
 | |
| 	int i;
 | |
| 	long element;
 | |
| 
 | |
| 	if (!PyTuple_Check(state)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 			"state vector must be a tuple");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (PyTuple_Size(state) != N+1) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 			"state vector is the wrong size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i=0; i<N ; i++) {
 | |
| 		element = PyInt_AsLong(PyTuple_GET_ITEM(state, i));
 | |
| 		if (element == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		self->state[i] = (unsigned long)element;
 | |
| 	}
 | |
| 
 | |
| 	element = PyInt_AsLong(PyTuple_GET_ITEM(state, i));
 | |
| 	if (element == -1 && PyErr_Occurred())
 | |
| 		return NULL;
 | |
| 	self->index = (int)element;
 | |
| 
 | |
| 	Py_INCREF(Py_None);
 | |
| 	return Py_None;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Jumpahead should be a fast way advance the generator n-steps ahead, but
 | |
| lacking a formula for that, the next best is to use n and the existing
 | |
| state to create a new state far away from the original.
 | |
| 
 | |
| The generator uses constant spaced additive feedback, so shuffling the
 | |
| state elements ought to produce a state which would not be encountered
 | |
| (in the near term) by calls to random().  Shuffling is normally
 | |
| implemented by swapping the ith element with another element ranging
 | |
| from 0 to i inclusive.  That allows the element to have the possibility
 | |
| of not being moved.  Since the goal is to produce a new, different
 | |
| state, the swap element is ranged from 0 to i-1 inclusive.  This assures
 | |
| that each element gets moved at least once.
 | |
| 
 | |
| To make sure that consecutive calls to jumpahead(n) produce different
 | |
| states (even in the rare case of involutory shuffles), i+1 is added to
 | |
| each element at position i.  Successive calls are then guaranteed to
 | |
| have changing (growing) values as well as shuffled positions.
 | |
| 
 | |
| Finally, the self->index value is set to N so that the generator itself
 | |
| kicks in on the next call to random().	This assures that all results
 | |
| have been through the generator and do not just reflect alterations to
 | |
| the underlying state.
 | |
| */
 | |
| 
 | |
| static PyObject *
 | |
| random_jumpahead(RandomObject *self, PyObject *n)
 | |
| {
 | |
| 	long i, j;
 | |
| 	PyObject *iobj;
 | |
| 	PyObject *remobj;
 | |
| 	unsigned long *mt, tmp;
 | |
| 
 | |
| 	if (!PyInt_Check(n) && !PyLong_Check(n)) {
 | |
| 		PyErr_Format(PyExc_TypeError, "jumpahead requires an "
 | |
| 			     "integer, not '%s'",
 | |
| 			     n->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	mt = self->state;
 | |
| 	for (i = N-1; i > 1; i--) {
 | |
| 		iobj = PyInt_FromLong(i);
 | |
| 		if (iobj == NULL)
 | |
| 			return NULL;
 | |
| 		remobj = PyNumber_Remainder(n, iobj);
 | |
| 		Py_DECREF(iobj);
 | |
| 		if (remobj == NULL)
 | |
| 			return NULL;
 | |
| 		j = PyInt_AsLong(remobj);
 | |
| 		Py_DECREF(remobj);
 | |
| 		if (j == -1L && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		tmp = mt[i];
 | |
| 		mt[i] = mt[j];
 | |
| 		mt[j] = tmp;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < N; i++)
 | |
| 		mt[i] += i+1;
 | |
| 
 | |
| 	self->index = N;
 | |
| 	Py_INCREF(Py_None);
 | |
| 	return Py_None;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| random_getrandbits(RandomObject *self, PyObject *args)
 | |
| {
 | |
| 	int k, i, bytes;
 | |
| 	unsigned long r;
 | |
| 	unsigned char *bytearray;
 | |
| 	PyObject *result;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "i:getrandbits", &k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (k <= 0) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 				"number of bits must be greater than zero");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	bytes = ((k - 1) / 32 + 1) * 4;
 | |
| 	bytearray = (unsigned char *)PyMem_Malloc(bytes);
 | |
| 	if (bytearray == NULL) {
 | |
| 		PyErr_NoMemory();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill-out whole words, byte-by-byte to avoid endianness issues */
 | |
| 	for (i=0 ; i<bytes ; i+=4, k-=32) {
 | |
| 		r = genrand_int32(self);
 | |
| 		if (k < 32)
 | |
| 			r >>= (32 - k);
 | |
| 		bytearray[i+0] = (unsigned char)r;
 | |
| 		bytearray[i+1] = (unsigned char)(r >> 8);
 | |
| 		bytearray[i+2] = (unsigned char)(r >> 16);
 | |
| 		bytearray[i+3] = (unsigned char)(r >> 24);
 | |
| 	}
 | |
| 
 | |
| 	/* little endian order to match bytearray assignment order */
 | |
| 	result = _PyLong_FromByteArray(bytearray, bytes, 1, 0);
 | |
| 	PyMem_Free(bytearray);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| random_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	RandomObject *self;
 | |
| 	PyObject *tmp;
 | |
| 
 | |
| 	if (type == &Random_Type && !_PyArg_NoKeywords("Random()", kwds))
 | |
| 		return NULL;
 | |
| 
 | |
| 	self = (RandomObject *)type->tp_alloc(type, 0);
 | |
| 	if (self == NULL)
 | |
| 		return NULL;
 | |
| 	tmp = random_seed(self, args);
 | |
| 	if (tmp == NULL) {
 | |
| 		Py_DECREF(self);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	Py_DECREF(tmp);
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 | |
| static PyMethodDef random_methods[] = {
 | |
| 	{"random",	(PyCFunction)random_random,  METH_NOARGS,
 | |
| 		PyDoc_STR("random() -> x in the interval [0, 1).")},
 | |
| 	{"seed",	(PyCFunction)random_seed,  METH_VARARGS,
 | |
| 		PyDoc_STR("seed([n]) -> None.  Defaults to current time.")},
 | |
| 	{"getstate",	(PyCFunction)random_getstate,  METH_NOARGS,
 | |
| 		PyDoc_STR("getstate() -> tuple containing the current state.")},
 | |
| 	{"setstate",	  (PyCFunction)random_setstate,  METH_O,
 | |
| 		PyDoc_STR("setstate(state) -> None.  Restores generator state.")},
 | |
| 	{"jumpahead",	(PyCFunction)random_jumpahead,	METH_O,
 | |
| 		PyDoc_STR("jumpahead(int) -> None.  Create new state from "
 | |
| 			  "existing state and integer.")},
 | |
| 	{"getrandbits",	(PyCFunction)random_getrandbits,  METH_VARARGS,
 | |
| 		PyDoc_STR("getrandbits(k) -> x.  Generates a long int with "
 | |
| 			  "k random bits.")},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(random_doc,
 | |
| "Random() -> create a random number generator with its own internal state.");
 | |
| 
 | |
| static PyTypeObject Random_Type = {
 | |
| 	PyObject_HEAD_INIT(NULL)
 | |
| 	0,				/*ob_size*/
 | |
| 	"_random.Random",		/*tp_name*/
 | |
| 	sizeof(RandomObject),		/*tp_basicsize*/
 | |
| 	0,				/*tp_itemsize*/
 | |
| 	/* methods */
 | |
| 	0,				/*tp_dealloc*/
 | |
| 	0,				/*tp_print*/
 | |
| 	0,				/*tp_getattr*/
 | |
| 	0,				/*tp_setattr*/
 | |
| 	0,				/*tp_compare*/
 | |
| 	0,				/*tp_repr*/
 | |
| 	0,				/*tp_as_number*/
 | |
| 	0,				/*tp_as_sequence*/
 | |
| 	0,				/*tp_as_mapping*/
 | |
| 	0,				/*tp_hash*/
 | |
| 	0,				/*tp_call*/
 | |
| 	0,				/*tp_str*/
 | |
| 	PyObject_GenericGetAttr,	/*tp_getattro*/
 | |
| 	0,				/*tp_setattro*/
 | |
| 	0,				/*tp_as_buffer*/
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,	/*tp_flags*/
 | |
| 	random_doc,			/*tp_doc*/
 | |
| 	0,				/*tp_traverse*/
 | |
| 	0,				/*tp_clear*/
 | |
| 	0,				/*tp_richcompare*/
 | |
| 	0,				/*tp_weaklistoffset*/
 | |
| 	0,				/*tp_iter*/
 | |
| 	0,				/*tp_iternext*/
 | |
| 	random_methods, 		/*tp_methods*/
 | |
| 	0,				/*tp_members*/
 | |
| 	0,				/*tp_getset*/
 | |
| 	0,				/*tp_base*/
 | |
| 	0,				/*tp_dict*/
 | |
| 	0,				/*tp_descr_get*/
 | |
| 	0,				/*tp_descr_set*/
 | |
| 	0,				/*tp_dictoffset*/
 | |
| 	0,				/*tp_init*/
 | |
| 	0,				/*tp_alloc*/
 | |
| 	random_new,			/*tp_new*/
 | |
| 	_PyObject_Del,			/*tp_free*/
 | |
| 	0,				/*tp_is_gc*/
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "Module implements the Mersenne Twister random number generator.");
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| init_random(void)
 | |
| {
 | |
| 	PyObject *m;
 | |
| 
 | |
| 	if (PyType_Ready(&Random_Type) < 0)
 | |
| 		return;
 | |
| 	m = Py_InitModule3("_random", NULL, module_doc);
 | |
| 	if (m == NULL)
 | |
| 		return;
 | |
| 	Py_INCREF(&Random_Type);
 | |
| 	PyModule_AddObject(m, "Random", (PyObject *)&Random_Type);
 | |
| }
 | 
