mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 03:44:55 +00:00 
			
		
		
		
	types. The special handling for these can now be removed from save_newobj(). Add some testing for this. Also add support for setting the 'fast' flag on the Python Pickler class, which suppresses use of the memo.
		
			
				
	
	
		
			906 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			906 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
/* Float object implementation */
 | 
						|
 | 
						|
/* XXX There should be overflow checks here, but it's hard to check
 | 
						|
   for any kind of float exception without losing portability. */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
#include <ctype.h>
 | 
						|
 | 
						|
#if !defined(__STDC__) && !defined(macintosh)
 | 
						|
extern double fmod(double, double);
 | 
						|
extern double pow(double, double);
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(sun) && !defined(__SVR4)
 | 
						|
/* On SunOS4.1 only libm.a exists. Make sure that references to all
 | 
						|
   needed math functions exist in the executable, so that dynamic
 | 
						|
   loading of mathmodule does not fail. */
 | 
						|
double (*_Py_math_funcs_hack[])() = {
 | 
						|
	acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor,
 | 
						|
	fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
/* Special free list -- see comments for same code in intobject.c. */
 | 
						|
#define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
 | 
						|
#define BHEAD_SIZE	8	/* Enough for a 64-bit pointer */
 | 
						|
#define N_FLOATOBJECTS	((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
 | 
						|
 | 
						|
struct _floatblock {
 | 
						|
	struct _floatblock *next;
 | 
						|
	PyFloatObject objects[N_FLOATOBJECTS];
 | 
						|
};
 | 
						|
 | 
						|
typedef struct _floatblock PyFloatBlock;
 | 
						|
 | 
						|
static PyFloatBlock *block_list = NULL;
 | 
						|
static PyFloatObject *free_list = NULL;
 | 
						|
 | 
						|
static PyFloatObject *
 | 
						|
fill_free_list(void)
 | 
						|
{
 | 
						|
	PyFloatObject *p, *q;
 | 
						|
	/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
 | 
						|
	p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
 | 
						|
	if (p == NULL)
 | 
						|
		return (PyFloatObject *) PyErr_NoMemory();
 | 
						|
	((PyFloatBlock *)p)->next = block_list;
 | 
						|
	block_list = (PyFloatBlock *)p;
 | 
						|
	p = &((PyFloatBlock *)p)->objects[0];
 | 
						|
	q = p + N_FLOATOBJECTS;
 | 
						|
	while (--q > p)
 | 
						|
		q->ob_type = (struct _typeobject *)(q-1);
 | 
						|
	q->ob_type = NULL;
 | 
						|
	return p + N_FLOATOBJECTS - 1;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyFloat_FromDouble(double fval)
 | 
						|
{
 | 
						|
	register PyFloatObject *op;
 | 
						|
	if (free_list == NULL) {
 | 
						|
		if ((free_list = fill_free_list()) == NULL)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	/* Inline PyObject_New */
 | 
						|
	op = free_list;
 | 
						|
	free_list = (PyFloatObject *)op->ob_type;
 | 
						|
	PyObject_INIT(op, &PyFloat_Type);
 | 
						|
	op->ob_fval = fval;
 | 
						|
	return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
/**************************************************************************
 | 
						|
RED_FLAG 22-Sep-2000 tim
 | 
						|
PyFloat_FromString's pend argument is braindead.  Prior to this RED_FLAG,
 | 
						|
 | 
						|
1.  If v was a regular string, *pend was set to point to its terminating
 | 
						|
    null byte.  That's useless (the caller can find that without any
 | 
						|
    help from this function!).
 | 
						|
 | 
						|
2.  If v was a Unicode string, or an object convertible to a character
 | 
						|
    buffer, *pend was set to point into stack trash (the auto temp
 | 
						|
    vector holding the character buffer).  That was downright dangerous.
 | 
						|
 | 
						|
Since we can't change the interface of a public API function, pend is
 | 
						|
still supported but now *officially* useless:  if pend is not NULL,
 | 
						|
*pend is set to NULL.
 | 
						|
**************************************************************************/
 | 
						|
PyObject *
 | 
						|
PyFloat_FromString(PyObject *v, char **pend)
 | 
						|
{
 | 
						|
	const char *s, *last, *end;
 | 
						|
	double x;
 | 
						|
	char buffer[256]; /* for errors */
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
	char s_buffer[256]; /* for objects convertible to a char buffer */
 | 
						|
#endif
 | 
						|
	int len;
 | 
						|
 | 
						|
	if (pend)
 | 
						|
		*pend = NULL;
 | 
						|
	if (PyString_Check(v)) {
 | 
						|
		s = PyString_AS_STRING(v);
 | 
						|
		len = PyString_GET_SIZE(v);
 | 
						|
	}
 | 
						|
#ifdef Py_USING_UNICODE
 | 
						|
	else if (PyUnicode_Check(v)) {
 | 
						|
		if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) {
 | 
						|
			PyErr_SetString(PyExc_ValueError,
 | 
						|
				"Unicode float() literal too long to convert");
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
 | 
						|
					    PyUnicode_GET_SIZE(v),
 | 
						|
					    s_buffer,
 | 
						|
					    NULL))
 | 
						|
			return NULL;
 | 
						|
		s = s_buffer;
 | 
						|
		len = (int)strlen(s);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	else if (PyObject_AsCharBuffer(v, &s, &len)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"float() argument must be a string or a number");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	last = s + len;
 | 
						|
	while (*s && isspace(Py_CHARMASK(*s)))
 | 
						|
		s++;
 | 
						|
	if (*s == '\0') {
 | 
						|
		PyErr_SetString(PyExc_ValueError, "empty string for float()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	/* We don't care about overflow or underflow.  If the platform supports
 | 
						|
	 * them, infinities and signed zeroes (on underflow) are fine.
 | 
						|
	 * However, strtod can return 0 for denormalized numbers, where atof
 | 
						|
	 * does not.  So (alas!) we special-case a zero result.  Note that
 | 
						|
	 * whether strtod sets errno on underflow is not defined, so we can't
 | 
						|
	 * key off errno.
 | 
						|
         */
 | 
						|
	PyFPE_START_PROTECT("strtod", return NULL)
 | 
						|
	x = strtod(s, (char **)&end);
 | 
						|
	PyFPE_END_PROTECT(x)
 | 
						|
	errno = 0;
 | 
						|
	/* Believe it or not, Solaris 2.6 can move end *beyond* the null
 | 
						|
	   byte at the end of the string, when the input is inf(inity). */
 | 
						|
	if (end > last)
 | 
						|
		end = last;
 | 
						|
	if (end == s) {
 | 
						|
		PyOS_snprintf(buffer, sizeof(buffer),
 | 
						|
			      "invalid literal for float(): %.200s", s);
 | 
						|
		PyErr_SetString(PyExc_ValueError, buffer);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	/* Since end != s, the platform made *some* kind of sense out
 | 
						|
	   of the input.  Trust it. */
 | 
						|
	while (*end && isspace(Py_CHARMASK(*end)))
 | 
						|
		end++;
 | 
						|
	if (*end != '\0') {
 | 
						|
		PyOS_snprintf(buffer, sizeof(buffer),
 | 
						|
			      "invalid literal for float(): %.200s", s);
 | 
						|
		PyErr_SetString(PyExc_ValueError, buffer);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	else if (end != last) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
				"null byte in argument for float()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (x == 0.0) {
 | 
						|
		/* See above -- may have been strtod being anal
 | 
						|
		   about denorms. */
 | 
						|
		PyFPE_START_PROTECT("atof", return NULL)
 | 
						|
		x = atof(s);
 | 
						|
		PyFPE_END_PROTECT(x)
 | 
						|
		errno = 0;    /* whether atof ever set errno is undefined */
 | 
						|
	}
 | 
						|
	return PyFloat_FromDouble(x);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
float_dealloc(PyFloatObject *op)
 | 
						|
{
 | 
						|
	if (PyFloat_CheckExact(op)) {
 | 
						|
		op->ob_type = (struct _typeobject *)free_list;
 | 
						|
		free_list = op;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		op->ob_type->tp_free((PyObject *)op);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
PyFloat_AsDouble(PyObject *op)
 | 
						|
{
 | 
						|
	PyNumberMethods *nb;
 | 
						|
	PyFloatObject *fo;
 | 
						|
	double val;
 | 
						|
 | 
						|
	if (op && PyFloat_Check(op))
 | 
						|
		return PyFloat_AS_DOUBLE((PyFloatObject*) op);
 | 
						|
 | 
						|
	if (op == NULL) {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) {
 | 
						|
		PyErr_SetString(PyExc_TypeError, "a float is required");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	fo = (PyFloatObject*) (*nb->nb_float) (op);
 | 
						|
	if (fo == NULL)
 | 
						|
		return -1;
 | 
						|
	if (!PyFloat_Check(fo)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"nb_float should return float object");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	val = PyFloat_AS_DOUBLE(fo);
 | 
						|
	Py_DECREF(fo);
 | 
						|
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static void
 | 
						|
format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
 | 
						|
{
 | 
						|
	register char *cp;
 | 
						|
	/* Subroutine for float_repr and float_print.
 | 
						|
	   We want float numbers to be recognizable as such,
 | 
						|
	   i.e., they should contain a decimal point or an exponent.
 | 
						|
	   However, %g may print the number as an integer;
 | 
						|
	   in such cases, we append ".0" to the string. */
 | 
						|
 | 
						|
	assert(PyFloat_Check(v));
 | 
						|
	PyOS_snprintf(buf, buflen, "%.*g", precision, v->ob_fval);
 | 
						|
	cp = buf;
 | 
						|
	if (*cp == '-')
 | 
						|
		cp++;
 | 
						|
	for (; *cp != '\0'; cp++) {
 | 
						|
		/* Any non-digit means it's not an integer;
 | 
						|
		   this takes care of NAN and INF as well. */
 | 
						|
		if (!isdigit(Py_CHARMASK(*cp)))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (*cp == '\0') {
 | 
						|
		*cp++ = '.';
 | 
						|
		*cp++ = '0';
 | 
						|
		*cp++ = '\0';
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* XXX PyFloat_AsStringEx should not be a public API function (for one
 | 
						|
   XXX thing, its signature passes a buffer without a length; for another,
 | 
						|
   XXX it isn't useful outside this file).
 | 
						|
*/
 | 
						|
void
 | 
						|
PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
 | 
						|
{
 | 
						|
	format_float(buf, 100, v, precision);
 | 
						|
}
 | 
						|
 | 
						|
/* Macro and helper that convert PyObject obj to a C double and store
 | 
						|
   the value in dbl; this replaces the functionality of the coercion
 | 
						|
   slot function.  If conversion to double raises an exception, obj is
 | 
						|
   set to NULL, and the function invoking this macro returns NULL.  If
 | 
						|
   obj is not of float, int or long type, Py_NotImplemented is incref'ed,
 | 
						|
   stored in obj, and returned from the function invoking this macro.
 | 
						|
*/
 | 
						|
#define CONVERT_TO_DOUBLE(obj, dbl)			\
 | 
						|
	if (PyFloat_Check(obj))				\
 | 
						|
		dbl = PyFloat_AS_DOUBLE(obj);		\
 | 
						|
	else if (convert_to_double(&(obj), &(dbl)) < 0)	\
 | 
						|
		return obj;
 | 
						|
 | 
						|
static int
 | 
						|
convert_to_double(PyObject **v, double *dbl)
 | 
						|
{
 | 
						|
	register PyObject *obj = *v;
 | 
						|
 | 
						|
	if (PyInt_Check(obj)) {
 | 
						|
		*dbl = (double)PyInt_AS_LONG(obj);
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(obj)) {
 | 
						|
		*dbl = PyLong_AsDouble(obj);
 | 
						|
		if (*dbl == -1.0 && PyErr_Occurred()) {
 | 
						|
			*v = NULL;
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Py_INCREF(Py_NotImplemented);
 | 
						|
		*v = Py_NotImplemented;
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Precisions used by repr() and str(), respectively.
 | 
						|
 | 
						|
   The repr() precision (17 significant decimal digits) is the minimal number
 | 
						|
   that is guaranteed to have enough precision so that if the number is read
 | 
						|
   back in the exact same binary value is recreated.  This is true for IEEE
 | 
						|
   floating point by design, and also happens to work for all other modern
 | 
						|
   hardware.
 | 
						|
 | 
						|
   The str() precision is chosen so that in most cases, the rounding noise
 | 
						|
   created by various operations is suppressed, while giving plenty of
 | 
						|
   precision for practical use.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#define PREC_REPR	17
 | 
						|
#define PREC_STR	12
 | 
						|
 | 
						|
/* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated:
 | 
						|
   XXX they pass a char buffer without passing a length.
 | 
						|
*/
 | 
						|
void
 | 
						|
PyFloat_AsString(char *buf, PyFloatObject *v)
 | 
						|
{
 | 
						|
	format_float(buf, 100, v, PREC_STR);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PyFloat_AsReprString(char *buf, PyFloatObject *v)
 | 
						|
{
 | 
						|
	format_float(buf, 100, v, PREC_REPR);
 | 
						|
}
 | 
						|
 | 
						|
/* ARGSUSED */
 | 
						|
static int
 | 
						|
float_print(PyFloatObject *v, FILE *fp, int flags)
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	format_float(buf, sizeof(buf), v,
 | 
						|
		     (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
 | 
						|
	fputs(buf, fp);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_repr(PyFloatObject *v)
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	format_float(buf, sizeof(buf), v, PREC_REPR);
 | 
						|
	return PyString_FromString(buf);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_str(PyFloatObject *v)
 | 
						|
{
 | 
						|
	char buf[100];
 | 
						|
	format_float(buf, sizeof(buf), v, PREC_STR);
 | 
						|
	return PyString_FromString(buf);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_compare(PyFloatObject *v, PyFloatObject *w)
 | 
						|
{
 | 
						|
	double i = v->ob_fval;
 | 
						|
	double j = w->ob_fval;
 | 
						|
	return (i < j) ? -1 : (i > j) ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static long
 | 
						|
float_hash(PyFloatObject *v)
 | 
						|
{
 | 
						|
	return _Py_HashDouble(v->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_add(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	double a,b;
 | 
						|
	CONVERT_TO_DOUBLE(v, a);
 | 
						|
	CONVERT_TO_DOUBLE(w, b);
 | 
						|
	PyFPE_START_PROTECT("add", return 0)
 | 
						|
	a = a + b;
 | 
						|
	PyFPE_END_PROTECT(a)
 | 
						|
	return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_sub(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	double a,b;
 | 
						|
	CONVERT_TO_DOUBLE(v, a);
 | 
						|
	CONVERT_TO_DOUBLE(w, b);
 | 
						|
	PyFPE_START_PROTECT("subtract", return 0)
 | 
						|
	a = a - b;
 | 
						|
	PyFPE_END_PROTECT(a)
 | 
						|
	return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_mul(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	double a,b;
 | 
						|
	CONVERT_TO_DOUBLE(v, a);
 | 
						|
	CONVERT_TO_DOUBLE(w, b);
 | 
						|
	PyFPE_START_PROTECT("multiply", return 0)
 | 
						|
	a = a * b;
 | 
						|
	PyFPE_END_PROTECT(a)
 | 
						|
	return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	double a,b;
 | 
						|
	CONVERT_TO_DOUBLE(v, a);
 | 
						|
	CONVERT_TO_DOUBLE(w, b);
 | 
						|
	if (b == 0.0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("divide", return 0)
 | 
						|
	a = a / b;
 | 
						|
	PyFPE_END_PROTECT(a)
 | 
						|
	return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_classic_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	double a,b;
 | 
						|
	CONVERT_TO_DOUBLE(v, a);
 | 
						|
	CONVERT_TO_DOUBLE(w, b);
 | 
						|
	if (Py_DivisionWarningFlag >= 2 &&
 | 
						|
	    PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
 | 
						|
		return NULL;
 | 
						|
	if (b == 0.0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "float division");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("divide", return 0)
 | 
						|
	a = a / b;
 | 
						|
	PyFPE_END_PROTECT(a)
 | 
						|
	return PyFloat_FromDouble(a);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_rem(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	double vx, wx;
 | 
						|
	double mod;
 | 
						|
 	CONVERT_TO_DOUBLE(v, vx);
 | 
						|
 	CONVERT_TO_DOUBLE(w, wx);
 | 
						|
	if (wx == 0.0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("modulo", return 0)
 | 
						|
	mod = fmod(vx, wx);
 | 
						|
	/* note: checking mod*wx < 0 is incorrect -- underflows to
 | 
						|
	   0 if wx < sqrt(smallest nonzero double) */
 | 
						|
	if (mod && ((wx < 0) != (mod < 0))) {
 | 
						|
		mod += wx;
 | 
						|
	}
 | 
						|
	PyFPE_END_PROTECT(mod)
 | 
						|
	return PyFloat_FromDouble(mod);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_divmod(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	double vx, wx;
 | 
						|
	double div, mod, floordiv;
 | 
						|
 	CONVERT_TO_DOUBLE(v, vx);
 | 
						|
 	CONVERT_TO_DOUBLE(w, wx);
 | 
						|
	if (wx == 0.0) {
 | 
						|
		PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	PyFPE_START_PROTECT("divmod", return 0)
 | 
						|
	mod = fmod(vx, wx);
 | 
						|
	/* fmod is typically exact, so vx-mod is *mathematically* an
 | 
						|
	   exact multiple of wx.  But this is fp arithmetic, and fp
 | 
						|
	   vx - mod is an approximation; the result is that div may
 | 
						|
	   not be an exact integral value after the division, although
 | 
						|
	   it will always be very close to one.
 | 
						|
	*/
 | 
						|
	div = (vx - mod) / wx;
 | 
						|
	if (mod) {
 | 
						|
		/* ensure the remainder has the same sign as the denominator */
 | 
						|
		if ((wx < 0) != (mod < 0)) {
 | 
						|
			mod += wx;
 | 
						|
			div -= 1.0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* the remainder is zero, and in the presence of signed zeroes
 | 
						|
		   fmod returns different results across platforms; ensure
 | 
						|
		   it has the same sign as the denominator; we'd like to do
 | 
						|
		   "mod = wx * 0.0", but that may get optimized away */
 | 
						|
		mod *= mod;  /* hide "mod = +0" from optimizer */
 | 
						|
		if (wx < 0.0)
 | 
						|
			mod = -mod;
 | 
						|
	}
 | 
						|
	/* snap quotient to nearest integral value */
 | 
						|
	if (div) {
 | 
						|
		floordiv = floor(div);
 | 
						|
		if (div - floordiv > 0.5)
 | 
						|
			floordiv += 1.0;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* div is zero - get the same sign as the true quotient */
 | 
						|
		div *= div;	/* hide "div = +0" from optimizers */
 | 
						|
		floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
 | 
						|
	}
 | 
						|
	PyFPE_END_PROTECT(floordiv)
 | 
						|
	return Py_BuildValue("(dd)", floordiv, mod);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_floor_div(PyObject *v, PyObject *w)
 | 
						|
{
 | 
						|
	PyObject *t, *r;
 | 
						|
 | 
						|
	t = float_divmod(v, w);
 | 
						|
	if (t == NULL || t == Py_NotImplemented)
 | 
						|
		return t;
 | 
						|
	assert(PyTuple_CheckExact(t));
 | 
						|
	r = PyTuple_GET_ITEM(t, 0);
 | 
						|
	Py_INCREF(r);
 | 
						|
	Py_DECREF(t);
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_pow(PyObject *v, PyObject *w, PyObject *z)
 | 
						|
{
 | 
						|
	double iv, iw, ix;
 | 
						|
 | 
						|
	if ((PyObject *)z != Py_None) {
 | 
						|
		PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
 | 
						|
			"allowed unless all arguments are integers");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	CONVERT_TO_DOUBLE(v, iv);
 | 
						|
	CONVERT_TO_DOUBLE(w, iw);
 | 
						|
 | 
						|
	/* Sort out special cases here instead of relying on pow() */
 | 
						|
	if (iw == 0) { 		/* v**0 is 1, even 0**0 */
 | 
						|
		PyFPE_START_PROTECT("pow", return NULL)
 | 
						|
		if ((PyObject *)z != Py_None) {
 | 
						|
			double iz;
 | 
						|
			CONVERT_TO_DOUBLE(z, iz);
 | 
						|
			ix = fmod(1.0, iz);
 | 
						|
			if (ix != 0 && iz < 0)
 | 
						|
				ix += iz;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			ix = 1.0;
 | 
						|
		PyFPE_END_PROTECT(ix)
 | 
						|
		return PyFloat_FromDouble(ix);
 | 
						|
	}
 | 
						|
	if (iv == 0.0) {  /* 0**w is error if w<0, else 1 */
 | 
						|
		if (iw < 0.0) {
 | 
						|
			PyErr_SetString(PyExc_ZeroDivisionError,
 | 
						|
					"0.0 cannot be raised to a negative power");
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		return PyFloat_FromDouble(0.0);
 | 
						|
	}
 | 
						|
	if (iv < 0.0 && iw != floor(iw)) {
 | 
						|
		PyErr_SetString(PyExc_ValueError,
 | 
						|
				"negative number cannot be raised to a fractional power");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	errno = 0;
 | 
						|
	PyFPE_START_PROTECT("pow", return NULL)
 | 
						|
	ix = pow(iv, iw);
 | 
						|
	PyFPE_END_PROTECT(ix)
 | 
						|
	Py_ADJUST_ERANGE1(ix);
 | 
						|
	if (errno != 0) {
 | 
						|
		assert(errno == ERANGE);
 | 
						|
		PyErr_SetFromErrno(PyExc_OverflowError);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return PyFloat_FromDouble(ix);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_neg(PyFloatObject *v)
 | 
						|
{
 | 
						|
	return PyFloat_FromDouble(-v->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_pos(PyFloatObject *v)
 | 
						|
{
 | 
						|
	if (PyFloat_CheckExact(v)) {
 | 
						|
		Py_INCREF(v);
 | 
						|
		return (PyObject *)v;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return PyFloat_FromDouble(v->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_abs(PyFloatObject *v)
 | 
						|
{
 | 
						|
	return PyFloat_FromDouble(fabs(v->ob_fval));
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_nonzero(PyFloatObject *v)
 | 
						|
{
 | 
						|
	return v->ob_fval != 0.0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_coerce(PyObject **pv, PyObject **pw)
 | 
						|
{
 | 
						|
	if (PyInt_Check(*pw)) {
 | 
						|
		long x = PyInt_AsLong(*pw);
 | 
						|
		*pw = PyFloat_FromDouble((double)x);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyLong_Check(*pw)) {
 | 
						|
		double x = PyLong_AsDouble(*pw);
 | 
						|
		if (x == -1.0 && PyErr_Occurred())
 | 
						|
			return -1;
 | 
						|
		*pw = PyFloat_FromDouble(x);
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (PyFloat_Check(*pw)) {
 | 
						|
		Py_INCREF(*pv);
 | 
						|
		Py_INCREF(*pw);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	return 1; /* Can't do it */
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_long(PyObject *v)
 | 
						|
{
 | 
						|
	double x = PyFloat_AsDouble(v);
 | 
						|
	return PyLong_FromDouble(x);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_int(PyObject *v)
 | 
						|
{
 | 
						|
	double x = PyFloat_AsDouble(v);
 | 
						|
	double wholepart;	/* integral portion of x, rounded toward 0 */
 | 
						|
 | 
						|
	(void)modf(x, &wholepart);
 | 
						|
	/* Try to get out cheap if this fits in a Python int.  The attempt
 | 
						|
	 * to cast to long must be protected, as C doesn't define what
 | 
						|
	 * happens if the double is too big to fit in a long.  Some rare
 | 
						|
	 * systems raise an exception then (RISCOS was mentioned as one,
 | 
						|
	 * and someone using a non-default option on Sun also bumped into
 | 
						|
	 * that).  Note that checking for >= and <= LONG_{MIN,MAX} would
 | 
						|
	 * still be vulnerable:  if a long has more bits of precision than
 | 
						|
	 * a double, casting MIN/MAX to double may yield an approximation,
 | 
						|
	 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
 | 
						|
	 * yield true from the C expression wholepart<=LONG_MAX, despite
 | 
						|
	 * that wholepart is actually greater than LONG_MAX.
 | 
						|
	 */
 | 
						|
	if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
 | 
						|
		const long aslong = (long)wholepart;
 | 
						|
		return PyInt_FromLong(aslong);
 | 
						|
	}
 | 
						|
	return PyLong_FromDouble(wholepart);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_float(PyObject *v)
 | 
						|
{
 | 
						|
	Py_INCREF(v);
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
	PyObject *x = Py_False; /* Integer zero */
 | 
						|
	static char *kwlist[] = {"x", 0};
 | 
						|
 | 
						|
	if (type != &PyFloat_Type)
 | 
						|
		return float_subtype_new(type, args, kwds); /* Wimp out */
 | 
						|
	if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
 | 
						|
		return NULL;
 | 
						|
	if (PyString_Check(x))
 | 
						|
		return PyFloat_FromString(x, NULL);
 | 
						|
	return PyNumber_Float(x);
 | 
						|
}
 | 
						|
 | 
						|
/* Wimpy, slow approach to tp_new calls for subtypes of float:
 | 
						|
   first create a regular float from whatever arguments we got,
 | 
						|
   then allocate a subtype instance and initialize its ob_fval
 | 
						|
   from the regular float.  The regular float is then thrown away.
 | 
						|
*/
 | 
						|
static PyObject *
 | 
						|
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | 
						|
{
 | 
						|
	PyObject *tmp, *new;
 | 
						|
 | 
						|
	assert(PyType_IsSubtype(type, &PyFloat_Type));
 | 
						|
	tmp = float_new(&PyFloat_Type, args, kwds);
 | 
						|
	if (tmp == NULL)
 | 
						|
		return NULL;
 | 
						|
	assert(PyFloat_CheckExact(tmp));
 | 
						|
	new = type->tp_alloc(type, 0);
 | 
						|
	if (new == NULL)
 | 
						|
		return NULL;
 | 
						|
	((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
 | 
						|
	Py_DECREF(tmp);
 | 
						|
	return new;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
float_getnewargs(PyFloatObject *v)
 | 
						|
{
 | 
						|
	return Py_BuildValue("(d)", v->ob_fval);
 | 
						|
}
 | 
						|
 | 
						|
static PyMethodDef float_methods[] = {
 | 
						|
	{"__getnewargs__",	(PyCFunction)float_getnewargs,	METH_NOARGS},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
PyDoc_STRVAR(float_doc,
 | 
						|
"float(x) -> floating point number\n\
 | 
						|
\n\
 | 
						|
Convert a string or number to a floating point number, if possible.");
 | 
						|
 | 
						|
 | 
						|
static PyNumberMethods float_as_number = {
 | 
						|
	(binaryfunc)float_add, /*nb_add*/
 | 
						|
	(binaryfunc)float_sub, /*nb_subtract*/
 | 
						|
	(binaryfunc)float_mul, /*nb_multiply*/
 | 
						|
	(binaryfunc)float_classic_div, /*nb_divide*/
 | 
						|
	(binaryfunc)float_rem, /*nb_remainder*/
 | 
						|
	(binaryfunc)float_divmod, /*nb_divmod*/
 | 
						|
	(ternaryfunc)float_pow, /*nb_power*/
 | 
						|
	(unaryfunc)float_neg, /*nb_negative*/
 | 
						|
	(unaryfunc)float_pos, /*nb_positive*/
 | 
						|
	(unaryfunc)float_abs, /*nb_absolute*/
 | 
						|
	(inquiry)float_nonzero, /*nb_nonzero*/
 | 
						|
	0,		/*nb_invert*/
 | 
						|
	0,		/*nb_lshift*/
 | 
						|
	0,		/*nb_rshift*/
 | 
						|
	0,		/*nb_and*/
 | 
						|
	0,		/*nb_xor*/
 | 
						|
	0,		/*nb_or*/
 | 
						|
	(coercion)float_coerce, /*nb_coerce*/
 | 
						|
	(unaryfunc)float_int, /*nb_int*/
 | 
						|
	(unaryfunc)float_long, /*nb_long*/
 | 
						|
	(unaryfunc)float_float, /*nb_float*/
 | 
						|
	0,		/* nb_oct */
 | 
						|
	0,		/* nb_hex */
 | 
						|
	0,		/* nb_inplace_add */
 | 
						|
	0,		/* nb_inplace_subtract */
 | 
						|
	0,		/* nb_inplace_multiply */
 | 
						|
	0,		/* nb_inplace_divide */
 | 
						|
	0,		/* nb_inplace_remainder */
 | 
						|
	0, 		/* nb_inplace_power */
 | 
						|
	0,		/* nb_inplace_lshift */
 | 
						|
	0,		/* nb_inplace_rshift */
 | 
						|
	0,		/* nb_inplace_and */
 | 
						|
	0,		/* nb_inplace_xor */
 | 
						|
	0,		/* nb_inplace_or */
 | 
						|
	float_floor_div, /* nb_floor_divide */
 | 
						|
	float_div,	/* nb_true_divide */
 | 
						|
	0,		/* nb_inplace_floor_divide */
 | 
						|
	0,		/* nb_inplace_true_divide */
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyFloat_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"float",
 | 
						|
	sizeof(PyFloatObject),
 | 
						|
	0,
 | 
						|
	(destructor)float_dealloc,		/* tp_dealloc */
 | 
						|
	(printfunc)float_print, 		/* tp_print */
 | 
						|
	0,					/* tp_getattr */
 | 
						|
	0,					/* tp_setattr */
 | 
						|
	(cmpfunc)float_compare, 		/* tp_compare */
 | 
						|
	(reprfunc)float_repr,			/* tp_repr */
 | 
						|
	&float_as_number,			/* tp_as_number */
 | 
						|
	0,					/* tp_as_sequence */
 | 
						|
	0,					/* tp_as_mapping */
 | 
						|
	(hashfunc)float_hash,			/* tp_hash */
 | 
						|
	0,					/* tp_call */
 | 
						|
	(reprfunc)float_str,			/* tp_str */
 | 
						|
	PyObject_GenericGetAttr,		/* tp_getattro */
 | 
						|
	0,					/* tp_setattro */
 | 
						|
	0,					/* tp_as_buffer */
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
 | 
						|
		Py_TPFLAGS_BASETYPE,		/* tp_flags */
 | 
						|
	float_doc,				/* tp_doc */
 | 
						|
 	0,					/* tp_traverse */
 | 
						|
	0,					/* tp_clear */
 | 
						|
	0,					/* tp_richcompare */
 | 
						|
	0,					/* tp_weaklistoffset */
 | 
						|
	0,					/* tp_iter */
 | 
						|
	0,					/* tp_iternext */
 | 
						|
	float_methods,				/* tp_methods */
 | 
						|
	0,					/* tp_members */
 | 
						|
	0,					/* tp_getset */
 | 
						|
	0,					/* tp_base */
 | 
						|
	0,					/* tp_dict */
 | 
						|
	0,					/* tp_descr_get */
 | 
						|
	0,					/* tp_descr_set */
 | 
						|
	0,					/* tp_dictoffset */
 | 
						|
	0,					/* tp_init */
 | 
						|
	0,					/* tp_alloc */
 | 
						|
	float_new,				/* tp_new */
 | 
						|
};
 | 
						|
 | 
						|
void
 | 
						|
PyFloat_Fini(void)
 | 
						|
{
 | 
						|
	PyFloatObject *p;
 | 
						|
	PyFloatBlock *list, *next;
 | 
						|
	int i;
 | 
						|
	int bc, bf;	/* block count, number of freed blocks */
 | 
						|
	int frem, fsum;	/* remaining unfreed floats per block, total */
 | 
						|
 | 
						|
	bc = 0;
 | 
						|
	bf = 0;
 | 
						|
	fsum = 0;
 | 
						|
	list = block_list;
 | 
						|
	block_list = NULL;
 | 
						|
	free_list = NULL;
 | 
						|
	while (list != NULL) {
 | 
						|
		bc++;
 | 
						|
		frem = 0;
 | 
						|
		for (i = 0, p = &list->objects[0];
 | 
						|
		     i < N_FLOATOBJECTS;
 | 
						|
		     i++, p++) {
 | 
						|
			if (PyFloat_CheckExact(p) && p->ob_refcnt != 0)
 | 
						|
				frem++;
 | 
						|
		}
 | 
						|
		next = list->next;
 | 
						|
		if (frem) {
 | 
						|
			list->next = block_list;
 | 
						|
			block_list = list;
 | 
						|
			for (i = 0, p = &list->objects[0];
 | 
						|
			     i < N_FLOATOBJECTS;
 | 
						|
			     i++, p++) {
 | 
						|
				if (!PyFloat_CheckExact(p) ||
 | 
						|
				    p->ob_refcnt == 0) {
 | 
						|
					p->ob_type = (struct _typeobject *)
 | 
						|
						free_list;
 | 
						|
					free_list = p;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			PyMem_FREE(list); /* XXX PyObject_FREE ??? */
 | 
						|
			bf++;
 | 
						|
		}
 | 
						|
		fsum += frem;
 | 
						|
		list = next;
 | 
						|
	}
 | 
						|
	if (!Py_VerboseFlag)
 | 
						|
		return;
 | 
						|
	fprintf(stderr, "# cleanup floats");
 | 
						|
	if (!fsum) {
 | 
						|
		fprintf(stderr, "\n");
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		fprintf(stderr,
 | 
						|
			": %d unfreed float%s in %d out of %d block%s\n",
 | 
						|
			fsum, fsum == 1 ? "" : "s",
 | 
						|
			bc - bf, bc, bc == 1 ? "" : "s");
 | 
						|
	}
 | 
						|
	if (Py_VerboseFlag > 1) {
 | 
						|
		list = block_list;
 | 
						|
		while (list != NULL) {
 | 
						|
			for (i = 0, p = &list->objects[0];
 | 
						|
			     i < N_FLOATOBJECTS;
 | 
						|
			     i++, p++) {
 | 
						|
				if (PyFloat_CheckExact(p) &&
 | 
						|
				    p->ob_refcnt != 0) {
 | 
						|
					char buf[100];
 | 
						|
					PyFloat_AsString(buf, p);
 | 
						|
					fprintf(stderr,
 | 
						|
			     "#   <float at %p, refcnt=%d, val=%s>\n",
 | 
						|
						p, p->ob_refcnt, buf);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			list = list->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |