datafusion-sqlparse/src/dialect/mod.rs
Ryan Schneider a73577c29f
Add support for NOT NULL and NOTNULL expressions (#1927)
Co-authored-by: Ifeanyi Ubah <ify1992@yahoo.com>
2025-07-21 12:58:20 +02:00

1372 lines
48 KiB
Rust

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
mod ansi;
mod bigquery;
mod clickhouse;
mod databricks;
mod duckdb;
mod generic;
mod hive;
mod mssql;
mod mysql;
mod postgresql;
mod redshift;
mod snowflake;
mod sqlite;
use core::any::{Any, TypeId};
use core::fmt::Debug;
use core::iter::Peekable;
use core::str::Chars;
use log::debug;
pub use self::ansi::AnsiDialect;
pub use self::bigquery::BigQueryDialect;
pub use self::clickhouse::ClickHouseDialect;
pub use self::databricks::DatabricksDialect;
pub use self::duckdb::DuckDbDialect;
pub use self::generic::GenericDialect;
pub use self::hive::HiveDialect;
pub use self::mssql::MsSqlDialect;
pub use self::mysql::MySqlDialect;
pub use self::postgresql::PostgreSqlDialect;
pub use self::redshift::RedshiftSqlDialect;
pub use self::snowflake::SnowflakeDialect;
pub use self::sqlite::SQLiteDialect;
use crate::ast::{ColumnOption, Expr, GranteesType, Ident, ObjectNamePart, Statement};
pub use crate::keywords;
use crate::keywords::Keyword;
use crate::parser::{Parser, ParserError};
use crate::tokenizer::Token;
#[cfg(not(feature = "std"))]
use alloc::boxed::Box;
/// Convenience check if a [`Parser`] uses a certain dialect.
///
/// Note: when possible please the new style, adding a method to the [`Dialect`]
/// trait rather than using this macro.
///
/// The benefits of adding a method on `Dialect` over this macro are:
/// 1. user defined [`Dialect`]s can customize the parsing behavior
/// 2. The differences between dialects can be clearly documented in the trait
///
/// `dialect_of!(parser is SQLiteDialect | GenericDialect)` evaluates
/// to `true` if `parser.dialect` is one of the [`Dialect`]s specified.
macro_rules! dialect_of {
( $parsed_dialect: ident is $($dialect_type: ty)|+ ) => {
($($parsed_dialect.dialect.is::<$dialect_type>())||+)
};
}
// Similar to above, but for applying directly against an instance of dialect
// instead of a struct member named dialect. This avoids lifetime issues when
// mixing match guards and token references.
macro_rules! dialect_is {
($dialect:ident is $($dialect_type:ty)|+) => {
($($dialect.is::<$dialect_type>())||+)
}
}
/// Encapsulates the differences between SQL implementations.
///
/// # SQL Dialects
///
/// SQL implementations deviate from one another, either due to
/// custom extensions or various historical reasons. This trait
/// encapsulates the parsing differences between dialects.
///
/// [`GenericDialect`] is the most permissive dialect, and parses the union of
/// all the other dialects, when there is no ambiguity. However, it does not
/// currently allow `CREATE TABLE` statements without types specified for all
/// columns; use [`SQLiteDialect`] if you require that.
///
/// # Examples
/// Most users create a [`Dialect`] directly, as shown on the [module
/// level documentation]:
///
/// ```
/// # use sqlparser::dialect::AnsiDialect;
/// let dialect = AnsiDialect {};
/// ```
///
/// It is also possible to dynamically create a [`Dialect`] from its
/// name. For example:
///
/// ```
/// # use sqlparser::dialect::{AnsiDialect, dialect_from_str};
/// let dialect = dialect_from_str("ansi").unwrap();
///
/// // Parsed dialect is an instance of `AnsiDialect`:
/// assert!(dialect.is::<AnsiDialect>());
/// ```
///
/// [module level documentation]: crate
pub trait Dialect: Debug + Any {
/// Determine the [`TypeId`] of this dialect.
///
/// By default, return the same [`TypeId`] as [`Any::type_id`]. Can be overridden
/// by dialects that behave like other dialects
/// (for example when wrapping a dialect).
fn dialect(&self) -> TypeId {
self.type_id()
}
/// Determine if a character starts a quoted identifier. The default
/// implementation, accepting "double quoted" ids is both ANSI-compliant
/// and appropriate for most dialects (with the notable exception of
/// MySQL, MS SQL, and sqlite). You can accept one of characters listed
/// in `Word::matching_end_quote` here
fn is_delimited_identifier_start(&self, ch: char) -> bool {
ch == '"' || ch == '`'
}
/// Determine if a character starts a potential nested quoted identifier.
/// Example: RedShift supports the following quote styles to all mean the same thing:
/// ```sql
/// SELECT 1 AS foo;
/// SELECT 1 AS "foo";
/// SELECT 1 AS [foo];
/// SELECT 1 AS ["foo"];
/// ```
fn is_nested_delimited_identifier_start(&self, _ch: char) -> bool {
false
}
/// Only applicable whenever [`Self::is_nested_delimited_identifier_start`] returns true
/// If the next sequence of tokens potentially represent a nested identifier, then this method
/// returns a tuple containing the outer quote style, and if present, the inner (nested) quote style.
///
/// Example (Redshift):
/// ```text
/// `["foo"]` => Some(`[`, Some(`"`))
/// `[foo]` => Some(`[`, None)
/// `[0]` => None
/// `"foo"` => None
/// ```
fn peek_nested_delimited_identifier_quotes(
&self,
mut _chars: Peekable<Chars<'_>>,
) -> Option<(char, Option<char>)> {
None
}
/// Return the character used to quote identifiers.
fn identifier_quote_style(&self, _identifier: &str) -> Option<char> {
None
}
/// Determine if a character is a valid start character for an unquoted identifier
fn is_identifier_start(&self, ch: char) -> bool;
/// Determine if a character is a valid unquoted identifier character
fn is_identifier_part(&self, ch: char) -> bool;
/// Most dialects do not have custom operators. Override this method to provide custom operators.
fn is_custom_operator_part(&self, _ch: char) -> bool {
false
}
/// Determine if the dialect supports escaping characters via '\' in string literals.
///
/// Some dialects like BigQuery and Snowflake support this while others like
/// Postgres do not. Such that the following is accepted by the former but
/// rejected by the latter.
/// ```sql
/// SELECT 'ab\'cd';
/// ```
///
/// Conversely, such dialects reject the following statement which
/// otherwise would be valid in the other dialects.
/// ```sql
/// SELECT '\';
/// ```
fn supports_string_literal_backslash_escape(&self) -> bool {
false
}
/// Determine whether the dialect strips the backslash when escaping LIKE wildcards (%, _).
///
/// [MySQL] has a special case when escaping single quoted strings which leaves these unescaped
/// so they can be used in LIKE patterns without double-escaping (as is necessary in other
/// escaping dialects, such as [Snowflake]). Generally, special characters have escaping rules
/// causing them to be replaced with a different byte sequences (e.g. `'\0'` becoming the zero
/// byte), and the default if an escaped character does not have a specific escaping rule is to
/// strip the backslash (e.g. there is no rule for `h`, so `'\h' = 'h'`). MySQL's special case
/// for ignoring LIKE wildcard escapes is to *not* strip the backslash, so that `'\%' = '\\%'`.
/// This applies to all string literals though, not just those used in LIKE patterns.
///
/// ```text
/// mysql> select '\_', hex('\\'), hex('_'), hex('\_');
/// +----+-----------+----------+-----------+
/// | \_ | hex('\\') | hex('_') | hex('\_') |
/// +----+-----------+----------+-----------+
/// | \_ | 5C | 5F | 5C5F |
/// +----+-----------+----------+-----------+
/// 1 row in set (0.00 sec)
/// ```
///
/// [MySQL]: https://dev.mysql.com/doc/refman/8.4/en/string-literals.html
/// [Snowflake]: https://docs.snowflake.com/en/sql-reference/functions/like#usage-notes
fn ignores_wildcard_escapes(&self) -> bool {
false
}
/// Determine if the dialect supports string literals with `U&` prefix.
/// This is used to specify Unicode code points in string literals.
/// For example, in PostgreSQL, the following is a valid string literal:
/// ```sql
/// SELECT U&'\0061\0062\0063';
/// ```
/// This is equivalent to the string literal `'abc'`.
/// See
/// - [Postgres docs](https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-STRINGS-UESCAPE)
/// - [H2 docs](http://www.h2database.com/html/grammar.html#string)
fn supports_unicode_string_literal(&self) -> bool {
false
}
/// Does the dialect support `FILTER (WHERE expr)` for aggregate queries?
fn supports_filter_during_aggregation(&self) -> bool {
false
}
/// Returns true if the dialect supports referencing another named window
/// within a window clause declaration.
///
/// Example
/// ```sql
/// SELECT * FROM mytable
/// WINDOW mynamed_window AS another_named_window
/// ```
fn supports_window_clause_named_window_reference(&self) -> bool {
false
}
/// Returns true if the dialect supports `ARRAY_AGG() [WITHIN GROUP (ORDER BY)]` expressions.
/// Otherwise, the dialect should expect an `ORDER BY` without the `WITHIN GROUP` clause, e.g. [`ANSI`]
///
/// [`ANSI`]: https://jakewheat.github.io/sql-overview/sql-2016-foundation-grammar.html#array-aggregate-function
fn supports_within_after_array_aggregation(&self) -> bool {
false
}
/// Returns true if the dialects supports `group sets, roll up, or cube` expressions.
fn supports_group_by_expr(&self) -> bool {
false
}
/// Returns true if the dialects supports `GROUP BY` modifiers prefixed by a `WITH` keyword.
/// Example: `GROUP BY value WITH ROLLUP`.
fn supports_group_by_with_modifier(&self) -> bool {
false
}
/// Indicates whether the dialect supports left-associative join parsing
/// by default when parentheses are omitted in nested joins.
///
/// Most dialects (like MySQL or Postgres) assume **left-associative** precedence,
/// so a query like:
///
/// ```sql
/// SELECT * FROM t1 NATURAL JOIN t5 INNER JOIN t0 ON ...
/// ```
/// is interpreted as:
/// ```sql
/// ((t1 NATURAL JOIN t5) INNER JOIN t0 ON ...)
/// ```
/// and internally represented as a **flat list** of joins.
///
/// In contrast, some dialects (e.g. **Snowflake**) assume **right-associative**
/// precedence and interpret the same query as:
/// ```sql
/// (t1 NATURAL JOIN (t5 INNER JOIN t0 ON ...))
/// ```
/// which results in a **nested join** structure in the AST.
///
/// If this method returns `false`, the parser must build nested join trees
/// even in the absence of parentheses to reflect the correct associativity
fn supports_left_associative_joins_without_parens(&self) -> bool {
true
}
/// Returns true if the dialect supports the `(+)` syntax for OUTER JOIN.
fn supports_outer_join_operator(&self) -> bool {
false
}
/// Returns true if the dialect supports CONNECT BY.
fn supports_connect_by(&self) -> bool {
false
}
/// Returns true if the dialect supports `EXECUTE IMMEDIATE` statements.
fn supports_execute_immediate(&self) -> bool {
false
}
/// Returns true if the dialect supports the MATCH_RECOGNIZE operation.
fn supports_match_recognize(&self) -> bool {
false
}
/// Returns true if the dialect supports `(NOT) IN ()` expressions
fn supports_in_empty_list(&self) -> bool {
false
}
/// Returns true if the dialect supports `BEGIN {DEFERRED | IMMEDIATE | EXCLUSIVE | TRY | CATCH} [TRANSACTION]` statements
fn supports_start_transaction_modifier(&self) -> bool {
false
}
/// Returns true if the dialect supports `END {TRY | CATCH}` statements
fn supports_end_transaction_modifier(&self) -> bool {
false
}
/// Returns true if the dialect supports named arguments of the form `FUN(a = '1', b = '2')`.
fn supports_named_fn_args_with_eq_operator(&self) -> bool {
false
}
/// Returns true if the dialect supports named arguments of the form `FUN(a : '1', b : '2')`.
fn supports_named_fn_args_with_colon_operator(&self) -> bool {
false
}
/// Returns true if the dialect supports named arguments of the form `FUN(a := '1', b := '2')`.
fn supports_named_fn_args_with_assignment_operator(&self) -> bool {
false
}
/// Returns true if the dialect supports named arguments of the form `FUN(a => '1', b => '2')`.
fn supports_named_fn_args_with_rarrow_operator(&self) -> bool {
true
}
/// Returns true if dialect supports argument name as arbitrary expression.
/// e.g. `FUN(LOWER('a'):'1', b:'2')`
/// Such function arguments are represented in the AST by the `FunctionArg::ExprNamed` variant,
/// otherwise use the `FunctionArg::Named` variant (compatible reason).
fn supports_named_fn_args_with_expr_name(&self) -> bool {
false
}
/// Returns true if the dialect supports identifiers starting with a numeric
/// prefix such as tables named `59901_user_login`
fn supports_numeric_prefix(&self) -> bool {
false
}
/// Returns true if the dialect supports numbers containing underscores, e.g. `10_000_000`
fn supports_numeric_literal_underscores(&self) -> bool {
false
}
/// Returns true if the dialects supports specifying null treatment
/// as part of a window function's parameter list as opposed
/// to after the parameter list.
///
/// i.e The following syntax returns true
/// ```sql
/// FIRST_VALUE(a IGNORE NULLS) OVER ()
/// ```
/// while the following syntax returns false
/// ```sql
/// FIRST_VALUE(a) IGNORE NULLS OVER ()
/// ```
fn supports_window_function_null_treatment_arg(&self) -> bool {
false
}
/// Returns true if the dialect supports defining structs or objects using a
/// syntax like `{'x': 1, 'y': 2, 'z': 3}`.
fn supports_dictionary_syntax(&self) -> bool {
false
}
/// Returns true if the dialect supports defining object using the
/// syntax like `Map {1: 10, 2: 20}`.
fn support_map_literal_syntax(&self) -> bool {
false
}
/// Returns true if the dialect supports lambda functions, for example:
///
/// ```sql
/// SELECT transform(array(1, 2, 3), x -> x + 1); -- returns [2,3,4]
/// ```
fn supports_lambda_functions(&self) -> bool {
false
}
/// Returns true if the dialect supports multiple variable assignment
/// using parentheses in a `SET` variable declaration.
///
/// ```sql
/// SET (variable[, ...]) = (expression[, ...]);
/// ```
fn supports_parenthesized_set_variables(&self) -> bool {
false
}
/// Returns true if the dialect supports multiple `SET` statements
/// in a single statement.
///
/// ```sql
/// SET variable = expression [, variable = expression];
/// ```
fn supports_comma_separated_set_assignments(&self) -> bool {
false
}
/// Returns true if the dialect supports an `EXCEPT` clause following a
/// wildcard in a select list.
///
/// For example
/// ```sql
/// SELECT * EXCEPT order_id FROM orders;
/// ```
fn supports_select_wildcard_except(&self) -> bool {
false
}
/// Returns true if the dialect has a CONVERT function which accepts a type first
/// and an expression second, e.g. `CONVERT(varchar, 1)`
fn convert_type_before_value(&self) -> bool {
false
}
/// Returns true if the dialect supports triple quoted string
/// e.g. `"""abc"""`
fn supports_triple_quoted_string(&self) -> bool {
false
}
/// Dialect-specific prefix parser override
fn parse_prefix(&self, _parser: &mut Parser) -> Option<Result<Expr, ParserError>> {
// return None to fall back to the default behavior
None
}
/// Does the dialect support trailing commas around the query?
fn supports_trailing_commas(&self) -> bool {
false
}
/// Does the dialect support parsing `LIMIT 1, 2` as `LIMIT 2 OFFSET 1`?
fn supports_limit_comma(&self) -> bool {
false
}
/// Does the dialect support trailing commas in the projection list?
fn supports_projection_trailing_commas(&self) -> bool {
self.supports_trailing_commas()
}
/// Returns true if the dialect supports trailing commas in the `FROM` clause of a `SELECT` statement.
/// Example: `SELECT 1 FROM T, U, LIMIT 1`
fn supports_from_trailing_commas(&self) -> bool {
false
}
/// Returns true if the dialect supports trailing commas in the
/// column definitions list of a `CREATE` statement.
/// Example: `CREATE TABLE T (x INT, y TEXT,)`
fn supports_column_definition_trailing_commas(&self) -> bool {
false
}
/// Returns true if the dialect supports double dot notation for object names
///
/// Example
/// ```sql
/// SELECT * FROM db_name..table_name
/// ```
fn supports_object_name_double_dot_notation(&self) -> bool {
false
}
/// Return true if the dialect supports the STRUCT literal
///
/// Example
/// ```sql
/// SELECT STRUCT(1 as one, 'foo' as foo, false)
/// ```
fn supports_struct_literal(&self) -> bool {
false
}
/// Return true if the dialect supports empty projections in SELECT statements
///
/// Example
/// ```sql
/// SELECT from table_name
/// ```
fn supports_empty_projections(&self) -> bool {
false
}
/// Return true if the dialect supports wildcard expansion on
/// arbitrary expressions in projections.
///
/// Example:
/// ```sql
/// SELECT STRUCT<STRING>('foo').* FROM T
/// ```
fn supports_select_expr_star(&self) -> bool {
false
}
/// Return true if the dialect supports "FROM-first" selects.
///
/// Example:
/// ```sql
/// FROM table
/// SELECT *
/// ```
fn supports_from_first_select(&self) -> bool {
false
}
/// Return true if the dialect supports pipe operator.
///
/// Example:
/// ```sql
/// SELECT *
/// FROM table
/// |> limit 1
/// ```
///
/// See <https://cloud.google.com/bigquery/docs/pipe-syntax-guide#basic_syntax>
fn supports_pipe_operator(&self) -> bool {
false
}
/// Does the dialect support MySQL-style `'user'@'host'` grantee syntax?
fn supports_user_host_grantee(&self) -> bool {
false
}
/// Does the dialect support the `MATCH() AGAINST()` syntax?
fn supports_match_against(&self) -> bool {
false
}
/// Returns true if the dialect supports an exclude option
/// following a wildcard in the projection section. For example:
/// `SELECT * EXCLUDE col1 FROM tbl`.
///
/// [Redshift](https://docs.aws.amazon.com/redshift/latest/dg/r_EXCLUDE_list.html)
/// [Snowflake](https://docs.snowflake.com/en/sql-reference/sql/select)
fn supports_select_wildcard_exclude(&self) -> bool {
false
}
/// Returns true if the dialect supports an exclude option
/// as the last item in the projection section, not necessarily
/// after a wildcard. For example:
/// `SELECT *, c1, c2 EXCLUDE c3 FROM tbl`
///
/// [Redshift](https://docs.aws.amazon.com/redshift/latest/dg/r_EXCLUDE_list.html)
fn supports_select_exclude(&self) -> bool {
false
}
/// Returne true if the dialect supports specifying multiple options
/// in a `CREATE TABLE` statement for the structure of the new table. For example:
/// `CREATE TABLE t (a INT, b INT) AS SELECT 1 AS b, 2 AS a`
fn supports_create_table_multi_schema_info_sources(&self) -> bool {
false
}
/// Dialect-specific infix parser override
///
/// This method is called to parse the next infix expression.
///
/// If `None` is returned, falls back to the default behavior.
fn parse_infix(
&self,
_parser: &mut Parser,
_expr: &Expr,
_precedence: u8,
) -> Option<Result<Expr, ParserError>> {
// return None to fall back to the default behavior
None
}
/// Dialect-specific precedence override
///
/// This method is called to get the precedence of the next token.
///
/// If `None` is returned, falls back to the default behavior.
fn get_next_precedence(&self, _parser: &Parser) -> Option<Result<u8, ParserError>> {
// return None to fall back to the default behavior
None
}
/// Get the precedence of the next token, looking at the full token stream.
///
/// A higher number => higher precedence
///
/// See [`Self::get_next_precedence`] to override the behavior for just the
/// next token.
///
/// The default implementation is used for many dialects, but can be
/// overridden to provide dialect-specific behavior.
fn get_next_precedence_default(&self, parser: &Parser) -> Result<u8, ParserError> {
if let Some(precedence) = self.get_next_precedence(parser) {
return precedence;
}
macro_rules! p {
($precedence:ident) => {
self.prec_value(Precedence::$precedence)
};
}
let token = parser.peek_token();
debug!("get_next_precedence_full() {token:?}");
match token.token {
Token::Word(w) if w.keyword == Keyword::OR => Ok(p!(Or)),
Token::Word(w) if w.keyword == Keyword::AND => Ok(p!(And)),
Token::Word(w) if w.keyword == Keyword::XOR => Ok(p!(Xor)),
Token::Word(w) if w.keyword == Keyword::AT => {
match (
parser.peek_nth_token(1).token,
parser.peek_nth_token(2).token,
) {
(Token::Word(w), Token::Word(w2))
if w.keyword == Keyword::TIME && w2.keyword == Keyword::ZONE =>
{
Ok(p!(AtTz))
}
_ => Ok(self.prec_unknown()),
}
}
Token::Word(w) if w.keyword == Keyword::NOT => match parser.peek_nth_token(1).token {
// The precedence of NOT varies depending on keyword that
// follows it. If it is followed by IN, BETWEEN, or LIKE,
// it takes on the precedence of those tokens. Otherwise, it
// is not an infix operator, and therefore has zero
// precedence.
Token::Word(w) if w.keyword == Keyword::IN => Ok(p!(Between)),
Token::Word(w) if w.keyword == Keyword::BETWEEN => Ok(p!(Between)),
Token::Word(w) if w.keyword == Keyword::LIKE => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::ILIKE => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::RLIKE => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::REGEXP => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::MATCH => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::SIMILAR => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::MEMBER => Ok(p!(Like)),
Token::Word(w)
if w.keyword == Keyword::NULL && !parser.in_column_definition_state() =>
{
Ok(p!(Is))
}
_ => Ok(self.prec_unknown()),
},
Token::Word(w) if w.keyword == Keyword::NOTNULL && self.supports_notnull_operator() => {
Ok(p!(Is))
}
Token::Word(w) if w.keyword == Keyword::IS => Ok(p!(Is)),
Token::Word(w) if w.keyword == Keyword::IN => Ok(p!(Between)),
Token::Word(w) if w.keyword == Keyword::BETWEEN => Ok(p!(Between)),
Token::Word(w) if w.keyword == Keyword::OVERLAPS => Ok(p!(Between)),
Token::Word(w) if w.keyword == Keyword::LIKE => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::ILIKE => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::RLIKE => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::REGEXP => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::MATCH => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::SIMILAR => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::MEMBER => Ok(p!(Like)),
Token::Word(w) if w.keyword == Keyword::OPERATOR => Ok(p!(Between)),
Token::Word(w) if w.keyword == Keyword::DIV => Ok(p!(MulDivModOp)),
Token::Period => Ok(p!(Period)),
Token::Assignment
| Token::Eq
| Token::Lt
| Token::LtEq
| Token::Neq
| Token::Gt
| Token::GtEq
| Token::DoubleEq
| Token::Tilde
| Token::TildeAsterisk
| Token::ExclamationMarkTilde
| Token::ExclamationMarkTildeAsterisk
| Token::DoubleTilde
| Token::DoubleTildeAsterisk
| Token::ExclamationMarkDoubleTilde
| Token::ExclamationMarkDoubleTildeAsterisk
| Token::Spaceship => Ok(p!(Eq)),
Token::Pipe
| Token::QuestionMarkDash
| Token::DoubleSharp
| Token::Overlap
| Token::AmpersandLeftAngleBracket
| Token::AmpersandRightAngleBracket
| Token::QuestionMarkDashVerticalBar
| Token::AmpersandLeftAngleBracketVerticalBar
| Token::VerticalBarAmpersandRightAngleBracket
| Token::TwoWayArrow
| Token::LeftAngleBracketCaret
| Token::RightAngleBracketCaret
| Token::QuestionMarkSharp
| Token::QuestionMarkDoubleVerticalBar
| Token::QuestionPipe
| Token::TildeEqual
| Token::AtSign
| Token::ShiftLeftVerticalBar
| Token::VerticalBarShiftRight => Ok(p!(Pipe)),
Token::Caret | Token::Sharp | Token::ShiftRight | Token::ShiftLeft => Ok(p!(Caret)),
Token::Ampersand => Ok(p!(Ampersand)),
Token::Plus | Token::Minus => Ok(p!(PlusMinus)),
Token::Mul | Token::Div | Token::DuckIntDiv | Token::Mod | Token::StringConcat => {
Ok(p!(MulDivModOp))
}
Token::DoubleColon | Token::ExclamationMark | Token::LBracket | Token::CaretAt => {
Ok(p!(DoubleColon))
}
Token::Arrow
| Token::LongArrow
| Token::HashArrow
| Token::HashLongArrow
| Token::AtArrow
| Token::ArrowAt
| Token::HashMinus
| Token::AtQuestion
| Token::AtAt
| Token::Question
| Token::QuestionAnd
| Token::CustomBinaryOperator(_) => Ok(p!(PgOther)),
_ => Ok(self.prec_unknown()),
}
}
/// Dialect-specific statement parser override
///
/// This method is called to parse the next statement.
///
/// If `None` is returned, falls back to the default behavior.
fn parse_statement(&self, _parser: &mut Parser) -> Option<Result<Statement, ParserError>> {
// return None to fall back to the default behavior
None
}
/// Dialect-specific column option parser override
///
/// This method is called to parse the next column option.
///
/// If `None` is returned, falls back to the default behavior.
fn parse_column_option(
&self,
_parser: &mut Parser,
) -> Result<Option<Result<Option<ColumnOption>, ParserError>>, ParserError> {
// return None to fall back to the default behavior
Ok(None)
}
/// Decide the lexical Precedence of operators.
///
/// Uses (APPROXIMATELY) <https://www.postgresql.org/docs/7.0/operators.htm#AEN2026> as a reference
fn prec_value(&self, prec: Precedence) -> u8 {
match prec {
Precedence::Period => 100,
Precedence::DoubleColon => 50,
Precedence::AtTz => 41,
Precedence::MulDivModOp => 40,
Precedence::PlusMinus => 30,
Precedence::Xor => 24,
Precedence::Ampersand => 23,
Precedence::Caret => 22,
Precedence::Pipe => 21,
Precedence::Between => 20,
Precedence::Eq => 20,
Precedence::Like => 19,
Precedence::Is => 17,
Precedence::PgOther => 16,
Precedence::UnaryNot => 15,
Precedence::And => 10,
Precedence::Or => 5,
}
}
/// Returns the precedence when the precedence is otherwise unknown
fn prec_unknown(&self) -> u8 {
0
}
/// Returns true if this dialect requires the `TABLE` keyword after `DESCRIBE`
///
/// Defaults to false.
///
/// If true, the following statement is valid: `DESCRIBE TABLE my_table`
/// If false, the following statements are valid: `DESCRIBE my_table` and `DESCRIBE table`
fn describe_requires_table_keyword(&self) -> bool {
false
}
/// Returns true if this dialect allows the `EXTRACT` function to words other than [`Keyword`].
fn allow_extract_custom(&self) -> bool {
false
}
/// Returns true if this dialect allows the `EXTRACT` function to use single quotes in the part being extracted.
fn allow_extract_single_quotes(&self) -> bool {
false
}
/// Returns true if this dialect allows dollar placeholders
/// e.g. `SELECT $var` (SQLite)
fn supports_dollar_placeholder(&self) -> bool {
false
}
/// Does the dialect support with clause in create index statement?
/// e.g. `CREATE INDEX idx ON t WITH (key = value, key2)`
fn supports_create_index_with_clause(&self) -> bool {
false
}
/// Whether `INTERVAL` expressions require units (called "qualifiers" in the ANSI SQL spec) to be specified,
/// e.g. `INTERVAL 1 DAY` vs `INTERVAL 1`.
///
/// Expressions within intervals (e.g. `INTERVAL '1' + '1' DAY`) are only allowed when units are required.
///
/// See <https://github.com/sqlparser-rs/sqlparser-rs/pull/1398> for more information.
///
/// When `true`:
/// * `INTERVAL '1' DAY` is VALID
/// * `INTERVAL 1 + 1 DAY` is VALID
/// * `INTERVAL '1' + '1' DAY` is VALID
/// * `INTERVAL '1'` is INVALID
///
/// When `false`:
/// * `INTERVAL '1'` is VALID
/// * `INTERVAL '1' DAY` is VALID — unit is not required, but still allowed
/// * `INTERVAL 1 + 1 DAY` is INVALID
fn require_interval_qualifier(&self) -> bool {
false
}
fn supports_explain_with_utility_options(&self) -> bool {
false
}
fn supports_asc_desc_in_column_definition(&self) -> bool {
false
}
/// Returns true if the dialect supports `a!` expressions
fn supports_factorial_operator(&self) -> bool {
false
}
/// Returns true if the dialect supports nested comments
/// e.g. `/* /* nested */ */`
fn supports_nested_comments(&self) -> bool {
false
}
/// Returns true if this dialect supports treating the equals operator `=` within a `SelectItem`
/// as an alias assignment operator, rather than a boolean expression.
/// For example: the following statements are equivalent for such a dialect:
/// ```sql
/// SELECT col_alias = col FROM tbl;
/// SELECT col_alias AS col FROM tbl;
/// ```
fn supports_eq_alias_assignment(&self) -> bool {
false
}
/// Returns true if this dialect supports the `TRY_CONVERT` function
fn supports_try_convert(&self) -> bool {
false
}
/// Returns true if the dialect supports `!a` syntax for boolean `NOT` expressions.
fn supports_bang_not_operator(&self) -> bool {
false
}
/// Returns true if the dialect supports the `LISTEN`, `UNLISTEN` and `NOTIFY` statements
fn supports_listen_notify(&self) -> bool {
false
}
/// Returns true if the dialect supports the `LOAD DATA` statement
fn supports_load_data(&self) -> bool {
false
}
/// Returns true if the dialect supports the `LOAD extension` statement
fn supports_load_extension(&self) -> bool {
false
}
/// Returns true if this dialect expects the `TOP` option
/// before the `ALL`/`DISTINCT` options in a `SELECT` statement.
fn supports_top_before_distinct(&self) -> bool {
false
}
/// Returns true if the dialect supports boolean literals (`true` and `false`).
/// For example, in MSSQL these are treated as identifiers rather than boolean literals.
fn supports_boolean_literals(&self) -> bool {
true
}
/// Returns true if this dialect supports the `LIKE 'pattern'` option in
/// a `SHOW` statement before the `IN` option
fn supports_show_like_before_in(&self) -> bool {
false
}
/// Returns true if this dialect supports the `COMMENT` statement
fn supports_comment_on(&self) -> bool {
false
}
/// Returns true if the dialect supports the `CREATE TABLE SELECT` statement
fn supports_create_table_select(&self) -> bool {
false
}
/// Returns true if the dialect supports PartiQL for querying semi-structured data
/// <https://partiql.org/index.html>
fn supports_partiql(&self) -> bool {
false
}
/// Returns true if the specified keyword is reserved and cannot be
/// used as an identifier without special handling like quoting.
fn is_reserved_for_identifier(&self, kw: Keyword) -> bool {
keywords::RESERVED_FOR_IDENTIFIER.contains(&kw)
}
/// Returns reserved keywords when looking to parse a `TableFactor`.
/// See [Self::supports_from_trailing_commas]
fn get_reserved_keywords_for_table_factor(&self) -> &[Keyword] {
keywords::RESERVED_FOR_TABLE_FACTOR
}
/// Returns reserved keywords that may prefix a select item expression
/// e.g. `SELECT CONNECT_BY_ROOT name FROM Tbl2` (Snowflake)
fn get_reserved_keywords_for_select_item_operator(&self) -> &[Keyword] {
&[]
}
/// Returns grantee types that should be treated as identifiers
fn get_reserved_grantees_types(&self) -> &[GranteesType] {
&[]
}
/// Returns true if this dialect supports the `TABLESAMPLE` option
/// before the table alias option. For example:
///
/// Table sample before alias: `SELECT * FROM tbl AS t TABLESAMPLE (10)`
/// Table sample after alias: `SELECT * FROM tbl TABLESAMPLE (10) AS t`
///
/// <https://jakewheat.github.io/sql-overview/sql-2016-foundation-grammar.html#_7_6_table_reference>
fn supports_table_sample_before_alias(&self) -> bool {
false
}
/// Returns true if this dialect supports the `INSERT INTO ... SET col1 = 1, ...` syntax.
///
/// MySQL: <https://dev.mysql.com/doc/refman/8.4/en/insert.html>
fn supports_insert_set(&self) -> bool {
false
}
/// Does the dialect support table function in insertion?
fn supports_insert_table_function(&self) -> bool {
false
}
/// Does the dialect support insert formats, e.g. `INSERT INTO ... FORMAT <format>`
fn supports_insert_format(&self) -> bool {
false
}
/// Returns true if this dialect supports `SET` statements without an explicit
/// assignment operator such as `=`. For example: `SET SHOWPLAN_XML ON`.
fn supports_set_stmt_without_operator(&self) -> bool {
false
}
/// Returns true if the specified keyword should be parsed as a column identifier.
/// See [keywords::RESERVED_FOR_COLUMN_ALIAS]
fn is_column_alias(&self, kw: &Keyword, _parser: &mut Parser) -> bool {
!keywords::RESERVED_FOR_COLUMN_ALIAS.contains(kw)
}
/// Returns true if the specified keyword should be parsed as a select item alias.
/// When explicit is true, the keyword is preceded by an `AS` word. Parser is provided
/// to enable looking ahead if needed.
fn is_select_item_alias(&self, explicit: bool, kw: &Keyword, parser: &mut Parser) -> bool {
explicit || self.is_column_alias(kw, parser)
}
/// Returns true if the specified keyword should be parsed as a table identifier.
/// See [keywords::RESERVED_FOR_TABLE_ALIAS]
fn is_table_alias(&self, kw: &Keyword, _parser: &mut Parser) -> bool {
!keywords::RESERVED_FOR_TABLE_ALIAS.contains(kw)
}
/// Returns true if the specified keyword should be parsed as a table factor alias.
/// When explicit is true, the keyword is preceded by an `AS` word. Parser is provided
/// to enable looking ahead if needed.
fn is_table_factor_alias(&self, explicit: bool, kw: &Keyword, parser: &mut Parser) -> bool {
explicit || self.is_table_alias(kw, parser)
}
/// Returns true if this dialect supports querying historical table data
/// by specifying which version of the data to query.
fn supports_timestamp_versioning(&self) -> bool {
false
}
/// Returns true if this dialect supports the E'...' syntax for string literals
///
/// Postgres: <https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-STRINGS-ESCAPE>
fn supports_string_escape_constant(&self) -> bool {
false
}
/// Returns true if the dialect supports the table hints in the `FROM` clause.
fn supports_table_hints(&self) -> bool {
false
}
/// Returns true if this dialect requires a whitespace character after `--` to start a single line comment.
///
/// MySQL: <https://dev.mysql.com/doc/refman/8.4/en/ansi-diff-comments.html>
/// e.g. UPDATE account SET balance=balance--1
// WHERE account_id=5752 ^^^ will be interpreted as two minus signs instead of a comment
fn requires_single_line_comment_whitespace(&self) -> bool {
false
}
/// Returns true if the dialect supports array type definition with brackets with
/// an optional size. For example:
/// ```CREATE TABLE my_table (arr1 INT[], arr2 INT[3])```
/// ```SELECT x::INT[]```
fn supports_array_typedef_with_brackets(&self) -> bool {
false
}
/// Returns true if the dialect supports geometric types.
///
/// Postgres: <https://www.postgresql.org/docs/9.5/functions-geometry.html>
/// e.g. @@ circle '((0,0),10)'
fn supports_geometric_types(&self) -> bool {
false
}
/// Returns true if the dialect supports `ORDER BY ALL`.
/// `ALL` which means all columns of the SELECT clause.
///
/// For example: ```SELECT * FROM addresses ORDER BY ALL;```.
fn supports_order_by_all(&self) -> bool {
false
}
/// Returns true if the dialect supports `SET NAMES <charset_name> [COLLATE <collation_name>]`.
///
/// - [MySQL](https://dev.mysql.com/doc/refman/8.4/en/set-names.html)
/// - [PostgreSQL](https://www.postgresql.org/docs/17/sql-set.html)
///
/// Note: Postgres doesn't support the `COLLATE` clause, but we permissively parse it anyway.
fn supports_set_names(&self) -> bool {
false
}
fn supports_space_separated_column_options(&self) -> bool {
false
}
/// Returns true if the dialect supports the `USING` clause in an `ALTER COLUMN` statement.
/// Example:
/// ```sql
/// ALTER TABLE tbl ALTER COLUMN col SET DATA TYPE <type> USING <exp>`
/// ```
fn supports_alter_column_type_using(&self) -> bool {
false
}
/// Returns true if the dialect supports `ALTER TABLE tbl DROP COLUMN c1, ..., cn`
fn supports_comma_separated_drop_column_list(&self) -> bool {
false
}
/// Returns true if the dialect considers the specified ident as a function
/// that returns an identifier. Typically used to generate identifiers
/// programmatically.
///
/// - [Snowflake](https://docs.snowflake.com/en/sql-reference/identifier-literal)
fn is_identifier_generating_function_name(
&self,
_ident: &Ident,
_name_parts: &[ObjectNamePart],
) -> bool {
false
}
/// Returns true if the dialect supports the `x NOTNULL`
/// operator expression.
fn supports_notnull_operator(&self) -> bool {
false
}
}
/// This represents the operators for which precedence must be defined
///
/// higher number -> higher precedence
#[derive(Debug, Clone, Copy)]
pub enum Precedence {
Period,
DoubleColon,
AtTz,
MulDivModOp,
PlusMinus,
Xor,
Ampersand,
Caret,
Pipe,
Between,
Eq,
Like,
Is,
PgOther,
UnaryNot,
And,
Or,
}
impl dyn Dialect {
#[inline]
pub fn is<T: Dialect>(&self) -> bool {
// borrowed from `Any` implementation
TypeId::of::<T>() == self.dialect()
}
}
/// Returns the built in [`Dialect`] corresponding to `dialect_name`.
///
/// See [`Dialect`] documentation for an example.
pub fn dialect_from_str(dialect_name: impl AsRef<str>) -> Option<Box<dyn Dialect>> {
let dialect_name = dialect_name.as_ref();
match dialect_name.to_lowercase().as_str() {
"generic" => Some(Box::new(GenericDialect)),
"mysql" => Some(Box::new(MySqlDialect {})),
"postgresql" | "postgres" => Some(Box::new(PostgreSqlDialect {})),
"hive" => Some(Box::new(HiveDialect {})),
"sqlite" => Some(Box::new(SQLiteDialect {})),
"snowflake" => Some(Box::new(SnowflakeDialect)),
"redshift" => Some(Box::new(RedshiftSqlDialect {})),
"mssql" => Some(Box::new(MsSqlDialect {})),
"clickhouse" => Some(Box::new(ClickHouseDialect {})),
"bigquery" => Some(Box::new(BigQueryDialect)),
"ansi" => Some(Box::new(AnsiDialect {})),
"duckdb" => Some(Box::new(DuckDbDialect {})),
"databricks" => Some(Box::new(DatabricksDialect {})),
_ => None,
}
}
#[cfg(test)]
mod tests {
use super::*;
struct DialectHolder<'a> {
dialect: &'a dyn Dialect,
}
#[test]
fn test_is_dialect() {
let generic_dialect: &dyn Dialect = &GenericDialect {};
let ansi_dialect: &dyn Dialect = &AnsiDialect {};
let generic_holder = DialectHolder {
dialect: generic_dialect,
};
let ansi_holder = DialectHolder {
dialect: ansi_dialect,
};
assert!(dialect_of!(generic_holder is GenericDialect | AnsiDialect),);
assert!(!dialect_of!(generic_holder is AnsiDialect));
assert!(dialect_of!(ansi_holder is AnsiDialect));
assert!(dialect_of!(ansi_holder is GenericDialect | AnsiDialect));
assert!(!dialect_of!(ansi_holder is GenericDialect | MsSqlDialect));
}
#[test]
fn test_dialect_from_str() {
assert!(parse_dialect("generic").is::<GenericDialect>());
assert!(parse_dialect("mysql").is::<MySqlDialect>());
assert!(parse_dialect("MySql").is::<MySqlDialect>());
assert!(parse_dialect("postgresql").is::<PostgreSqlDialect>());
assert!(parse_dialect("postgres").is::<PostgreSqlDialect>());
assert!(parse_dialect("hive").is::<HiveDialect>());
assert!(parse_dialect("sqlite").is::<SQLiteDialect>());
assert!(parse_dialect("snowflake").is::<SnowflakeDialect>());
assert!(parse_dialect("SnowFlake").is::<SnowflakeDialect>());
assert!(parse_dialect("MsSql").is::<MsSqlDialect>());
assert!(parse_dialect("clickhouse").is::<ClickHouseDialect>());
assert!(parse_dialect("ClickHouse").is::<ClickHouseDialect>());
assert!(parse_dialect("bigquery").is::<BigQueryDialect>());
assert!(parse_dialect("BigQuery").is::<BigQueryDialect>());
assert!(parse_dialect("ansi").is::<AnsiDialect>());
assert!(parse_dialect("ANSI").is::<AnsiDialect>());
assert!(parse_dialect("duckdb").is::<DuckDbDialect>());
assert!(parse_dialect("DuckDb").is::<DuckDbDialect>());
assert!(parse_dialect("DataBricks").is::<DatabricksDialect>());
assert!(parse_dialect("databricks").is::<DatabricksDialect>());
// error cases
assert!(dialect_from_str("Unknown").is_none());
assert!(dialect_from_str("").is_none());
}
fn parse_dialect(v: &str) -> Box<dyn Dialect> {
dialect_from_str(v).unwrap()
}
#[test]
fn identifier_quote_style() {
let tests: Vec<(&dyn Dialect, &str, Option<char>)> = vec![
(&GenericDialect {}, "id", None),
(&SQLiteDialect {}, "id", Some('`')),
(&PostgreSqlDialect {}, "id", Some('"')),
];
for (dialect, ident, expected) in tests {
let actual = dialect.identifier_quote_style(ident);
assert_eq!(actual, expected);
}
}
#[test]
fn parse_with_wrapped_dialect() {
/// Wrapper for a dialect. In a real-world example, this wrapper
/// would tweak the behavior of the dialect. For the test case,
/// it wraps all methods unaltered.
#[derive(Debug)]
struct WrappedDialect(MySqlDialect);
impl Dialect for WrappedDialect {
fn dialect(&self) -> std::any::TypeId {
self.0.dialect()
}
fn is_identifier_start(&self, ch: char) -> bool {
self.0.is_identifier_start(ch)
}
fn is_delimited_identifier_start(&self, ch: char) -> bool {
self.0.is_delimited_identifier_start(ch)
}
fn is_nested_delimited_identifier_start(&self, ch: char) -> bool {
self.0.is_nested_delimited_identifier_start(ch)
}
fn peek_nested_delimited_identifier_quotes(
&self,
chars: std::iter::Peekable<std::str::Chars<'_>>,
) -> Option<(char, Option<char>)> {
self.0.peek_nested_delimited_identifier_quotes(chars)
}
fn identifier_quote_style(&self, identifier: &str) -> Option<char> {
self.0.identifier_quote_style(identifier)
}
fn supports_string_literal_backslash_escape(&self) -> bool {
self.0.supports_string_literal_backslash_escape()
}
fn supports_filter_during_aggregation(&self) -> bool {
self.0.supports_filter_during_aggregation()
}
fn supports_within_after_array_aggregation(&self) -> bool {
self.0.supports_within_after_array_aggregation()
}
fn supports_group_by_expr(&self) -> bool {
self.0.supports_group_by_expr()
}
fn supports_in_empty_list(&self) -> bool {
self.0.supports_in_empty_list()
}
fn convert_type_before_value(&self) -> bool {
self.0.convert_type_before_value()
}
fn parse_prefix(
&self,
parser: &mut sqlparser::parser::Parser,
) -> Option<Result<Expr, sqlparser::parser::ParserError>> {
self.0.parse_prefix(parser)
}
fn parse_infix(
&self,
parser: &mut sqlparser::parser::Parser,
expr: &Expr,
precedence: u8,
) -> Option<Result<Expr, sqlparser::parser::ParserError>> {
self.0.parse_infix(parser, expr, precedence)
}
fn get_next_precedence(
&self,
parser: &sqlparser::parser::Parser,
) -> Option<Result<u8, sqlparser::parser::ParserError>> {
self.0.get_next_precedence(parser)
}
fn parse_statement(
&self,
parser: &mut sqlparser::parser::Parser,
) -> Option<Result<Statement, sqlparser::parser::ParserError>> {
self.0.parse_statement(parser)
}
fn is_identifier_part(&self, ch: char) -> bool {
self.0.is_identifier_part(ch)
}
}
#[allow(clippy::needless_raw_string_hashes)]
let statement = r#"SELECT 'Wayne\'s World'"#;
let res1 = Parser::parse_sql(&MySqlDialect {}, statement);
let res2 = Parser::parse_sql(&WrappedDialect(MySqlDialect {}), statement);
assert!(res1.is_ok());
assert_eq!(res1, res2);
}
}