Fixed #34987 -- Fixed queryset crash when mixing aggregate and window annotations.

Regression in f387d024fc.

Just like `OrderByList` the `ExpressionList` expression used to wrap
`Window.partition_by` must implement `get_group_by_cols` to ensure the
necessary grouping when mixing window expressions with aggregate
annotations is performed against the partition members and not the
partition expression itself.

This is necessary because while `partition_by` is implemented as
a source expression of `Window` it's actually a fragment of the WINDOW
expression at the SQL level and thus it should result in a group by its
members and not the sum of them.

Thanks ElRoberto538 for the report.
This commit is contained in:
Simon Charette 2023-11-23 00:09:08 -05:00 committed by GitHub
parent aceee39d44
commit e76cc93b01
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 25 additions and 13 deletions

View file

@ -838,23 +838,24 @@ class WindowFunctionTests(TestCase):
max=Window(
expression=Max("salary"),
partition_by=[F("department"), F("hire_date__year")],
)
),
past_department_count=Count("past_departments"),
).order_by("department", "hire_date", "name")
self.assertQuerySetEqual(
qs,
[
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 45000),
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 45000),
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 37000),
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 50000),
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 60000),
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 34000),
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 100000),
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 100000),
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 38000),
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 40000),
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 55000),
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 53000),
("Jones", 45000, "Accounting", datetime.date(2005, 11, 1), 45000, 0),
("Jenson", 45000, "Accounting", datetime.date(2008, 4, 1), 45000, 0),
("Williams", 37000, "Accounting", datetime.date(2009, 6, 1), 37000, 0),
("Adams", 50000, "Accounting", datetime.date(2013, 7, 1), 50000, 0),
("Wilkinson", 60000, "IT", datetime.date(2011, 3, 1), 60000, 0),
("Moore", 34000, "IT", datetime.date(2013, 8, 1), 34000, 0),
("Miller", 100000, "Management", datetime.date(2005, 6, 1), 100000, 1),
("Johnson", 80000, "Management", datetime.date(2005, 7, 1), 100000, 0),
("Smith", 38000, "Marketing", datetime.date(2009, 10, 1), 38000, 0),
("Johnson", 40000, "Marketing", datetime.date(2012, 3, 1), 40000, 1),
("Smith", 55000, "Sales", datetime.date(2007, 6, 1), 55000, 0),
("Brown", 53000, "Sales", datetime.date(2009, 9, 1), 53000, 0),
],
transform=lambda row: (
row.name,
@ -862,6 +863,7 @@ class WindowFunctionTests(TestCase):
row.department,
row.hire_date,
row.max,
row.past_department_count,
),
)