mirror of
				https://github.com/django/django.git
				synced 2025-11-03 21:25:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			324 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
			
		
		
	
	
			324 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
.. _ref-gis-db-api:
 | 
						|
 | 
						|
======================
 | 
						|
GeoDjango Database API
 | 
						|
======================
 | 
						|
 | 
						|
.. _spatial-backends:
 | 
						|
 | 
						|
Spatial Backends
 | 
						|
================
 | 
						|
 | 
						|
.. module:: django.contrib.gis.db.backends
 | 
						|
   :synopsis: GeoDjango's spatial database backends.
 | 
						|
 | 
						|
GeoDjango currently provides the following spatial database backends:
 | 
						|
 | 
						|
* ``django.contrib.gis.db.backends.postgis``
 | 
						|
* ``django.contrib.gis.db.backends.mysql``
 | 
						|
* ``django.contrib.gis.db.backends.oracle``
 | 
						|
* ``django.contrib.gis.db.backends.spatialite``
 | 
						|
 | 
						|
.. module:: django.contrib.gis.db.models
 | 
						|
   :synopsis: GeoDjango's database API.
 | 
						|
 | 
						|
.. _mysql-spatial-limitations:
 | 
						|
 | 
						|
MySQL Spatial Limitations
 | 
						|
-------------------------
 | 
						|
 | 
						|
MySQL's spatial extensions only support bounding box operations
 | 
						|
(what MySQL calls minimum bounding rectangles, or MBR).  Specifically,
 | 
						|
`MySQL does not conform to the OGC standard <http://dev.mysql.com/doc/refman/5.1/en/functions-for-testing-spatial-relations-between-geometric-objects.html>`_:
 | 
						|
 | 
						|
    Currently, MySQL does not implement these functions
 | 
						|
    [``Contains``, ``Crosses``, ``Disjoint``, ``Intersects``, ``Overlaps``,
 | 
						|
    ``Touches``, ``Within``]
 | 
						|
    according to the specification.  Those that are implemented return
 | 
						|
    the same result as the corresponding MBR-based functions.
 | 
						|
 | 
						|
In other words, while spatial lookups such as :lookup:`contains <gis-contains>`
 | 
						|
are available in GeoDjango when using MySQL, the results returned are really
 | 
						|
equivalent to what would be returned when using :lookup:`bbcontains`
 | 
						|
on a different spatial backend.
 | 
						|
 | 
						|
.. warning::
 | 
						|
 | 
						|
    True spatial indexes (R-trees) are only supported with
 | 
						|
    MyISAM tables on MySQL. [#fnmysqlidx]_ In other words, when using
 | 
						|
    MySQL spatial extensions you have to choose between fast spatial
 | 
						|
    lookups and the integrity of your data -- MyISAM tables do
 | 
						|
    not support transactions or foreign key constraints.
 | 
						|
 | 
						|
Creating and Saving Geographic Models
 | 
						|
=====================================
 | 
						|
Here is an example of how to create a geometry object (assuming the ``Zipcode``
 | 
						|
model)::
 | 
						|
 | 
						|
    >>> from zipcode.models import Zipcode
 | 
						|
    >>> z = Zipcode(code=77096, poly='POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
 | 
						|
    >>> z.save()
 | 
						|
 | 
						|
:class:`~django.contrib.gis.geos.GEOSGeometry` objects may also be used to save geometric models::
 | 
						|
 | 
						|
    >>> from django.contrib.gis.geos import GEOSGeometry
 | 
						|
    >>> poly = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
 | 
						|
    >>> z = Zipcode(code=77096, poly=poly)
 | 
						|
    >>> z.save()
 | 
						|
 | 
						|
Moreover, if the ``GEOSGeometry`` is in a different coordinate system (has a
 | 
						|
different SRID value) than that of the field, then it will be implicitly
 | 
						|
transformed into the SRID of the model's field, using the spatial database's
 | 
						|
transform procedure::
 | 
						|
 | 
						|
    >>> poly_3084 = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))', srid=3084)  # SRID 3084 is 'NAD83(HARN) / Texas Centric Lambert Conformal'
 | 
						|
    >>> z = Zipcode(code=78212, poly=poly_3084)
 | 
						|
    >>> z.save()
 | 
						|
    >>> from django.db import connection
 | 
						|
    >>> print(connection.queries[-1]['sql']) # printing the last SQL statement executed (requires DEBUG=True)
 | 
						|
    INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_GeomFromWKB('\\001 ... ', 3084), 4326))
 | 
						|
 | 
						|
Thus, geometry parameters may be passed in using the ``GEOSGeometry`` object, WKT
 | 
						|
(Well Known Text [#fnwkt]_), HEXEWKB (PostGIS specific -- a WKB geometry in
 | 
						|
hexadecimal [#fnewkb]_), and GeoJSON [#fngeojson]_ (requires GDAL). Essentially,
 | 
						|
if the input is not a ``GEOSGeometry`` object, the geometry field will attempt to
 | 
						|
create a ``GEOSGeometry`` instance from the input.
 | 
						|
 | 
						|
For more information creating :class:`~django.contrib.gis.geos.GEOSGeometry`
 | 
						|
objects, refer to the :ref:`GEOS tutorial <geos-tutorial>`.
 | 
						|
 | 
						|
.. _spatial-lookups-intro:
 | 
						|
 | 
						|
Spatial Lookups
 | 
						|
===============
 | 
						|
 | 
						|
GeoDjango's lookup types may be used with any manager method like
 | 
						|
``filter()``, ``exclude()``, etc.  However, the lookup types unique to
 | 
						|
GeoDjango are only available on geometry fields.
 | 
						|
Filters on 'normal' fields (e.g. :class:`~django.db.models.CharField`)
 | 
						|
may be chained with those on geographic fields.  Thus, geographic queries
 | 
						|
take the following general form (assuming  the ``Zipcode`` model used in the
 | 
						|
:ref:`ref-gis-model-api`)::
 | 
						|
 | 
						|
    >>> qs = Zipcode.objects.filter(<field>__<lookup_type>=<parameter>)
 | 
						|
    >>> qs = Zipcode.objects.exclude(...)
 | 
						|
 | 
						|
For example::
 | 
						|
 | 
						|
    >>> qs = Zipcode.objects.filter(poly__contains=pnt)
 | 
						|
 | 
						|
In this case, ``poly`` is the geographic field, :lookup:`contains <gis-contains>`
 | 
						|
is the spatial lookup type, and ``pnt`` is the parameter (which may be a
 | 
						|
:class:`~django.contrib.gis.geos.GEOSGeometry` object or a string of
 | 
						|
GeoJSON , WKT, or HEXEWKB).
 | 
						|
 | 
						|
A complete reference can be found in the :ref:`spatial lookup reference
 | 
						|
<spatial-lookups>`.
 | 
						|
 | 
						|
.. note::
 | 
						|
 | 
						|
    GeoDjango constructs spatial SQL with the :class:`GeoQuerySet`, a
 | 
						|
    subclass of :class:`~django.db.models.query.QuerySet`.  The
 | 
						|
    :class:`GeoManager` instance attached to your model is what
 | 
						|
    enables use of :class:`GeoQuerySet`.
 | 
						|
 | 
						|
.. _distance-queries:
 | 
						|
 | 
						|
Distance Queries
 | 
						|
================
 | 
						|
 | 
						|
Introduction
 | 
						|
------------
 | 
						|
Distance calculations with spatial data is tricky because, unfortunately,
 | 
						|
the Earth is not flat.  Some distance queries with fields in a geographic
 | 
						|
coordinate system may have to be expressed differently because of
 | 
						|
limitations in PostGIS.  Please see the :ref:`selecting-an-srid` section
 | 
						|
in the :ref:`ref-gis-model-api` documentation for more details.
 | 
						|
 | 
						|
.. _distance-lookups-intro:
 | 
						|
 | 
						|
Distance Lookups
 | 
						|
----------------
 | 
						|
*Availability*: PostGIS, Oracle, SpatiaLite
 | 
						|
 | 
						|
The following distance lookups are available:
 | 
						|
 | 
						|
* :lookup:`distance_lt`
 | 
						|
* :lookup:`distance_lte`
 | 
						|
* :lookup:`distance_gt`
 | 
						|
* :lookup:`distance_gte`
 | 
						|
* :lookup:`dwithin`
 | 
						|
 | 
						|
.. note::
 | 
						|
 | 
						|
    For *measuring*, rather than querying on distances, use the
 | 
						|
    :meth:`GeoQuerySet.distance` method.
 | 
						|
 | 
						|
Distance lookups take a tuple parameter comprising:
 | 
						|
 | 
						|
#. A geometry to base calculations from; and
 | 
						|
#. A number or :class:`~django.contrib.gis.measure.Distance` object containing the distance.
 | 
						|
 | 
						|
If a :class:`~django.contrib.gis.measure.Distance` object is used,
 | 
						|
it may be expressed in any units (the SQL generated will use units
 | 
						|
converted to those of the field); otherwise, numeric parameters are assumed
 | 
						|
to be in the units of the field.
 | 
						|
 | 
						|
.. note::
 | 
						|
 | 
						|
    For users of PostGIS 1.4 and below, the routine ``ST_Distance_Sphere``
 | 
						|
    is used by default for calculating distances on geographic coordinate systems
 | 
						|
    (e.g., WGS84) -- which may only be called with point geometries [#fndistsphere14]_.
 | 
						|
    Thus, geographic distance lookups on traditional PostGIS geometry columns are
 | 
						|
    only allowed on :class:`PointField` model fields using a point for the
 | 
						|
    geometry parameter.
 | 
						|
 | 
						|
.. note::
 | 
						|
 | 
						|
    In PostGIS 1.5, ``ST_Distance_Sphere`` does *not* limit the geometry types
 | 
						|
    geographic distance queries are performed with. [#fndistsphere15]_  However,
 | 
						|
    these queries may take a long time, as great-circle distances must be
 | 
						|
    calculated on the fly for *every* row in the query.  This is because the
 | 
						|
    spatial index on traditional geometry fields cannot be used.
 | 
						|
 | 
						|
    For much better performance on WGS84 distance queries, consider using
 | 
						|
    :ref:`geography columns <geography-type>` in your database instead because
 | 
						|
    they are able to use their spatial index in distance queries.
 | 
						|
    You can tell GeoDjango to use a geography column by setting ``geography=True``
 | 
						|
    in your field definition.
 | 
						|
 | 
						|
For example, let's say we have a ``SouthTexasCity`` model (from the
 | 
						|
`GeoDjango distance tests`__ ) on a *projected* coordinate system valid for cities
 | 
						|
in southern Texas::
 | 
						|
 | 
						|
    from django.contrib.gis.db import models
 | 
						|
 | 
						|
    class SouthTexasCity(models.Model):
 | 
						|
        name = models.CharField(max_length=30)
 | 
						|
        # A projected coordinate system (only valid for South Texas!)
 | 
						|
        # is used, units are in meters.
 | 
						|
        point = models.PointField(srid=32140)
 | 
						|
        objects = models.GeoManager()
 | 
						|
 | 
						|
Then distance queries may be performed as follows::
 | 
						|
 | 
						|
    >>> from django.contrib.gis.geos import *
 | 
						|
    >>> from django.contrib.gis.measure import D # ``D`` is a shortcut for ``Distance``
 | 
						|
    >>> from geoapp import SouthTexasCity
 | 
						|
    # Distances will be calculated from this point, which does not have to be projected.
 | 
						|
    >>> pnt = fromstr('POINT(-96.876369 29.905320)', srid=4326)
 | 
						|
    # If numeric parameter, units of field (meters in this case) are assumed.
 | 
						|
    >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))
 | 
						|
    # Find all Cities within 7 km, > 20 miles away, and > 100 chains  away (an obscure unit)
 | 
						|
    >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))
 | 
						|
    >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))
 | 
						|
    >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))
 | 
						|
 | 
						|
__ https://github.com/django/django/blob/master/django/contrib/gis/tests/distapp/models.py
 | 
						|
 | 
						|
.. _compatibility-table:
 | 
						|
 | 
						|
Compatibility Tables
 | 
						|
====================
 | 
						|
 | 
						|
.. _spatial-lookup-compatibility:
 | 
						|
 | 
						|
Spatial Lookups
 | 
						|
---------------
 | 
						|
 | 
						|
The following table provides a summary of what spatial lookups are available
 | 
						|
for each spatial database backend.
 | 
						|
 | 
						|
=================================  =========  ========  ============ ==========
 | 
						|
Lookup Type                        PostGIS    Oracle    MySQL [#]_   SpatiaLite
 | 
						|
=================================  =========  ========  ============ ==========
 | 
						|
:lookup:`bbcontains`               X                    X            X
 | 
						|
:lookup:`bboverlaps`               X                    X            X
 | 
						|
:lookup:`contained`                X                    X            X
 | 
						|
:lookup:`contains <gis-contains>`  X          X         X            X
 | 
						|
:lookup:`contains_properly`        X
 | 
						|
:lookup:`coveredby`                X          X
 | 
						|
:lookup:`covers`                   X          X
 | 
						|
:lookup:`crosses`                  X                                 X
 | 
						|
:lookup:`disjoint`                 X          X         X            X
 | 
						|
:lookup:`distance_gt`              X          X                      X
 | 
						|
:lookup:`distance_gte`             X          X                      X
 | 
						|
:lookup:`distance_lt`              X          X                      X
 | 
						|
:lookup:`distance_lte`             X          X                      X
 | 
						|
:lookup:`dwithin`                  X          X
 | 
						|
:lookup:`equals`                   X          X         X            X
 | 
						|
:lookup:`exact`                    X          X         X            X
 | 
						|
:lookup:`intersects`               X          X         X            X
 | 
						|
:lookup:`overlaps`                 X          X         X            X
 | 
						|
:lookup:`relate`                   X          X                      X
 | 
						|
:lookup:`same_as`                  X          X         X            X
 | 
						|
:lookup:`touches`                  X          X         X            X
 | 
						|
:lookup:`within`                   X          X         X            X
 | 
						|
:lookup:`left`                     X
 | 
						|
:lookup:`right`                    X
 | 
						|
:lookup:`overlaps_left`            X
 | 
						|
:lookup:`overlaps_right`           X
 | 
						|
:lookup:`overlaps_above`           X
 | 
						|
:lookup:`overlaps_below`           X
 | 
						|
:lookup:`strictly_above`           X
 | 
						|
:lookup:`strictly_below`           X
 | 
						|
=================================  =========  ========  ============ ==========
 | 
						|
 | 
						|
.. _geoqueryset-method-compatibility:
 | 
						|
 | 
						|
``GeoQuerySet`` Methods
 | 
						|
-----------------------
 | 
						|
The following table provides a summary of what :class:`GeoQuerySet` methods
 | 
						|
are available on each spatial backend.  Please note that MySQL does not
 | 
						|
support any of these methods, and is thus excluded from the table.
 | 
						|
 | 
						|
====================================  =======  ======  ==========
 | 
						|
Method                                PostGIS  Oracle  SpatiaLite
 | 
						|
====================================  =======  ======  ==========
 | 
						|
:meth:`GeoQuerySet.area`              X        X       X
 | 
						|
:meth:`GeoQuerySet.centroid`          X        X       X
 | 
						|
:meth:`GeoQuerySet.collect`           X
 | 
						|
:meth:`GeoQuerySet.difference`        X        X       X
 | 
						|
:meth:`GeoQuerySet.distance`          X        X       X
 | 
						|
:meth:`GeoQuerySet.envelope`          X                X
 | 
						|
:meth:`GeoQuerySet.extent`            X        X
 | 
						|
:meth:`GeoQuerySet.extent3d`          X
 | 
						|
:meth:`GeoQuerySet.force_rhr`         X
 | 
						|
:meth:`GeoQuerySet.geohash`           X
 | 
						|
:meth:`GeoQuerySet.geojson`           X                X
 | 
						|
:meth:`GeoQuerySet.gml`               X        X       X
 | 
						|
:meth:`GeoQuerySet.intersection`      X        X       X
 | 
						|
:meth:`GeoQuerySet.kml`               X                X
 | 
						|
:meth:`GeoQuerySet.length`            X        X       X
 | 
						|
:meth:`GeoQuerySet.make_line`         X
 | 
						|
:meth:`GeoQuerySet.mem_size`          X
 | 
						|
:meth:`GeoQuerySet.num_geom`          X        X       X
 | 
						|
:meth:`GeoQuerySet.num_points`        X        X       X
 | 
						|
:meth:`GeoQuerySet.perimeter`         X        X
 | 
						|
:meth:`GeoQuerySet.point_on_surface`  X        X       X
 | 
						|
:meth:`GeoQuerySet.reverse_geom`      X        X
 | 
						|
:meth:`GeoQuerySet.scale`             X                X
 | 
						|
:meth:`GeoQuerySet.snap_to_grid`      X
 | 
						|
:meth:`GeoQuerySet.svg`               X                X
 | 
						|
:meth:`GeoQuerySet.sym_difference`    X        X       X
 | 
						|
:meth:`GeoQuerySet.transform`         X        X       X
 | 
						|
:meth:`GeoQuerySet.translate`         X                X
 | 
						|
:meth:`GeoQuerySet.union`             X        X       X
 | 
						|
:meth:`GeoQuerySet.unionagg`          X        X       X
 | 
						|
====================================  =======  ======  ==========
 | 
						|
 | 
						|
.. rubric:: Footnotes
 | 
						|
.. [#fnwkt] *See* Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL <http://www.opengis.org/docs/99-049.pdf>`_, Document 99-049 (May 5, 1999), at  Ch. 3.2.5, p. 3-11 (SQL Textual Representation of Geometry).
 | 
						|
.. [#fnewkb] *See* `PostGIS EWKB, EWKT and Canonical Forms <http://postgis.refractions.net/documentation/manual-1.5/ch04.html#EWKB_EWKT>`_, PostGIS documentation at Ch. 4.1.2.
 | 
						|
.. [#fngeojson] *See* Howard Butler, Martin Daly, Allan Doyle, Tim Schaub, & Christopher Schmidt, `The GeoJSON Format Specification <http://geojson.org/geojson-spec.html>`_, Revision 1.0 (June 16, 2008).
 | 
						|
.. [#fndistsphere14] *See* `PostGIS 1.4 documentation <http://postgis.refractions.net/documentation/manual-1.4/ST_Distance_Sphere.html>`_ on ``ST_distance_sphere``.
 | 
						|
.. [#fndistsphere15] *See* `PostGIS 1.5 documentation <http://postgis.refractions.net/documentation/manual-1.5/ST_Distance_Sphere.html>`_ on ``ST_distance_sphere``.
 | 
						|
.. [#fnmysqlidx] *See* `Creating Spatial Indexes <http://dev.mysql.com/doc/refman/5.1/en/creating-spatial-indexes.html>`_
 | 
						|
   in the MySQL 5.1 Reference Manual:
 | 
						|
 | 
						|
       For MyISAM tables, ``SPATIAL INDEX`` creates an R-tree index. For storage
 | 
						|
       engines that support nonspatial indexing of spatial columns, the engine
 | 
						|
       creates a B-tree index. A B-tree index on spatial values will be useful
 | 
						|
       for exact-value lookups, but not for range scans.
 | 
						|
 | 
						|
.. [#] Refer :ref:`mysql-spatial-limitations` section for more details.
 |