limbo/core/translate/expr.rs

3145 lines
130 KiB
Rust

use tracing::{instrument, Level};
use turso_sqlite3_parser::ast::{self, Expr, UnaryOperator};
use super::emitter::Resolver;
use super::optimizer::Optimizable;
use super::plan::TableReferences;
#[cfg(feature = "json")]
use crate::function::JsonFunc;
use crate::function::{Func, FuncCtx, MathFuncArity, ScalarFunc, VectorFunc};
use crate::functions::datetime;
use crate::schema::{Affinity, Table, Type};
use crate::util::{exprs_are_equivalent, normalize_ident, parse_numeric_literal};
use crate::vdbe::builder::CursorKey;
use crate::vdbe::{
builder::ProgramBuilder,
insn::{CmpInsFlags, Insn},
BranchOffset,
};
use crate::{Result, Value};
use super::collate::CollationSeq;
#[derive(Debug, Clone, Copy)]
pub struct ConditionMetadata {
pub jump_if_condition_is_true: bool,
pub jump_target_when_true: BranchOffset,
pub jump_target_when_false: BranchOffset,
}
#[instrument(skip_all, level = Level::TRACE)]
fn emit_cond_jump(program: &mut ProgramBuilder, cond_meta: ConditionMetadata, reg: usize) {
if cond_meta.jump_if_condition_is_true {
program.emit_insn(Insn::If {
reg,
target_pc: cond_meta.jump_target_when_true,
jump_if_null: false,
});
} else {
program.emit_insn(Insn::IfNot {
reg,
target_pc: cond_meta.jump_target_when_false,
jump_if_null: true,
});
}
}
macro_rules! expect_arguments_exact {
(
$args:expr,
$expected_arguments:expr,
$func:ident
) => {{
let args = if let Some(args) = $args {
if args.len() != $expected_arguments {
crate::bail_parse_error!(
"{} function called with not exactly {} arguments",
$func.to_string(),
$expected_arguments,
);
}
args
} else {
crate::bail_parse_error!("{} function with no arguments", $func.to_string());
};
args
}};
}
macro_rules! expect_arguments_max {
(
$args:expr,
$expected_arguments:expr,
$func:ident
) => {{
let args = if let Some(args) = $args {
if args.len() > $expected_arguments {
crate::bail_parse_error!(
"{} function called with more than {} arguments",
$func.to_string(),
$expected_arguments,
);
}
args
} else {
crate::bail_parse_error!("{} function with no arguments", $func.to_string());
};
args
}};
}
macro_rules! expect_arguments_min {
(
$args:expr,
$expected_arguments:expr,
$func:ident
) => {{
let args = if let Some(args) = $args {
if args.len() < $expected_arguments {
crate::bail_parse_error!(
"{} function with less than {} arguments",
$func.to_string(),
$expected_arguments
);
}
args
} else {
crate::bail_parse_error!("{} function with no arguments", $func.to_string());
};
args
}};
}
#[allow(unused_macros)]
macro_rules! expect_arguments_even {
(
$args:expr,
$func:ident
) => {{
let args = $args.as_deref().unwrap_or_default();
if args.len() % 2 != 0 {
crate::bail_parse_error!(
"{} function requires an even number of arguments",
$func.to_string()
);
};
// The only function right now that requires an even number is `json_object` and it allows
// to have no arguments, so thats why in this macro we do not bail with the `function with no arguments` error
args
}};
}
#[instrument(skip(program, referenced_tables, expr, resolver), level = Level::TRACE)]
pub fn translate_condition_expr(
program: &mut ProgramBuilder,
referenced_tables: &TableReferences,
expr: &ast::Expr,
condition_metadata: ConditionMetadata,
resolver: &Resolver,
) -> Result<()> {
match expr {
ast::Expr::Between { .. } => {
unreachable!("expression should have been rewritten in optmizer")
}
ast::Expr::Binary(lhs, ast::Operator::And, rhs) => {
// In a binary AND, never jump to the parent 'jump_target_when_true' label on the first condition, because
// the second condition MUST also be true. Instead we instruct the child expression to jump to a local
// true label.
let jump_target_when_true = program.allocate_label();
translate_condition_expr(
program,
referenced_tables,
lhs,
ConditionMetadata {
jump_if_condition_is_true: false,
jump_target_when_true,
..condition_metadata
},
resolver,
)?;
program.preassign_label_to_next_insn(jump_target_when_true);
translate_condition_expr(
program,
referenced_tables,
rhs,
condition_metadata,
resolver,
)?;
}
ast::Expr::Binary(lhs, ast::Operator::Or, rhs) => {
// In a binary OR, never jump to the parent 'jump_target_when_false' label on the first condition, because
// the second condition CAN also be true. Instead we instruct the child expression to jump to a local
// false label.
let jump_target_when_false = program.allocate_label();
translate_condition_expr(
program,
referenced_tables,
lhs,
ConditionMetadata {
jump_if_condition_is_true: true,
jump_target_when_false,
..condition_metadata
},
resolver,
)?;
program.preassign_label_to_next_insn(jump_target_when_false);
translate_condition_expr(
program,
referenced_tables,
rhs,
condition_metadata,
resolver,
)?;
}
ast::Expr::Binary(_, _, _) => {
let result_reg = program.alloc_register();
translate_expr(program, Some(referenced_tables), expr, result_reg, resolver)?;
emit_cond_jump(program, condition_metadata, result_reg);
}
ast::Expr::Literal(_)
| ast::Expr::Cast { .. }
| ast::Expr::FunctionCall { .. }
| ast::Expr::Column { .. }
| ast::Expr::RowId { .. }
| ast::Expr::Case { .. } => {
let reg = program.alloc_register();
translate_expr(program, Some(referenced_tables), expr, reg, resolver)?;
emit_cond_jump(program, condition_metadata, reg);
}
ast::Expr::InList { lhs, not, rhs } => {
// lhs is e.g. a column reference
// rhs is an Option<Vec<Expr>>
// If rhs is None, it means the IN expression is always false, i.e. tbl.id IN ().
// If rhs is Some, it means the IN expression has a list of values to compare against, e.g. tbl.id IN (1, 2, 3).
//
// The IN expression is equivalent to a series of OR expressions.
// For example, `a IN (1, 2, 3)` is equivalent to `a = 1 OR a = 2 OR a = 3`.
// The NOT IN expression is equivalent to a series of AND expressions.
// For example, `a NOT IN (1, 2, 3)` is equivalent to `a != 1 AND a != 2 AND a != 3`.
//
// SQLite typically optimizes IN expressions to use a binary search on an ephemeral index if there are many values.
// For now we don't have the plumbing to do that, so we'll just emit a series of comparisons,
// which is what SQLite also does for small lists of values.
// TODO: Let's refactor this later to use a more efficient implementation conditionally based on the number of values.
if rhs.is_none() {
// If rhs is None, IN expressions are always false and NOT IN expressions are always true.
if *not {
// On a trivially true NOT IN () expression we can only jump to the 'jump_target_when_true' label if 'jump_if_condition_is_true'; otherwise me must fall through.
// This is because in a more complex condition we might need to evaluate the rest of the condition.
// Note that we are already breaking up our WHERE clauses into a series of terms at "AND" boundaries, so right now we won't be running into cases where jumping on true would be incorrect,
// but once we have e.g. parenthesization and more complex conditions, not having this 'if' here would introduce a bug.
if condition_metadata.jump_if_condition_is_true {
program.emit_insn(Insn::Goto {
target_pc: condition_metadata.jump_target_when_true,
});
}
} else {
program.emit_insn(Insn::Goto {
target_pc: condition_metadata.jump_target_when_false,
});
}
return Ok(());
}
// The left hand side only needs to be evaluated once we have a list of values to compare against.
let lhs_reg = program.alloc_register();
let _ = translate_expr(program, Some(referenced_tables), lhs, lhs_reg, resolver)?;
let rhs = rhs.as_ref().unwrap();
// The difference between a local jump and an "upper level" jump is that for example in this case:
// WHERE foo IN (1,2,3) OR bar = 5,
// we can immediately jump to the 'jump_target_when_true' label of the ENTIRE CONDITION if foo = 1, foo = 2, or foo = 3 without evaluating the bar = 5 condition.
// This is why in Binary-OR expressions we set jump_if_condition_is_true to true for the first condition.
// However, in this example:
// WHERE foo IN (1,2,3) AND bar = 5,
// we can't jump to the 'jump_target_when_true' label of the entire condition foo = 1, foo = 2, or foo = 3, because we still need to evaluate the bar = 5 condition later.
// This is why in that case we just jump over the rest of the IN conditions in this "local" branch which evaluates the IN condition.
let jump_target_when_true = if condition_metadata.jump_if_condition_is_true {
condition_metadata.jump_target_when_true
} else {
program.allocate_label()
};
if !*not {
// If it's an IN expression, we need to jump to the 'jump_target_when_true' label if any of the conditions are true.
for (i, expr) in rhs.iter().enumerate() {
let rhs_reg = program.alloc_register();
let last_condition = i == rhs.len() - 1;
let _ =
translate_expr(program, Some(referenced_tables), expr, rhs_reg, resolver)?;
// If this is not the last condition, we need to jump to the 'jump_target_when_true' label if the condition is true.
if !last_condition {
program.emit_insn(Insn::Eq {
lhs: lhs_reg,
rhs: rhs_reg,
target_pc: jump_target_when_true,
flags: CmpInsFlags::default(),
collation: program.curr_collation(),
});
} else {
// If this is the last condition, we need to jump to the 'jump_target_when_false' label if there is no match.
program.emit_insn(Insn::Ne {
lhs: lhs_reg,
rhs: rhs_reg,
target_pc: condition_metadata.jump_target_when_false,
flags: CmpInsFlags::default().jump_if_null(),
collation: program.curr_collation(),
});
}
}
// If we got here, then the last condition was a match, so we jump to the 'jump_target_when_true' label if 'jump_if_condition_is_true'.
// If not, we can just fall through without emitting an unnecessary instruction.
if condition_metadata.jump_if_condition_is_true {
program.emit_insn(Insn::Goto {
target_pc: condition_metadata.jump_target_when_true,
});
}
} else {
// If it's a NOT IN expression, we need to jump to the 'jump_target_when_false' label if any of the conditions are true.
for expr in rhs.iter() {
let rhs_reg = program.alloc_register();
let _ =
translate_expr(program, Some(referenced_tables), expr, rhs_reg, resolver)?;
program.emit_insn(Insn::Eq {
lhs: lhs_reg,
rhs: rhs_reg,
target_pc: condition_metadata.jump_target_when_false,
flags: CmpInsFlags::default().jump_if_null(),
collation: program.curr_collation(),
});
}
// If we got here, then none of the conditions were a match, so we jump to the 'jump_target_when_true' label if 'jump_if_condition_is_true'.
// If not, we can just fall through without emitting an unnecessary instruction.
if condition_metadata.jump_if_condition_is_true {
program.emit_insn(Insn::Goto {
target_pc: condition_metadata.jump_target_when_true,
});
}
}
if !condition_metadata.jump_if_condition_is_true {
program.preassign_label_to_next_insn(jump_target_when_true);
}
}
ast::Expr::Like { not, .. } => {
let cur_reg = program.alloc_register();
translate_like_base(program, Some(referenced_tables), expr, cur_reg, resolver)?;
if !*not {
emit_cond_jump(program, condition_metadata, cur_reg);
} else if condition_metadata.jump_if_condition_is_true {
program.emit_insn(Insn::IfNot {
reg: cur_reg,
target_pc: condition_metadata.jump_target_when_true,
jump_if_null: false,
});
} else {
program.emit_insn(Insn::If {
reg: cur_reg,
target_pc: condition_metadata.jump_target_when_false,
jump_if_null: true,
});
}
}
ast::Expr::Parenthesized(exprs) => {
if exprs.len() == 1 {
let _ = translate_condition_expr(
program,
referenced_tables,
&exprs[0],
condition_metadata,
resolver,
);
} else {
crate::bail_parse_error!(
"parenthesized conditional should have exactly one expression"
);
}
}
ast::Expr::NotNull(expr) => {
let cur_reg = program.alloc_register();
translate_expr(program, Some(referenced_tables), expr, cur_reg, resolver)?;
if condition_metadata.jump_if_condition_is_true {
program.emit_insn(Insn::NotNull {
reg: cur_reg,
target_pc: condition_metadata.jump_target_when_true,
});
} else {
program.emit_insn(Insn::IsNull {
reg: cur_reg,
target_pc: condition_metadata.jump_target_when_false,
});
}
}
ast::Expr::IsNull(expr) => {
let cur_reg = program.alloc_register();
translate_expr(program, Some(referenced_tables), expr, cur_reg, resolver)?;
if condition_metadata.jump_if_condition_is_true {
program.emit_insn(Insn::IsNull {
reg: cur_reg,
target_pc: condition_metadata.jump_target_when_true,
});
} else {
program.emit_insn(Insn::NotNull {
reg: cur_reg,
target_pc: condition_metadata.jump_target_when_false,
});
}
}
ast::Expr::Unary(_, _) => {
// This is an inefficient implementation for op::NOT, because translate_expr() will emit an Insn::Not,
// and then we immediately emit an Insn::If/Insn::IfNot for the conditional jump. In reality we would not
// like to emit the negation instruction Insn::Not at all, since we could just emit the "opposite" jump instruction
// directly. However, using translate_expr() directly simplifies our conditional jump code for unary expressions,
// and we'd rather be correct than maximally efficient, for now.
let expr_reg = program.alloc_register();
translate_expr(program, Some(referenced_tables), expr, expr_reg, resolver)?;
emit_cond_jump(program, condition_metadata, expr_reg);
}
other => todo!("expression {:?} not implemented", other),
}
Ok(())
}
/// Reason why [translate_expr_no_constant_opt()] was called.
#[derive(Debug)]
pub enum NoConstantOptReason {
/// The expression translation involves reusing register(s),
/// so hoisting those register assignments is not safe.
/// e.g. SELECT COALESCE(1, t.x, NULL) would overwrite 1 with NULL, which is invalid.
RegisterReuse,
}
/// Translate an expression into bytecode via [translate_expr()], and forbid any constant values from being hoisted
/// into the beginning of the program. This is a good idea in most cases where
/// a register will end up being reused e.g. in a coroutine.
pub fn translate_expr_no_constant_opt(
program: &mut ProgramBuilder,
referenced_tables: Option<&TableReferences>,
expr: &ast::Expr,
target_register: usize,
resolver: &Resolver,
deopt_reason: NoConstantOptReason,
) -> Result<usize> {
tracing::debug!(
"translate_expr_no_constant_opt: expr={:?}, deopt_reason={:?}",
expr,
deopt_reason
);
let next_span_idx = program.constant_spans_next_idx();
let translated = translate_expr(program, referenced_tables, expr, target_register, resolver)?;
program.constant_spans_invalidate_after(next_span_idx);
Ok(translated)
}
/// Translate an expression into bytecode.
pub fn translate_expr(
program: &mut ProgramBuilder,
referenced_tables: Option<&TableReferences>,
expr: &ast::Expr,
target_register: usize,
resolver: &Resolver,
) -> Result<usize> {
let constant_span = if expr.is_constant(resolver) {
if !program.constant_span_is_open() {
Some(program.constant_span_start())
} else {
None
}
} else {
program.constant_span_end_all();
None
};
if let Some(reg) = resolver.resolve_cached_expr_reg(expr) {
program.emit_insn(Insn::Copy {
src_reg: reg,
dst_reg: target_register,
amount: 0,
});
if let Some(span) = constant_span {
program.constant_span_end(span);
}
return Ok(target_register);
}
match expr {
ast::Expr::Between { .. } => {
unreachable!("expression should have been rewritten in optmizer")
}
ast::Expr::Binary(e1, op, e2) => {
// Check if both sides of the expression are equivalent and reuse the same register if so
if exprs_are_equivalent(e1, e2) {
let shared_reg = program.alloc_register();
translate_expr(program, referenced_tables, e1, shared_reg, resolver)?;
emit_binary_insn(
program,
op,
shared_reg,
shared_reg,
target_register,
e1,
e2,
referenced_tables,
)?;
program.reset_collation();
Ok(target_register)
} else {
let e1_reg = program.alloc_registers(2);
let e2_reg = e1_reg + 1;
translate_expr(program, referenced_tables, e1, e1_reg, resolver)?;
let left_collation_ctx = program.curr_collation_ctx();
program.reset_collation();
translate_expr(program, referenced_tables, e2, e2_reg, resolver)?;
let right_collation_ctx = program.curr_collation_ctx();
program.reset_collation();
/*
* The rules for determining which collating function to use for a binary comparison
* operator (=, <, >, <=, >=, !=, IS, and IS NOT) are as follows:
*
* 1. If either operand has an explicit collating function assignment using the postfix COLLATE operator,
* then the explicit collating function is used for comparison,
* with precedence to the collating function of the left operand.
*
* 2. If either operand is a column, then the collating function of that column is used
* with precedence to the left operand. For the purposes of the previous sentence,
* a column name preceded by one or more unary "+" operators and/or CAST operators is still considered a column name.
*
* 3. Otherwise, the BINARY collating function is used for comparison.
*/
let collation_ctx = {
match (left_collation_ctx, right_collation_ctx) {
(Some((c_left, true)), _) => Some((c_left, true)),
(_, Some((c_right, true))) => Some((c_right, true)),
(Some((c_left, from_collate_left)), None) => {
Some((c_left, from_collate_left))
}
(None, Some((c_right, from_collate_right))) => {
Some((c_right, from_collate_right))
}
(Some((c_left, from_collate_left)), Some((_, false))) => {
Some((c_left, from_collate_left))
}
_ => None,
}
};
program.set_collation(collation_ctx);
emit_binary_insn(
program,
op,
e1_reg,
e2_reg,
target_register,
e1,
e2,
referenced_tables,
)?;
program.reset_collation();
Ok(target_register)
}
}
ast::Expr::Case {
base,
when_then_pairs,
else_expr,
} => {
// There's two forms of CASE, one which checks a base expression for equality
// against the WHEN values, and returns the corresponding THEN value if it matches:
// CASE 2 WHEN 1 THEN 'one' WHEN 2 THEN 'two' ELSE 'many' END
// And one which evaluates a series of boolean predicates:
// CASE WHEN is_good THEN 'good' WHEN is_bad THEN 'bad' ELSE 'okay' END
// This just changes which sort of branching instruction to issue, after we
// generate the expression if needed.
let return_label = program.allocate_label();
let mut next_case_label = program.allocate_label();
// Only allocate a reg to hold the base expression if one was provided.
// And base_reg then becomes the flag we check to see which sort of
// case statement we're processing.
let base_reg = base.as_ref().map(|_| program.alloc_register());
let expr_reg = program.alloc_register();
if let Some(base_expr) = base {
translate_expr(
program,
referenced_tables,
base_expr,
base_reg.unwrap(),
resolver,
)?;
};
for (when_expr, then_expr) in when_then_pairs {
translate_expr_no_constant_opt(
program,
referenced_tables,
when_expr,
expr_reg,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
match base_reg {
// CASE 1 WHEN 0 THEN 0 ELSE 1 becomes 1==0, Ne branch to next clause
Some(base_reg) => program.emit_insn(Insn::Ne {
lhs: base_reg,
rhs: expr_reg,
target_pc: next_case_label,
// A NULL result is considered untrue when evaluating WHEN terms.
flags: CmpInsFlags::default().jump_if_null(),
collation: program.curr_collation(),
}),
// CASE WHEN 0 THEN 0 ELSE 1 becomes ifnot 0 branch to next clause
None => program.emit_insn(Insn::IfNot {
reg: expr_reg,
target_pc: next_case_label,
jump_if_null: true,
}),
};
// THEN...
translate_expr_no_constant_opt(
program,
referenced_tables,
then_expr,
target_register,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
program.emit_insn(Insn::Goto {
target_pc: return_label,
});
// This becomes either the next WHEN, or in the last WHEN/THEN, we're
// assured to have at least one instruction corresponding to the ELSE immediately follow.
program.preassign_label_to_next_insn(next_case_label);
next_case_label = program.allocate_label();
}
match else_expr {
Some(expr) => {
translate_expr_no_constant_opt(
program,
referenced_tables,
expr,
target_register,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
}
// If ELSE isn't specified, it means ELSE null.
None => {
program.emit_insn(Insn::Null {
dest: target_register,
dest_end: None,
});
}
};
program.preassign_label_to_next_insn(return_label);
Ok(target_register)
}
ast::Expr::Cast { expr, type_name } => {
let type_name = type_name.as_ref().unwrap(); // TODO: why is this optional?
let reg_expr = program.alloc_registers(2);
translate_expr(program, referenced_tables, expr, reg_expr, resolver)?;
program.emit_insn(Insn::String8 {
// we make a comparison against uppercase static strs in the affinity() function,
// so we need to make sure we're comparing against the uppercase version,
// and it's better to do this once instead of every time we check affinity
value: type_name.name.to_uppercase(),
dest: reg_expr + 1,
});
program.mark_last_insn_constant();
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: reg_expr,
dest: target_register,
func: FuncCtx {
func: Func::Scalar(ScalarFunc::Cast),
arg_count: 2,
},
});
Ok(target_register)
}
ast::Expr::Collate(expr, collation) => {
// First translate inner expr, then set the curr collation. If we set curr collation before,
// it may be overwritten later by inner translate.
translate_expr(program, referenced_tables, expr, target_register, resolver)?;
let collation = CollationSeq::new(collation)?;
program.set_collation(Some((collation, true)));
Ok(target_register)
}
ast::Expr::DoublyQualified(_, _, _) => todo!(),
ast::Expr::Exists(_) => todo!(),
ast::Expr::FunctionCall {
name,
distinctness: _,
args,
filter_over: _,
order_by: _,
} => {
let args_count = if let Some(args) = args { args.len() } else { 0 };
let func_name = normalize_ident(name.0.as_str());
let func_type = resolver.resolve_function(&func_name, args_count);
if func_type.is_none() {
crate::bail_parse_error!("unknown function {}", name.0);
}
let func_ctx = FuncCtx {
func: func_type.unwrap(),
arg_count: args_count,
};
match &func_ctx.func {
Func::Agg(_) => {
crate::bail_parse_error!("aggregation function in non-aggregation context")
}
Func::External(_) => {
let regs = program.alloc_registers(args_count);
if let Some(args) = args {
for (i, arg_expr) in args.iter().enumerate() {
translate_expr(
program,
referenced_tables,
arg_expr,
regs + i,
resolver,
)?;
}
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: regs,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
#[cfg(feature = "json")]
Func::Json(j) => match j {
JsonFunc::Json | JsonFunc::Jsonb => {
let args = expect_arguments_exact!(args, 1, j);
translate_function(
program,
args,
referenced_tables,
resolver,
target_register,
func_ctx,
)
}
JsonFunc::JsonArray
| JsonFunc::JsonbArray
| JsonFunc::JsonExtract
| JsonFunc::JsonSet
| JsonFunc::JsonbSet
| JsonFunc::JsonbExtract
| JsonFunc::JsonReplace
| JsonFunc::JsonbReplace
| JsonFunc::JsonbRemove
| JsonFunc::JsonInsert
| JsonFunc::JsonbInsert => translate_function(
program,
args.as_deref().unwrap_or_default(),
referenced_tables,
resolver,
target_register,
func_ctx,
),
JsonFunc::JsonArrowExtract | JsonFunc::JsonArrowShiftExtract => {
unreachable!(
"These two functions are only reachable via the -> and ->> operators"
)
}
JsonFunc::JsonArrayLength | JsonFunc::JsonType => {
let args = expect_arguments_max!(args, 2, j);
translate_function(
program,
args,
referenced_tables,
resolver,
target_register,
func_ctx,
)
}
JsonFunc::JsonErrorPosition => {
let args = if let Some(args) = args {
if args.len() != 1 {
crate::bail_parse_error!(
"{} function with not exactly 1 argument",
j.to_string()
);
}
args
} else {
crate::bail_parse_error!(
"{} function with no arguments",
j.to_string()
);
};
let json_reg = program.alloc_register();
translate_expr(program, referenced_tables, &args[0], json_reg, resolver)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: json_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
JsonFunc::JsonObject | JsonFunc::JsonbObject => {
let args = expect_arguments_even!(args, j);
translate_function(
program,
args,
referenced_tables,
resolver,
target_register,
func_ctx,
)
}
JsonFunc::JsonValid => translate_function(
program,
args.as_deref().unwrap_or_default(),
referenced_tables,
resolver,
target_register,
func_ctx,
),
JsonFunc::JsonPatch | JsonFunc::JsonbPatch => {
let args = expect_arguments_exact!(args, 2, j);
translate_function(
program,
args,
referenced_tables,
resolver,
target_register,
func_ctx,
)
}
JsonFunc::JsonRemove => {
let start_reg =
program.alloc_registers(args.as_ref().map(|x| x.len()).unwrap_or(1));
if let Some(args) = args {
for (i, arg) in args.iter().enumerate() {
// register containing result of each argument expression
translate_expr(
program,
referenced_tables,
arg,
start_reg + i,
resolver,
)?;
}
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
JsonFunc::JsonQuote => {
let args = expect_arguments_exact!(args, 1, j);
translate_function(
program,
args,
referenced_tables,
resolver,
target_register,
func_ctx,
)
}
JsonFunc::JsonPretty => {
let args = expect_arguments_max!(args, 2, j);
translate_function(
program,
args,
referenced_tables,
resolver,
target_register,
func_ctx,
)
}
},
Func::Vector(vector_func) => match vector_func {
VectorFunc::Vector | VectorFunc::Vector32 => {
let args = expect_arguments_exact!(args, 1, vector_func);
let start_reg = program.alloc_register();
translate_expr(program, referenced_tables, &args[0], start_reg, resolver)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
VectorFunc::Vector64 => {
let args = expect_arguments_exact!(args, 1, vector_func);
let start_reg = program.alloc_register();
translate_expr(program, referenced_tables, &args[0], start_reg, resolver)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
VectorFunc::VectorExtract => {
let args = expect_arguments_exact!(args, 1, vector_func);
let start_reg = program.alloc_register();
translate_expr(program, referenced_tables, &args[0], start_reg, resolver)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
VectorFunc::VectorDistanceCos => {
let args = expect_arguments_exact!(args, 2, vector_func);
let regs = program.alloc_registers(2);
translate_expr(program, referenced_tables, &args[0], regs, resolver)?;
translate_expr(program, referenced_tables, &args[1], regs + 1, resolver)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: regs,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
},
Func::Scalar(srf) => {
match srf {
ScalarFunc::Cast => {
unreachable!("this is always ast::Expr::Cast")
}
ScalarFunc::Changes => {
if args.is_some() {
crate::bail_parse_error!(
"{} function with more than 0 arguments",
srf
);
}
let start_reg = program.alloc_register();
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Char => translate_function(
program,
args.as_deref().unwrap_or_default(),
referenced_tables,
resolver,
target_register,
func_ctx,
),
ScalarFunc::Coalesce => {
let args = expect_arguments_min!(args, 2, srf);
// coalesce function is implemented as a series of not null checks
// whenever a not null check succeeds, we jump to the end of the series
let label_coalesce_end = program.allocate_label();
for (index, arg) in args.iter().enumerate() {
let reg = translate_expr_no_constant_opt(
program,
referenced_tables,
arg,
target_register,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
if index < args.len() - 1 {
program.emit_insn(Insn::NotNull {
reg,
target_pc: label_coalesce_end,
});
}
}
program.preassign_label_to_next_insn(label_coalesce_end);
Ok(target_register)
}
ScalarFunc::LastInsertRowid => {
let regs = program.alloc_register();
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: regs,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Concat => {
let args = if let Some(args) = args {
args
} else {
crate::bail_parse_error!(
"{} function with no arguments",
srf.to_string()
);
};
let mut start_reg = None;
for arg in args.iter() {
let reg = program.alloc_register();
start_reg = Some(start_reg.unwrap_or(reg));
translate_expr(program, referenced_tables, arg, reg, resolver)?;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: start_reg.unwrap(),
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::ConcatWs => {
let args = expect_arguments_min!(args, 2, srf);
let temp_register = program.alloc_register();
for arg in args.iter() {
let reg = program.alloc_register();
translate_expr(program, referenced_tables, arg, reg, resolver)?;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: temp_register + 1,
dest: temp_register,
func: func_ctx,
});
program.emit_insn(Insn::Copy {
src_reg: temp_register,
dst_reg: target_register,
amount: 1,
});
Ok(target_register)
}
ScalarFunc::IfNull => {
let args = match args {
Some(args) if args.len() == 2 => args,
Some(_) => crate::bail_parse_error!(
"{} function requires exactly 2 arguments",
srf.to_string()
),
None => crate::bail_parse_error!(
"{} function requires arguments",
srf.to_string()
),
};
let temp_reg = program.alloc_register();
translate_expr_no_constant_opt(
program,
referenced_tables,
&args[0],
temp_reg,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
let before_copy_label = program.allocate_label();
program.emit_insn(Insn::NotNull {
reg: temp_reg,
target_pc: before_copy_label,
});
translate_expr_no_constant_opt(
program,
referenced_tables,
&args[1],
temp_reg,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
program.resolve_label(before_copy_label, program.offset());
program.emit_insn(Insn::Copy {
src_reg: temp_reg,
dst_reg: target_register,
amount: 0,
});
Ok(target_register)
}
ScalarFunc::Iif => {
let args = match args {
Some(args) if args.len() == 3 => args,
_ => crate::bail_parse_error!(
"{} requires exactly 3 arguments",
srf.to_string()
),
};
let temp_reg = program.alloc_register();
translate_expr_no_constant_opt(
program,
referenced_tables,
&args[0],
temp_reg,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
let jump_target_when_false = program.allocate_label();
program.emit_insn(Insn::IfNot {
reg: temp_reg,
target_pc: jump_target_when_false,
jump_if_null: true,
});
translate_expr_no_constant_opt(
program,
referenced_tables,
&args[1],
target_register,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
let jump_target_result = program.allocate_label();
program.emit_insn(Insn::Goto {
target_pc: jump_target_result,
});
program.preassign_label_to_next_insn(jump_target_when_false);
translate_expr_no_constant_opt(
program,
referenced_tables,
&args[2],
target_register,
resolver,
NoConstantOptReason::RegisterReuse,
)?;
program.preassign_label_to_next_insn(jump_target_result);
Ok(target_register)
}
ScalarFunc::Glob | ScalarFunc::Like => {
let args = if let Some(args) = args {
if args.len() < 2 {
crate::bail_parse_error!(
"{} function with less than 2 arguments",
srf.to_string()
);
}
args
} else {
crate::bail_parse_error!(
"{} function with no arguments",
srf.to_string()
);
};
let func_registers = program.alloc_registers(args.len());
for (i, arg) in args.iter().enumerate() {
let _ = translate_expr(
program,
referenced_tables,
arg,
func_registers + i,
resolver,
)?;
}
program.emit_insn(Insn::Function {
// Only constant patterns for LIKE are supported currently, so this
// is always 1
constant_mask: 1,
start_reg: func_registers,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Abs
| ScalarFunc::Lower
| ScalarFunc::Upper
| ScalarFunc::Length
| ScalarFunc::OctetLength
| ScalarFunc::Typeof
| ScalarFunc::Unicode
| ScalarFunc::Quote
| ScalarFunc::RandomBlob
| ScalarFunc::Sign
| ScalarFunc::Soundex
| ScalarFunc::ZeroBlob => {
let args = expect_arguments_exact!(args, 1, srf);
let start_reg = program.alloc_register();
translate_expr(
program,
referenced_tables,
&args[0],
start_reg,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
#[cfg(feature = "fs")]
ScalarFunc::LoadExtension => {
let args = expect_arguments_exact!(args, 1, srf);
let start_reg = program.alloc_register();
translate_expr(
program,
referenced_tables,
&args[0],
start_reg,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Random => {
if args.is_some() {
crate::bail_parse_error!(
"{} function with arguments",
srf.to_string()
);
}
let regs = program.alloc_register();
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: regs,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Date | ScalarFunc::DateTime | ScalarFunc::JulianDay => {
let start_reg = program
.alloc_registers(args.as_ref().map(|x| x.len()).unwrap_or(1));
if let Some(args) = args {
for (i, arg) in args.iter().enumerate() {
// register containing result of each argument expression
translate_expr(
program,
referenced_tables,
arg,
start_reg + i,
resolver,
)?;
}
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Substr | ScalarFunc::Substring => {
let args = if let Some(args) = args {
if !(args.len() == 2 || args.len() == 3) {
crate::bail_parse_error!(
"{} function with wrong number of arguments",
srf.to_string()
)
}
args
} else {
crate::bail_parse_error!(
"{} function with no arguments",
srf.to_string()
);
};
let str_reg = program.alloc_register();
let start_reg = program.alloc_register();
let length_reg = program.alloc_register();
let str_reg = translate_expr(
program,
referenced_tables,
&args[0],
str_reg,
resolver,
)?;
let _ = translate_expr(
program,
referenced_tables,
&args[1],
start_reg,
resolver,
)?;
if args.len() == 3 {
translate_expr(
program,
referenced_tables,
&args[2],
length_reg,
resolver,
)?;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: str_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Hex => {
let args = if let Some(args) = args {
if args.len() != 1 {
crate::bail_parse_error!(
"hex function must have exactly 1 argument",
);
}
args
} else {
crate::bail_parse_error!("hex function with no arguments",);
};
let start_reg = program.alloc_register();
translate_expr(
program,
referenced_tables,
&args[0],
start_reg,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::UnixEpoch => {
let mut start_reg = 0;
match args {
Some(args) if args.len() > 1 => {
crate::bail_parse_error!("epoch function with > 1 arguments. Modifiers are not yet supported.");
}
Some(args) if args.len() == 1 => {
let arg_reg = program.alloc_register();
let _ = translate_expr(
program,
referenced_tables,
&args[0],
arg_reg,
resolver,
)?;
start_reg = arg_reg;
}
_ => {}
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Time => {
let start_reg = program
.alloc_registers(args.as_ref().map(|x| x.len()).unwrap_or(1));
if let Some(args) = args {
for (i, arg) in args.iter().enumerate() {
// register containing result of each argument expression
translate_expr(
program,
referenced_tables,
arg,
start_reg + i,
resolver,
)?;
}
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::TimeDiff => {
let args = expect_arguments_exact!(args, 2, srf);
let start_reg = program.alloc_registers(2);
translate_expr(
program,
referenced_tables,
&args[0],
start_reg,
resolver,
)?;
translate_expr(
program,
referenced_tables,
&args[1],
start_reg + 1,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::TotalChanges => {
if args.is_some() {
crate::bail_parse_error!(
"{} function with more than 0 arguments",
srf.to_string()
);
}
let start_reg = program.alloc_register();
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Trim
| ScalarFunc::LTrim
| ScalarFunc::RTrim
| ScalarFunc::Round
| ScalarFunc::Unhex => {
let args = expect_arguments_max!(args, 2, srf);
let start_reg = program.alloc_registers(args.len());
for (i, arg) in args.iter().enumerate() {
translate_expr(
program,
referenced_tables,
arg,
start_reg + i,
resolver,
)?;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Min => {
let args = if let Some(args) = args {
if args.is_empty() {
crate::bail_parse_error!(
"min function with less than one argument"
);
}
args
} else {
crate::bail_parse_error!("min function with no arguments");
};
let start_reg = program.alloc_registers(args.len());
for (i, arg) in args.iter().enumerate() {
translate_expr(
program,
referenced_tables,
arg,
start_reg + i,
resolver,
)?;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Max => {
let args = if let Some(args) = args {
if args.is_empty() {
crate::bail_parse_error!(
"max function with less than one argument"
);
}
args
} else {
crate::bail_parse_error!("max function with no arguments");
};
let start_reg = program.alloc_registers(args.len());
for (i, arg) in args.iter().enumerate() {
translate_expr(
program,
referenced_tables,
arg,
start_reg + i,
resolver,
)?;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Nullif | ScalarFunc::Instr => {
let args = if let Some(args) = args {
if args.len() != 2 {
crate::bail_parse_error!(
"{} function must have two argument",
srf.to_string()
);
}
args
} else {
crate::bail_parse_error!(
"{} function with no arguments",
srf.to_string()
);
};
let first_reg = program.alloc_register();
translate_expr(
program,
referenced_tables,
&args[0],
first_reg,
resolver,
)?;
let second_reg = program.alloc_register();
let _ = translate_expr(
program,
referenced_tables,
&args[1],
second_reg,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: first_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::SqliteVersion => {
if args.is_some() {
crate::bail_parse_error!("sqlite_version function with arguments");
}
let output_register = program.alloc_register();
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: output_register,
dest: output_register,
func: func_ctx,
});
program.emit_insn(Insn::Copy {
src_reg: output_register,
dst_reg: target_register,
amount: 0,
});
Ok(target_register)
}
ScalarFunc::SqliteSourceId => {
if args.is_some() {
crate::bail_parse_error!(
"sqlite_source_id function with arguments"
);
}
let output_register = program.alloc_register();
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: output_register,
dest: output_register,
func: func_ctx,
});
program.emit_insn(Insn::Copy {
src_reg: output_register,
dst_reg: target_register,
amount: 0,
});
Ok(target_register)
}
ScalarFunc::Replace => {
let args = if let Some(args) = args {
if !args.len() == 3 {
crate::bail_parse_error!(
"function {}() requires exactly 3 arguments",
srf.to_string()
)
}
args
} else {
crate::bail_parse_error!(
"function {}() requires exactly 3 arguments",
srf.to_string()
);
};
let str_reg = program.alloc_register();
let pattern_reg = program.alloc_register();
let replacement_reg = program.alloc_register();
let _ = translate_expr(
program,
referenced_tables,
&args[0],
str_reg,
resolver,
)?;
let _ = translate_expr(
program,
referenced_tables,
&args[1],
pattern_reg,
resolver,
)?;
let _ = translate_expr(
program,
referenced_tables,
&args[2],
replacement_reg,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: str_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::StrfTime => {
let start_reg = program
.alloc_registers(args.as_ref().map(|x| x.len()).unwrap_or(1));
if let Some(args) = args {
for (i, arg) in args.iter().enumerate() {
// register containing result of each argument expression
translate_expr(
program,
referenced_tables,
arg,
start_reg + i,
resolver,
)?;
}
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Printf => translate_function(
program,
args.as_deref().unwrap_or(&[]),
referenced_tables,
resolver,
target_register,
func_ctx,
),
ScalarFunc::Likely => {
let args = if let Some(args) = args {
if args.len() != 1 {
crate::bail_parse_error!(
"likely function must have exactly 1 argument",
);
}
args
} else {
crate::bail_parse_error!("likely function with no arguments",);
};
let start_reg = program.alloc_register();
translate_expr(
program,
referenced_tables,
&args[0],
start_reg,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
ScalarFunc::Likelihood => {
let args = if let Some(args) = args {
if args.len() != 2 {
crate::bail_parse_error!(
"likelihood() function must have exactly 2 arguments",
);
}
args
} else {
crate::bail_parse_error!("likelihood() function with no arguments",);
};
if let ast::Expr::Literal(ast::Literal::Numeric(ref value)) = args[1] {
if let Ok(probability) = value.parse::<f64>() {
if !(0.0..=1.0).contains(&probability) {
crate::bail_parse_error!(
"second argument of likelihood() must be between 0.0 and 1.0",
);
}
if !value.contains('.') {
crate::bail_parse_error!(
"second argument of likelihood() must be a floating point number with decimal point",
);
}
} else {
crate::bail_parse_error!(
"second argument of likelihood() must be a floating point constant",
);
}
} else {
crate::bail_parse_error!(
"second argument of likelihood() must be a numeric literal",
);
}
let start_reg = program.alloc_register();
translate_expr(
program,
referenced_tables,
&args[0],
start_reg,
resolver,
)?;
program.emit_insn(Insn::Copy {
src_reg: start_reg,
dst_reg: target_register,
amount: 0,
});
Ok(target_register)
}
}
}
Func::Math(math_func) => match math_func.arity() {
MathFuncArity::Nullary => {
if args.is_some() {
crate::bail_parse_error!("{} function with arguments", math_func);
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: 0,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
MathFuncArity::Unary => {
let args = expect_arguments_exact!(args, 1, math_func);
let start_reg = program.alloc_register();
translate_expr(program, referenced_tables, &args[0], start_reg, resolver)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
MathFuncArity::Binary => {
let args = expect_arguments_exact!(args, 2, math_func);
let start_reg = program.alloc_registers(2);
let _ = translate_expr(
program,
referenced_tables,
&args[0],
start_reg,
resolver,
)?;
let _ = translate_expr(
program,
referenced_tables,
&args[1],
start_reg + 1,
resolver,
)?;
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
MathFuncArity::UnaryOrBinary => {
let args = expect_arguments_max!(args, 2, math_func);
let regs = program.alloc_registers(args.len());
for (i, arg) in args.iter().enumerate() {
translate_expr(program, referenced_tables, arg, regs + i, resolver)?;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: regs,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
},
Func::AlterTable(_) => unreachable!(),
}
}
ast::Expr::FunctionCallStar { .. } => todo!(),
ast::Expr::Id(id) => crate::bail_parse_error!(
"no such column: {} - should this be a string literal in single-quotes?",
id.0
),
ast::Expr::Column {
database: _,
table: table_ref_id,
column,
is_rowid_alias,
} => {
let (index, use_covering_index) = {
if let Some(table_reference) = referenced_tables
.unwrap()
.find_joined_table_by_internal_id(*table_ref_id)
{
(
table_reference.op.index(),
table_reference.utilizes_covering_index(),
)
} else {
(None, false)
}
};
let table = referenced_tables
.unwrap()
.find_table_by_internal_id(*table_ref_id)
.expect("table reference should be found");
let Some(table_column) = table.get_column_at(*column) else {
crate::bail_parse_error!("column index out of bounds");
};
// Counter intuitive but a column always needs to have a collation
program.set_collation(Some((table_column.collation.unwrap_or_default(), false)));
// If we are reading a column from a table, we find the cursor that corresponds to
// the table and read the column from the cursor.
// If we have a covering index, we don't have an open table cursor so we read from the index cursor.
match &table {
Table::BTree(_) => {
let table_cursor_id = if use_covering_index {
None
} else {
Some(program.resolve_cursor_id(&CursorKey::table(*table_ref_id)))
};
let index_cursor_id = index.map(|index| {
program.resolve_cursor_id(&CursorKey::index(*table_ref_id, index.clone()))
});
if *is_rowid_alias {
if let Some(index_cursor_id) = index_cursor_id {
program.emit_insn(Insn::IdxRowId {
cursor_id: index_cursor_id,
dest: target_register,
});
} else if let Some(table_cursor_id) = table_cursor_id {
program.emit_insn(Insn::RowId {
cursor_id: table_cursor_id,
dest: target_register,
});
} else {
unreachable!("Either index or table cursor must be opened");
}
} else {
let read_cursor = if use_covering_index {
index_cursor_id.expect(
"index cursor should be opened when use_covering_index=true",
)
} else {
table_cursor_id.expect(
"table cursor should be opened when use_covering_index=false",
)
};
let column = if use_covering_index {
let index = index.expect(
"index cursor should be opened when use_covering_index=true",
);
index.column_table_pos_to_index_pos(*column).unwrap_or_else(|| {
panic!("covering index {} does not contain column number {} of table {}", index.name, column, table_ref_id)
})
} else {
*column
};
program.emit_column(read_cursor, column, target_register);
}
let Some(column) = table.get_column_at(*column) else {
crate::bail_parse_error!("column index out of bounds");
};
maybe_apply_affinity(column.ty, target_register, program);
Ok(target_register)
}
Table::FromClauseSubquery(from_clause_subquery) => {
// If we are reading a column from a subquery, we instead copy the column from the
// subquery's result registers.
program.emit_insn(Insn::Copy {
src_reg: from_clause_subquery
.result_columns_start_reg
.expect("Subquery result_columns_start_reg must be set")
+ *column,
dst_reg: target_register,
amount: 0,
});
Ok(target_register)
}
Table::Virtual(_) => {
let cursor_id = program.resolve_cursor_id(&CursorKey::table(*table_ref_id));
program.emit_insn(Insn::VColumn {
cursor_id,
column: *column,
dest: target_register,
});
Ok(target_register)
}
Table::Pseudo(_) => panic!("Column access on pseudo table"),
}
}
ast::Expr::RowId {
database: _,
table: table_ref_id,
} => {
let (index, use_covering_index) = {
if let Some(table_reference) = referenced_tables
.unwrap()
.find_joined_table_by_internal_id(*table_ref_id)
{
(
table_reference.op.index(),
table_reference.utilizes_covering_index(),
)
} else {
(None, false)
}
};
if use_covering_index {
let index =
index.expect("index cursor should be opened when use_covering_index=true");
let cursor_id =
program.resolve_cursor_id(&CursorKey::index(*table_ref_id, index.clone()));
program.emit_insn(Insn::IdxRowId {
cursor_id,
dest: target_register,
});
} else {
let cursor_id = program.resolve_cursor_id(&CursorKey::table(*table_ref_id));
program.emit_insn(Insn::RowId {
cursor_id,
dest: target_register,
});
}
Ok(target_register)
}
ast::Expr::InList { .. } => todo!(),
ast::Expr::InSelect { .. } => todo!(),
ast::Expr::InTable { .. } => todo!(),
ast::Expr::IsNull(expr) => {
let reg = program.alloc_register();
translate_expr(program, referenced_tables, expr, reg, resolver)?;
program.emit_insn(Insn::Integer {
value: 1,
dest: target_register,
});
let label = program.allocate_label();
program.emit_insn(Insn::IsNull {
reg,
target_pc: label,
});
program.emit_insn(Insn::Integer {
value: 0,
dest: target_register,
});
program.preassign_label_to_next_insn(label);
Ok(target_register)
}
ast::Expr::Like { not, .. } => {
let like_reg = if *not {
program.alloc_register()
} else {
target_register
};
translate_like_base(program, referenced_tables, expr, like_reg, resolver)?;
if *not {
program.emit_insn(Insn::Not {
reg: like_reg,
dest: target_register,
});
}
Ok(target_register)
}
ast::Expr::Literal(lit) => match lit {
ast::Literal::Numeric(val) => {
match parse_numeric_literal(val)? {
Value::Integer(int_value) => {
program.emit_insn(Insn::Integer {
value: int_value,
dest: target_register,
});
}
Value::Float(real_value) => {
program.emit_insn(Insn::Real {
value: real_value,
dest: target_register,
});
}
_ => unreachable!(),
}
Ok(target_register)
}
ast::Literal::String(s) => {
program.emit_insn(Insn::String8 {
value: sanitize_string(s),
dest: target_register,
});
Ok(target_register)
}
ast::Literal::Blob(s) => {
let bytes = s
.as_bytes()
.chunks_exact(2)
.map(|pair| {
// We assume that sqlite3-parser has already validated that
// the input is valid hex string, thus unwrap is safe.
let hex_byte = std::str::from_utf8(pair).unwrap();
u8::from_str_radix(hex_byte, 16).unwrap()
})
.collect();
program.emit_insn(Insn::Blob {
value: bytes,
dest: target_register,
});
Ok(target_register)
}
ast::Literal::Keyword(_) => todo!(),
ast::Literal::Null => {
program.emit_insn(Insn::Null {
dest: target_register,
dest_end: None,
});
Ok(target_register)
}
ast::Literal::CurrentDate => {
program.emit_insn(Insn::String8 {
value: datetime::exec_date(&[]).to_string(),
dest: target_register,
});
Ok(target_register)
}
ast::Literal::CurrentTime => {
program.emit_insn(Insn::String8 {
value: datetime::exec_time(&[]).to_string(),
dest: target_register,
});
Ok(target_register)
}
ast::Literal::CurrentTimestamp => {
program.emit_insn(Insn::String8 {
value: datetime::exec_datetime_full(&[]).to_string(),
dest: target_register,
});
Ok(target_register)
}
},
ast::Expr::Name(_) => todo!(),
ast::Expr::NotNull(expr) => {
let reg = program.alloc_register();
translate_expr(program, referenced_tables, expr, reg, resolver)?;
program.emit_insn(Insn::Integer {
value: 1,
dest: target_register,
});
let label = program.allocate_label();
program.emit_insn(Insn::NotNull {
reg,
target_pc: label,
});
program.emit_insn(Insn::Integer {
value: 0,
dest: target_register,
});
program.preassign_label_to_next_insn(label);
Ok(target_register)
}
ast::Expr::Parenthesized(exprs) => {
if exprs.is_empty() {
crate::bail_parse_error!("parenthesized expression with no arguments");
}
if exprs.len() == 1 {
translate_expr(
program,
referenced_tables,
&exprs[0],
target_register,
resolver,
)?;
} else {
// Parenthesized expressions with multiple arguments are reserved for special cases
// like `(a, b) IN ((1, 2), (3, 4))`.
todo!("TODO: parenthesized expression with multiple arguments not yet supported");
}
Ok(target_register)
}
ast::Expr::Qualified(_, _) => {
unreachable!("Qualified should be resolved to a Column before translation")
}
ast::Expr::Raise(_, _) => todo!(),
ast::Expr::Subquery(_) => todo!(),
ast::Expr::Unary(op, expr) => match (op, expr.as_ref()) {
(UnaryOperator::Positive, expr) => {
translate_expr(program, referenced_tables, expr, target_register, resolver)
}
(UnaryOperator::Negative, ast::Expr::Literal(ast::Literal::Numeric(numeric_value))) => {
let numeric_value = "-".to_owned() + numeric_value;
match parse_numeric_literal(&numeric_value)? {
Value::Integer(int_value) => {
program.emit_insn(Insn::Integer {
value: int_value,
dest: target_register,
});
}
Value::Float(real_value) => {
program.emit_insn(Insn::Real {
value: real_value,
dest: target_register,
});
}
_ => unreachable!(),
}
Ok(target_register)
}
(UnaryOperator::Negative, _) => {
let value = 0;
let reg = program.alloc_register();
translate_expr(program, referenced_tables, expr, reg, resolver)?;
let zero_reg = program.alloc_register();
program.emit_insn(Insn::Integer {
value,
dest: zero_reg,
});
program.mark_last_insn_constant();
program.emit_insn(Insn::Subtract {
lhs: zero_reg,
rhs: reg,
dest: target_register,
});
Ok(target_register)
}
(UnaryOperator::BitwiseNot, ast::Expr::Literal(ast::Literal::Numeric(num_val))) => {
match parse_numeric_literal(num_val)? {
Value::Integer(int_value) => {
program.emit_insn(Insn::Integer {
value: !int_value,
dest: target_register,
});
}
Value::Float(real_value) => {
program.emit_insn(Insn::Integer {
value: !(real_value as i64),
dest: target_register,
});
}
_ => unreachable!(),
}
Ok(target_register)
}
(UnaryOperator::BitwiseNot, ast::Expr::Literal(ast::Literal::Null)) => {
program.emit_insn(Insn::Null {
dest: target_register,
dest_end: None,
});
Ok(target_register)
}
(UnaryOperator::BitwiseNot, _) => {
let reg = program.alloc_register();
translate_expr(program, referenced_tables, expr, reg, resolver)?;
program.emit_insn(Insn::BitNot {
reg,
dest: target_register,
});
Ok(target_register)
}
(UnaryOperator::Not, _) => {
let reg = program.alloc_register();
translate_expr(program, referenced_tables, expr, reg, resolver)?;
program.emit_insn(Insn::Not {
reg,
dest: target_register,
});
Ok(target_register)
}
},
ast::Expr::Variable(name) => {
let index = program.parameters.push(name);
program.emit_insn(Insn::Variable {
index,
dest: target_register,
});
Ok(target_register)
}
}?;
if let Some(span) = constant_span {
program.constant_span_end(span);
}
Ok(target_register)
}
#[allow(clippy::too_many_arguments)]
fn emit_binary_insn(
program: &mut ProgramBuilder,
op: &ast::Operator,
lhs: usize,
rhs: usize,
target_register: usize,
lhs_expr: &Expr,
rhs_expr: &Expr,
referenced_tables: Option<&TableReferences>,
) -> Result<()> {
let mut affinity = Affinity::Blob;
if op.is_comparison() {
affinity = comparison_affinity(lhs_expr, rhs_expr, referenced_tables);
}
match op {
ast::Operator::NotEquals => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr_zero_or_null(
program,
Insn::Ne {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
lhs,
rhs,
);
}
ast::Operator::Equals => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr_zero_or_null(
program,
Insn::Eq {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
lhs,
rhs,
);
}
ast::Operator::Less => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr_zero_or_null(
program,
Insn::Lt {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
lhs,
rhs,
);
}
ast::Operator::LessEquals => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr_zero_or_null(
program,
Insn::Le {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
lhs,
rhs,
);
}
ast::Operator::Greater => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr_zero_or_null(
program,
Insn::Gt {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
lhs,
rhs,
);
}
ast::Operator::GreaterEquals => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr_zero_or_null(
program,
Insn::Ge {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
lhs,
rhs,
);
}
ast::Operator::Add => {
program.emit_insn(Insn::Add {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::Subtract => {
program.emit_insn(Insn::Subtract {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::Multiply => {
program.emit_insn(Insn::Multiply {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::Divide => {
program.emit_insn(Insn::Divide {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::Modulus => {
program.emit_insn(Insn::Remainder {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::And => {
program.emit_insn(Insn::And {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::Or => {
program.emit_insn(Insn::Or {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::BitwiseAnd => {
program.emit_insn(Insn::BitAnd {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::BitwiseOr => {
program.emit_insn(Insn::BitOr {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::RightShift => {
program.emit_insn(Insn::ShiftRight {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::LeftShift => {
program.emit_insn(Insn::ShiftLeft {
lhs,
rhs,
dest: target_register,
});
}
ast::Operator::Is => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr(
program,
Insn::Eq {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().null_eq().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
);
}
ast::Operator::IsNot => {
let if_true_label = program.allocate_label();
wrap_eval_jump_expr(
program,
Insn::Ne {
lhs,
rhs,
target_pc: if_true_label,
flags: CmpInsFlags::default().null_eq().with_affinity(affinity),
collation: program.curr_collation(),
},
target_register,
if_true_label,
);
}
#[cfg(feature = "json")]
op @ (ast::Operator::ArrowRight | ast::Operator::ArrowRightShift) => {
let json_func = match op {
ast::Operator::ArrowRight => JsonFunc::JsonArrowExtract,
ast::Operator::ArrowRightShift => JsonFunc::JsonArrowShiftExtract,
_ => unreachable!(),
};
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg: lhs,
dest: target_register,
func: FuncCtx {
func: Func::Json(json_func),
arg_count: 2,
},
})
}
ast::Operator::Concat => {
program.emit_insn(Insn::Concat {
lhs,
rhs,
dest: target_register,
});
}
other_unimplemented => todo!("{:?}", other_unimplemented),
}
Ok(())
}
/// The base logic for translating LIKE and GLOB expressions.
/// The logic for handling "NOT LIKE" is different depending on whether the expression
/// is a conditional jump or not. This is why the caller handles the "NOT LIKE" behavior;
/// see [translate_condition_expr] and [translate_expr] for implementations.
fn translate_like_base(
program: &mut ProgramBuilder,
referenced_tables: Option<&TableReferences>,
expr: &ast::Expr,
target_register: usize,
resolver: &Resolver,
) -> Result<usize> {
let ast::Expr::Like {
lhs,
op,
rhs,
escape,
..
} = expr
else {
crate::bail_parse_error!("expected Like expression");
};
match op {
ast::LikeOperator::Like | ast::LikeOperator::Glob => {
let arg_count = if escape.is_some() { 3 } else { 2 };
let start_reg = program.alloc_registers(arg_count);
let mut constant_mask = 0;
translate_expr(program, referenced_tables, lhs, start_reg + 1, resolver)?;
let _ = translate_expr(program, referenced_tables, rhs, start_reg, resolver)?;
if arg_count == 3 {
if let Some(escape) = escape {
translate_expr(program, referenced_tables, escape, start_reg + 2, resolver)?;
}
}
if matches!(rhs.as_ref(), ast::Expr::Literal(_)) {
program.mark_last_insn_constant();
constant_mask = 1;
}
let func = match op {
ast::LikeOperator::Like => ScalarFunc::Like,
ast::LikeOperator::Glob => ScalarFunc::Glob,
_ => unreachable!(),
};
program.emit_insn(Insn::Function {
constant_mask,
start_reg,
dest: target_register,
func: FuncCtx {
func: Func::Scalar(func),
arg_count,
},
});
}
ast::LikeOperator::Match => todo!(),
ast::LikeOperator::Regexp => todo!(),
}
Ok(target_register)
}
/// Emits a whole insn for a function call.
/// Assumes the number of parameters is valid for the given function.
/// Returns the target register for the function.
fn translate_function(
program: &mut ProgramBuilder,
args: &[ast::Expr],
referenced_tables: Option<&TableReferences>,
resolver: &Resolver,
target_register: usize,
func_ctx: FuncCtx,
) -> Result<usize> {
let start_reg = program.alloc_registers(args.len());
let mut current_reg = start_reg;
for arg in args.iter() {
translate_expr(program, referenced_tables, arg, current_reg, resolver)?;
current_reg += 1;
}
program.emit_insn(Insn::Function {
constant_mask: 0,
start_reg,
dest: target_register,
func: func_ctx,
});
Ok(target_register)
}
fn wrap_eval_jump_expr(
program: &mut ProgramBuilder,
insn: Insn,
target_register: usize,
if_true_label: BranchOffset,
) {
program.emit_insn(Insn::Integer {
value: 1, // emit True by default
dest: target_register,
});
program.emit_insn(insn);
program.emit_insn(Insn::Integer {
value: 0, // emit False if we reach this point (no jump)
dest: target_register,
});
program.preassign_label_to_next_insn(if_true_label);
}
fn wrap_eval_jump_expr_zero_or_null(
program: &mut ProgramBuilder,
insn: Insn,
target_register: usize,
if_true_label: BranchOffset,
e1_reg: usize,
e2_reg: usize,
) {
program.emit_insn(Insn::Integer {
value: 1, // emit True by default
dest: target_register,
});
program.emit_insn(insn);
program.emit_insn(Insn::ZeroOrNull {
rg1: e1_reg,
rg2: e2_reg,
dest: target_register,
});
program.preassign_label_to_next_insn(if_true_label);
}
pub fn maybe_apply_affinity(col_type: Type, target_register: usize, program: &mut ProgramBuilder) {
if col_type == Type::Real {
program.emit_insn(Insn::RealAffinity {
register: target_register,
})
}
}
/// Sanitaizes a string literal by removing single quote at front and back
/// and escaping double single quotes
pub fn sanitize_string(input: &str) -> String {
input[1..input.len() - 1].replace("''", "'").to_string()
}
/// Returns the components of a binary expression
/// e.g. t.x = 5 -> Some((t.x, =, 5))
pub fn as_binary_components(
expr: &ast::Expr,
) -> Result<Option<(&ast::Expr, ast::Operator, &ast::Expr)>> {
match unwrap_parens(expr)? {
ast::Expr::Binary(lhs, operator, rhs)
if matches!(
operator,
ast::Operator::Equals
| ast::Operator::Greater
| ast::Operator::Less
| ast::Operator::GreaterEquals
| ast::Operator::LessEquals
) =>
{
Ok(Some((lhs.as_ref(), *operator, rhs.as_ref())))
}
_ => Ok(None),
}
}
/// Recursively unwrap parentheses from an expression
/// e.g. (((t.x > 5))) -> t.x > 5
fn unwrap_parens(expr: &ast::Expr) -> Result<&ast::Expr> {
match expr {
ast::Expr::Column { .. } => Ok(expr),
ast::Expr::Parenthesized(exprs) => match exprs.len() {
1 => unwrap_parens(exprs.first().unwrap()),
_ => crate::bail_parse_error!("expected single expression in parentheses"),
},
_ => Ok(expr),
}
}
/// Recursively unwrap parentheses from an owned Expr.
/// Returns how many pairs of parentheses were removed.
pub fn unwrap_parens_owned(expr: ast::Expr) -> Result<(ast::Expr, usize)> {
let mut paren_count = 0;
match expr {
ast::Expr::Parenthesized(mut exprs) => match exprs.len() {
1 => {
paren_count += 1;
let (expr, count) = unwrap_parens_owned(exprs.pop().unwrap())?;
paren_count += count;
Ok((expr, paren_count))
}
_ => crate::bail_parse_error!("expected single expression in parentheses"),
},
_ => Ok((expr, paren_count)),
}
}
pub enum WalkControl {
Continue, // Visit children
SkipChildren, // Skip children but continue walking siblings
}
/// Recursively walks an immutable expression, applying a function to each sub-expression.
pub fn walk_expr<'a, F>(expr: &'a ast::Expr, func: &mut F) -> Result<WalkControl>
where
F: FnMut(&'a ast::Expr) -> Result<WalkControl>,
{
match func(expr)? {
WalkControl::Continue => {
match expr {
ast::Expr::Between {
lhs, start, end, ..
} => {
walk_expr(lhs, func)?;
walk_expr(start, func)?;
walk_expr(end, func)?;
}
ast::Expr::Binary(lhs, _, rhs) => {
walk_expr(lhs, func)?;
walk_expr(rhs, func)?;
}
ast::Expr::Case {
base,
when_then_pairs,
else_expr,
} => {
if let Some(base_expr) = base {
walk_expr(base_expr, func)?;
}
for (when_expr, then_expr) in when_then_pairs {
walk_expr(when_expr, func)?;
walk_expr(then_expr, func)?;
}
if let Some(else_expr) = else_expr {
walk_expr(else_expr, func)?;
}
}
ast::Expr::Cast { expr, .. } => {
walk_expr(expr, func)?;
}
ast::Expr::Collate(expr, _) => {
walk_expr(expr, func)?;
}
ast::Expr::Exists(_select) | ast::Expr::Subquery(_select) => {
// TODO: Walk through select statements if needed
}
ast::Expr::FunctionCall {
args,
order_by,
filter_over,
..
} => {
if let Some(args) = args {
for arg in args {
walk_expr(arg, func)?;
}
}
if let Some(order_by) = order_by {
for sort_col in order_by {
walk_expr(&sort_col.expr, func)?;
}
}
if let Some(filter_over) = filter_over {
if let Some(filter_clause) = &filter_over.filter_clause {
walk_expr(filter_clause, func)?;
}
if let Some(over_clause) = &filter_over.over_clause {
match over_clause.as_ref() {
ast::Over::Window(window) => {
if let Some(partition_by) = &window.partition_by {
for part_expr in partition_by {
walk_expr(part_expr, func)?;
}
}
if let Some(order_by_clause) = &window.order_by {
for sort_col in order_by_clause {
walk_expr(&sort_col.expr, func)?;
}
}
if let Some(frame_clause) = &window.frame_clause {
walk_expr_frame_bound(&frame_clause.start, func)?;
if let Some(end_bound) = &frame_clause.end {
walk_expr_frame_bound(end_bound, func)?;
}
}
}
ast::Over::Name(_) => {}
}
}
}
}
ast::Expr::FunctionCallStar { filter_over, .. } => {
if let Some(filter_over) = filter_over {
if let Some(filter_clause) = &filter_over.filter_clause {
walk_expr(filter_clause, func)?;
}
if let Some(over_clause) = &filter_over.over_clause {
match over_clause.as_ref() {
ast::Over::Window(window) => {
if let Some(partition_by) = &window.partition_by {
for part_expr in partition_by {
walk_expr(part_expr, func)?;
}
}
if let Some(order_by_clause) = &window.order_by {
for sort_col in order_by_clause {
walk_expr(&sort_col.expr, func)?;
}
}
if let Some(frame_clause) = &window.frame_clause {
walk_expr_frame_bound(&frame_clause.start, func)?;
if let Some(end_bound) = &frame_clause.end {
walk_expr_frame_bound(end_bound, func)?;
}
}
}
ast::Over::Name(_) => {}
}
}
}
}
ast::Expr::InList { lhs, rhs, .. } => {
walk_expr(lhs, func)?;
if let Some(rhs_exprs) = rhs {
for expr in rhs_exprs {
walk_expr(expr, func)?;
}
}
}
ast::Expr::InSelect { lhs, rhs: _, .. } => {
walk_expr(lhs, func)?;
// TODO: Walk through select statements if needed
}
ast::Expr::InTable { lhs, args, .. } => {
walk_expr(lhs, func)?;
if let Some(arg_exprs) = args {
for expr in arg_exprs {
walk_expr(expr, func)?;
}
}
}
ast::Expr::IsNull(expr) | ast::Expr::NotNull(expr) => {
walk_expr(expr, func)?;
}
ast::Expr::Like {
lhs, rhs, escape, ..
} => {
walk_expr(lhs, func)?;
walk_expr(rhs, func)?;
if let Some(esc_expr) = escape {
walk_expr(esc_expr, func)?;
}
}
ast::Expr::Parenthesized(exprs) => {
for expr in exprs {
walk_expr(expr, func)?;
}
}
ast::Expr::Raise(_, expr) => {
if let Some(raise_expr) = expr {
walk_expr(raise_expr, func)?;
}
}
ast::Expr::Unary(_, expr) => {
walk_expr(expr, func)?;
}
ast::Expr::Id(_)
| ast::Expr::Column { .. }
| ast::Expr::RowId { .. }
| ast::Expr::Literal(_)
| ast::Expr::DoublyQualified(..)
| ast::Expr::Name(_)
| ast::Expr::Qualified(..)
| ast::Expr::Variable(_) => {
// No nested expressions
}
}
}
WalkControl::SkipChildren => return Ok(WalkControl::Continue),
};
Ok(WalkControl::Continue)
}
fn walk_expr_frame_bound<'a, F>(bound: &'a ast::FrameBound, func: &mut F) -> Result<WalkControl>
where
F: FnMut(&'a ast::Expr) -> Result<WalkControl>,
{
match bound {
ast::FrameBound::Following(expr) | ast::FrameBound::Preceding(expr) => {
walk_expr(expr, func)?;
}
ast::FrameBound::CurrentRow
| ast::FrameBound::UnboundedFollowing
| ast::FrameBound::UnboundedPreceding => {}
}
Ok(WalkControl::Continue)
}
/// Recursively walks a mutable expression, applying a function to each sub-expression.
pub fn walk_expr_mut<F>(expr: &mut ast::Expr, func: &mut F) -> Result<()>
where
F: FnMut(&mut ast::Expr) -> Result<()>,
{
func(expr)?;
match expr {
ast::Expr::Between {
lhs, start, end, ..
} => {
walk_expr_mut(lhs, func)?;
walk_expr_mut(start, func)?;
walk_expr_mut(end, func)?;
}
ast::Expr::Binary(lhs, _, rhs) => {
walk_expr_mut(lhs, func)?;
walk_expr_mut(rhs, func)?;
}
ast::Expr::Case {
base,
when_then_pairs,
else_expr,
} => {
if let Some(base_expr) = base {
walk_expr_mut(base_expr, func)?;
}
for (when_expr, then_expr) in when_then_pairs {
walk_expr_mut(when_expr, func)?;
walk_expr_mut(then_expr, func)?;
}
if let Some(else_expr) = else_expr {
walk_expr_mut(else_expr, func)?;
}
}
ast::Expr::Cast { expr, .. } => {
walk_expr_mut(expr, func)?;
}
ast::Expr::Collate(expr, _) => {
walk_expr_mut(expr, func)?;
}
ast::Expr::Exists(_) | ast::Expr::Subquery(_) => {
// TODO: Walk through select statements if needed
}
ast::Expr::FunctionCall {
args,
order_by,
filter_over,
..
} => {
if let Some(args) = args {
for arg in args {
walk_expr_mut(arg, func)?;
}
}
if let Some(order_by) = order_by {
for sort_col in order_by {
walk_expr_mut(&mut sort_col.expr, func)?;
}
}
if let Some(filter_over) = filter_over {
if let Some(filter_clause) = &mut filter_over.filter_clause {
walk_expr_mut(filter_clause, func)?;
}
if let Some(over_clause) = &mut filter_over.over_clause {
match over_clause.as_mut() {
ast::Over::Window(window) => {
if let Some(partition_by) = &mut window.partition_by {
for part_expr in partition_by {
walk_expr_mut(part_expr, func)?;
}
}
if let Some(order_by_clause) = &mut window.order_by {
for sort_col in order_by_clause {
walk_expr_mut(&mut sort_col.expr, func)?;
}
}
if let Some(frame_clause) = &mut window.frame_clause {
walk_expr_mut_frame_bound(&mut frame_clause.start, func)?;
if let Some(end_bound) = &mut frame_clause.end {
walk_expr_mut_frame_bound(end_bound, func)?;
}
}
}
ast::Over::Name(_) => {}
}
}
}
}
ast::Expr::FunctionCallStar { filter_over, .. } => {
if let Some(filter_over) = filter_over {
if let Some(filter_clause) = &mut filter_over.filter_clause {
walk_expr_mut(filter_clause, func)?;
}
if let Some(over_clause) = &mut filter_over.over_clause {
match over_clause.as_mut() {
ast::Over::Window(window) => {
if let Some(partition_by) = &mut window.partition_by {
for part_expr in partition_by {
walk_expr_mut(part_expr, func)?;
}
}
if let Some(order_by_clause) = &mut window.order_by {
for sort_col in order_by_clause {
walk_expr_mut(&mut sort_col.expr, func)?;
}
}
if let Some(frame_clause) = &mut window.frame_clause {
walk_expr_mut_frame_bound(&mut frame_clause.start, func)?;
if let Some(end_bound) = &mut frame_clause.end {
walk_expr_mut_frame_bound(end_bound, func)?;
}
}
}
ast::Over::Name(_) => {}
}
}
}
}
ast::Expr::InList { lhs, rhs, .. } => {
walk_expr_mut(lhs, func)?;
if let Some(rhs_exprs) = rhs {
for expr in rhs_exprs {
walk_expr_mut(expr, func)?;
}
}
}
ast::Expr::InSelect { lhs, rhs: _, .. } => {
walk_expr_mut(lhs, func)?;
// TODO: Walk through select statements if needed
}
ast::Expr::InTable { lhs, args, .. } => {
walk_expr_mut(lhs, func)?;
if let Some(arg_exprs) = args {
for expr in arg_exprs {
walk_expr_mut(expr, func)?;
}
}
}
ast::Expr::IsNull(expr) | ast::Expr::NotNull(expr) => {
walk_expr_mut(expr, func)?;
}
ast::Expr::Like {
lhs, rhs, escape, ..
} => {
walk_expr_mut(lhs, func)?;
walk_expr_mut(rhs, func)?;
if let Some(esc_expr) = escape {
walk_expr_mut(esc_expr, func)?;
}
}
ast::Expr::Parenthesized(exprs) => {
for expr in exprs {
walk_expr_mut(expr, func)?;
}
}
ast::Expr::Raise(_, expr) => {
if let Some(raise_expr) = expr {
walk_expr_mut(raise_expr, func)?;
}
}
ast::Expr::Unary(_, expr) => {
walk_expr_mut(expr, func)?;
}
ast::Expr::Id(_)
| ast::Expr::Column { .. }
| ast::Expr::RowId { .. }
| ast::Expr::Literal(_)
| ast::Expr::DoublyQualified(..)
| ast::Expr::Name(_)
| ast::Expr::Qualified(..)
| ast::Expr::Variable(_) => {
// No nested expressions
}
}
Ok(())
}
fn walk_expr_mut_frame_bound<F>(bound: &mut ast::FrameBound, func: &mut F) -> Result<()>
where
F: FnMut(&mut ast::Expr) -> Result<()>,
{
match bound {
ast::FrameBound::Following(expr) | ast::FrameBound::Preceding(expr) => {
walk_expr_mut(expr, func)?;
}
ast::FrameBound::CurrentRow
| ast::FrameBound::UnboundedFollowing
| ast::FrameBound::UnboundedPreceding => {}
}
Ok(())
}
pub fn get_expr_affinity(
expr: &ast::Expr,
referenced_tables: Option<&TableReferences>,
) -> Affinity {
match expr {
ast::Expr::Column { table, column, .. } => {
if let Some(tables) = referenced_tables {
if let Some(table_ref) = tables.find_table_by_internal_id(*table) {
if let Some(col) = table_ref.get_column_at(*column) {
return col.affinity();
}
}
}
Affinity::Blob
}
ast::Expr::Cast { type_name, .. } => {
if let Some(type_name) = type_name {
crate::schema::affinity(&type_name.name)
} else {
Affinity::Blob
}
}
ast::Expr::Collate(expr, _) => get_expr_affinity(expr, referenced_tables),
// Literals have NO affinity in SQLite!
ast::Expr::Literal(_) => Affinity::Blob, // No affinity!
_ => Affinity::Blob, // This may need to change. For now this works.
}
}
pub fn comparison_affinity(
lhs_expr: &ast::Expr,
rhs_expr: &ast::Expr,
referenced_tables: Option<&TableReferences>,
) -> Affinity {
let mut aff = get_expr_affinity(lhs_expr, referenced_tables);
aff = compare_affinity(rhs_expr, aff, referenced_tables);
// If no affinity determined (both operands are literals), default to BLOB
if !aff.has_affinity() {
Affinity::Blob
} else {
aff
}
}
pub fn compare_affinity(
expr: &ast::Expr,
other_affinity: Affinity,
referenced_tables: Option<&TableReferences>,
) -> Affinity {
let expr_affinity = get_expr_affinity(expr, referenced_tables);
if expr_affinity.has_affinity() && other_affinity.has_affinity() {
// Both sides have affinity - use numeric if either is numeric
if expr_affinity.is_numeric() || other_affinity.is_numeric() {
Affinity::Numeric
} else {
Affinity::Blob
}
} else {
// One or both sides have no affinity - use the one that does, or Blob if neither
if expr_affinity.has_affinity() {
expr_affinity
} else if other_affinity.has_affinity() {
other_affinity
} else {
Affinity::Blob
}
}
}