limbo/perf/latency/rusqlite/plot.py
2025-06-20 15:59:03 -03:00

43 lines
1.2 KiB
Python
Executable file

#!/usr/bin/env python3
import csv
import matplotlib
import matplotlib.pyplot as plt
font = {"family": "normal", "weight": "bold", "size": 22}
matplotlib.rcParams.update({"font.size": 22})
file_name = "results.csv"
threads = []
p50_values = []
p95_values = []
p99_values = []
p999_values = []
# Parse the CSV file
with open(file_name, "r") as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
threads.append(int(row["count"]))
p50_values.append(float(row["p50"]) / 1e3)
p95_values.append(float(row["p95"]) / 1e3)
p99_values.append(float(row["p99"]) / 1e3)
p999_values.append(float(row["p999"]) / 1e3)
plt.figure(figsize=(10, 6))
plt.plot(threads, p999_values, label="p999", linestyle="solid", marker="$\u2217$")
plt.plot(threads, p99_values, label="p99", linestyle="solid", marker="$\u002b$")
plt.plot(threads, p95_values, label="p95", linestyle="solid", marker="$\u25fe$")
plt.plot(threads, p50_values, label="p50", linestyle="solid", marker="$\u25b2$")
plt.yscale("log")
plt.xlabel("Number of Threads")
plt.ylabel("Latency (µs)")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.savefig("latency_distribution.pdf")