use annotated parameters as type context

This commit is contained in:
Ibraheem Ahmed 2025-09-26 01:56:59 -04:00
parent 0092794302
commit 0babd8d9d4
8 changed files with 404 additions and 63 deletions

View file

@ -1090,7 +1090,11 @@ impl<'db> InnerIntersectionBuilder<'db> {
// don't need to worry about finding any particular constraint more than once.
let constraints = constraints.elements(db);
let mut positive_constraint_count = 0;
for positive in &self.positive {
for (i, positive) in self.positive.iter().enumerate() {
if i == typevar_index {
continue;
}
// This linear search should be fine as long as we don't encounter typevars with
// thousands of constraints.
positive_constraint_count += constraints

View file

@ -33,10 +33,10 @@ use crate::types::{
BoundMethodType, ClassLiteral, DataclassParams, FieldInstance, KnownBoundMethodType,
KnownClass, KnownInstanceType, MemberLookupPolicy, PropertyInstanceType, SpecialFormType,
TrackedConstraintSet, TypeAliasType, TypeContext, TypeMapping, UnionType,
WrapperDescriptorKind, enums, ide_support, todo_type,
WrapperDescriptorKind, enums, ide_support, infer_isolated_expression, todo_type,
};
use ruff_db::diagnostic::{Annotation, Diagnostic, SubDiagnostic, SubDiagnosticSeverity};
use ruff_python_ast::{self as ast, PythonVersion};
use ruff_python_ast::{self as ast, ArgOrKeyword, PythonVersion};
/// Binding information for a possible union of callables. At a call site, the arguments must be
/// compatible with _all_ of the types in the union for the call to be valid.
@ -1732,7 +1732,7 @@ impl<'db> CallableBinding<'db> {
}
/// Returns the index of the matching overload in the form of [`MatchingOverloadIndex`].
fn matching_overload_index(&self) -> MatchingOverloadIndex {
pub(crate) fn matching_overload_index(&self) -> MatchingOverloadIndex {
let mut matching_overloads = self.matching_overloads();
match matching_overloads.next() {
None => MatchingOverloadIndex::None,
@ -1750,8 +1750,15 @@ impl<'db> CallableBinding<'db> {
}
}
/// Returns all overloads for this call binding, including overloads that did not match.
pub(crate) fn overloads(&self) -> &[Binding<'db>] {
self.overloads.as_slice()
}
/// Returns an iterator over all the overloads that matched for this call binding.
pub(crate) fn matching_overloads(&self) -> impl Iterator<Item = (usize, &Binding<'db>)> {
pub(crate) fn matching_overloads(
&self,
) -> impl Iterator<Item = (usize, &Binding<'db>)> + Clone {
self.overloads
.iter()
.enumerate()
@ -1982,7 +1989,7 @@ enum OverloadCallReturnType<'db> {
}
#[derive(Debug)]
enum MatchingOverloadIndex {
pub(crate) enum MatchingOverloadIndex {
/// No matching overloads found.
None,
@ -1993,6 +2000,16 @@ enum MatchingOverloadIndex {
Multiple(Vec<usize>),
}
impl MatchingOverloadIndex {
pub(crate) fn count(self) -> usize {
match self {
MatchingOverloadIndex::None => 0,
MatchingOverloadIndex::Single(_) => 1,
MatchingOverloadIndex::Multiple(items) => items.len(),
}
}
}
#[derive(Default, Debug)]
struct ArgumentForms {
values: Vec<Option<ParameterForm>>,
@ -2464,9 +2481,17 @@ impl<'a, 'db> ArgumentTypeChecker<'a, 'db> {
if let Some(return_ty) = self.signature.return_ty
&& let Some(call_expression_tcx) = self.call_expression_tcx.annotation
{
// Ignore any specialization errors here, because the type context is only used to
// optionally widen the return type.
let _ = builder.infer(return_ty, call_expression_tcx);
match call_expression_tcx {
// A type variable is not a useful type-context for expression inference, and applying it
// to the return type can lead to confusing unions in nested generic calls.
Type::TypeVar(_) => {}
_ => {
// Ignore any specialization errors here, because the type context is only used to
// optionally widen the return type.
let _ = builder.infer(return_ty, call_expression_tcx);
}
}
}
let parameters = self.signature.parameters();
@ -3278,6 +3303,23 @@ impl<'db> BindingError<'db> {
return;
};
// Re-infer the argument type of call expressions, ignoring the type context for more
// precise error messages.
let provided_ty = match Self::get_argument_node(node, *argument_index) {
None => *provided_ty,
// Ignore starred arguments, as those are difficult to re-infer.
Some(
ast::ArgOrKeyword::Arg(ast::Expr::Starred(_))
| ast::ArgOrKeyword::Keyword(ast::Keyword { arg: None, .. }),
) => *provided_ty,
Some(
ast::ArgOrKeyword::Arg(value)
| ast::ArgOrKeyword::Keyword(ast::Keyword { value, .. }),
) => infer_isolated_expression(context.db(), context.scope(), value),
};
let provided_ty_display = provided_ty.display(context.db());
let expected_ty_display = expected_ty.display(context.db());
@ -3613,22 +3655,29 @@ impl<'db> BindingError<'db> {
}
}
fn get_node(node: ast::AnyNodeRef, argument_index: Option<usize>) -> ast::AnyNodeRef {
fn get_node(node: ast::AnyNodeRef<'_>, argument_index: Option<usize>) -> ast::AnyNodeRef<'_> {
// If we have a Call node and an argument index, report the diagnostic on the correct
// argument node; otherwise, report it on the entire provided node.
match Self::get_argument_node(node, argument_index) {
Some(ast::ArgOrKeyword::Arg(expr)) => expr.into(),
Some(ast::ArgOrKeyword::Keyword(expr)) => expr.into(),
None => node,
}
}
fn get_argument_node(
node: ast::AnyNodeRef<'_>,
argument_index: Option<usize>,
) -> Option<ArgOrKeyword<'_>> {
match (node, argument_index) {
(ast::AnyNodeRef::ExprCall(call_node), Some(argument_index)) => {
match call_node
(ast::AnyNodeRef::ExprCall(call_node), Some(argument_index)) => Some(
call_node
.arguments
.arguments_source_order()
.nth(argument_index)
.expect("argument index should not be out of range")
{
ast::ArgOrKeyword::Arg(expr) => expr.into(),
ast::ArgOrKeyword::Keyword(keyword) => keyword.into(),
}
}
_ => node,
.expect("argument index should not be out of range"),
),
_ => None,
}
}
}

View file

@ -1975,7 +1975,7 @@ pub(super) fn report_invalid_assignment<'db>(
if let DefinitionKind::AnnotatedAssignment(annotated_assignment) = definition.kind(context.db())
&& let Some(value) = annotated_assignment.value(context.module())
{
// Re-infer the RHS of the annotated assignment, ignoring the type context, for more precise
// Re-infer the RHS of the annotated assignment, ignoring the type context for more precise
// error messages.
source_ty = infer_isolated_expression(context.db(), definition.scope(context.db()), value);
}

View file

@ -1,4 +1,4 @@
use std::iter;
use std::{iter, mem};
use itertools::{Either, Itertools};
use ruff_db::diagnostic::{Annotation, DiagnosticId, Severity};
@ -44,6 +44,7 @@ use crate::semantic_index::symbol::{ScopedSymbolId, Symbol};
use crate::semantic_index::{
ApplicableConstraints, EnclosingSnapshotResult, SemanticIndex, place_table,
};
use crate::types::call::bind::MatchingOverloadIndex;
use crate::types::call::{Binding, Bindings, CallArguments, CallError, CallErrorKind};
use crate::types::class::{CodeGeneratorKind, FieldKind, MetaclassErrorKind, MethodDecorator};
use crate::types::context::{InNoTypeCheck, InferContext};
@ -258,6 +259,8 @@ pub(super) struct TypeInferenceBuilder<'db, 'ast> {
/// is a stub file but we're still in a non-deferred region.
deferred_state: DeferredExpressionState,
multi_inference_state: MultiInferenceState,
/// For function definitions, the undecorated type of the function.
undecorated_type: Option<Type<'db>>,
@ -288,10 +291,11 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
context: InferContext::new(db, scope, module),
index,
region,
scope,
return_types_and_ranges: vec![],
called_functions: FxHashSet::default(),
deferred_state: DeferredExpressionState::None,
scope,
multi_inference_state: MultiInferenceState::Panic,
expressions: FxHashMap::default(),
bindings: VecMap::default(),
declarations: VecMap::default(),
@ -3255,6 +3259,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
key,
assigned_ty,
value.as_ref(),
true,
slice.as_ref(),
rhs,
TypedDictAssignmentKind::Subscript,
@ -4913,6 +4918,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
self.infer_expression(expression, TypeContext::default())
}
/// Infer the argument types for a single binding.
fn infer_argument_types<'a>(
&mut self,
ast_arguments: &ast::Arguments,
@ -4922,22 +4928,135 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
debug_assert!(
ast_arguments.len() == arguments.len() && arguments.len() == argument_forms.len()
);
let iter = (arguments.iter_mut())
.zip(argument_forms.iter().copied())
.zip(ast_arguments.arguments_source_order());
for (((_, argument_type), form), arg_or_keyword) in iter {
let argument = match arg_or_keyword {
// We already inferred the type of splatted arguments.
let iter = itertools::izip!(
arguments.iter_mut(),
argument_forms.iter().copied(),
ast_arguments.arguments_source_order()
);
for ((_, argument_type), argument_form, ast_argument) in iter {
let argument = match ast_argument {
// Splatted arguments are inferred before parameter matching to
// determine their length.
ast::ArgOrKeyword::Arg(ast::Expr::Starred(_))
| ast::ArgOrKeyword::Keyword(ast::Keyword { arg: None, .. }) => continue,
ast::ArgOrKeyword::Arg(arg) => arg,
ast::ArgOrKeyword::Keyword(ast::Keyword { value, .. }) => value,
};
let ty = self.infer_argument_type(argument, form, TypeContext::default());
let ty = self.infer_argument_type(argument, argument_form, TypeContext::default());
*argument_type = Some(ty);
}
}
/// Infer the argument types for multiple potential bindings and overloads.
fn infer_all_argument_types<'a>(
&mut self,
ast_arguments: &ast::Arguments,
arguments: &mut CallArguments<'a, 'db>,
bindings: &Bindings<'db>,
) {
debug_assert!(
ast_arguments.len() == arguments.len()
&& arguments.len() == bindings.argument_forms().len()
);
let iter = itertools::izip!(
0..,
arguments.iter_mut(),
bindings.argument_forms().iter().copied(),
ast_arguments.arguments_source_order()
);
let bindings_count = bindings.into_iter().count();
for (argument_index, (_, argument_type), argument_form, ast_argument) in iter {
let ast_argument = match ast_argument {
// Splatted arguments are inferred before parameter matching to
// determine their length.
//
// TODO: Re-infer splatted arguments with their type context.
ast::ArgOrKeyword::Arg(ast::Expr::Starred(_))
| ast::ArgOrKeyword::Keyword(ast::Keyword { arg: None, .. }) => continue,
ast::ArgOrKeyword::Arg(arg) => arg,
ast::ArgOrKeyword::Keyword(ast::Keyword { value, .. }) => value,
};
// Type-form arguments are inferred without type context, so we can infer the argument type directly.
if let Some(ParameterForm::Type) = argument_form {
*argument_type = Some(self.infer_type_expression(ast_argument));
continue;
}
// Otherwise, we infer the type of each argument once for each matching overload signature,
// with the given annotated type as type context.
for binding in bindings {
let argument_index = if binding.bound_type.is_some() {
argument_index + 1
} else {
argument_index
};
let (overloads, overloads_count) = match binding.matching_overload_index() {
index @ (MatchingOverloadIndex::Single(_)
| MatchingOverloadIndex::Multiple(_)) => (
Either::Right(binding.matching_overloads().map(|(_, overload)| overload)),
index.count(),
),
// If there is a single overload that does not match, we still infer the argument
// types for better diagnostics.
MatchingOverloadIndex::None => match binding.overloads() {
[overload] => (Either::Left([overload].into_iter()), 1),
_ => continue,
},
};
let multi_inference_state = if (bindings_count, overloads_count) == (1, 1) {
// If there is only a single binding and overload, there is a unique parameter type annotation for
// each argument.
self.multi_inference_state
} else {
// Otherwise, each type is a valid independent inference of the given argument, and we may
// require different permutations of argument types to correctly perform argument expansion
// during overload evaluation, so we take the intersection of all the types we inferred for
// each argument.
MultiInferenceState::Intersect {
// Note that the argument must be assignable to its parameter type for every binding in the union.
//
// However, if there are multiple overloads for a given binding, type-checking should not fail
// if the parameter type annotation of a given overload is not fulfilled.
fallback: overloads_count > 1,
}
};
// Update the state of the inference builder to apply intersections to all nested expressions.
let old_multi_inference_state =
mem::replace(&mut self.multi_inference_state, multi_inference_state);
for overload in overloads {
let argument_matches = &overload.argument_matches()[argument_index];
let [parameter_index] = argument_matches.parameters.as_slice() else {
continue;
};
let parameter_type =
overload.signature.parameters()[*parameter_index].annotated_type();
self.infer_expression_impl(ast_argument, TypeContext::new(parameter_type));
}
// Restore the multi-inference state.
self.multi_inference_state = old_multi_inference_state;
}
*argument_type = self.try_expression_type(ast_argument);
}
}
fn infer_argument_type(
&mut self,
ast_argument: &ast::Expr,
@ -5018,6 +5137,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
types.expression_type(expression)
}
/// Infer the type of an expression.
fn infer_expression_impl(
&mut self,
expression: &ast::Expr,
@ -5070,6 +5190,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
ty
}
fn store_expression_type(&mut self, expression: &ast::Expr, ty: Type<'db>) {
if self.deferred_state.in_string_annotation() {
// Avoid storing the type of expressions that are part of a string annotation because
@ -5077,8 +5198,24 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
// on the string expression itself that represents the annotation.
return;
}
let previous = self.expressions.insert(expression.into(), ty);
assert_eq!(previous, None);
let db = self.db();
match self.multi_inference_state {
MultiInferenceState::Panic => {
let previous = self.expressions.insert(expression.into(), ty);
assert_eq!(previous, None);
}
MultiInferenceState::Intersect { .. } => {
self.expressions
.entry(expression.into())
.and_modify(|current| {
*current = IntersectionType::from_elements(db, [*current, ty]);
})
.or_insert(ty);
}
}
}
fn infer_number_literal_expression(&mut self, literal: &ast::ExprNumberLiteral) -> Type<'db> {
@ -5315,15 +5452,33 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
}
}
validate_typed_dict_dict_literal(
let report_diagnostics = match self.multi_inference_state {
// Do not eagerly report diagnostics when performing overload evaluation
// with multiple potential overloads, as we may fallback to an untyped
// dictionary literal.
MultiInferenceState::Intersect { fallback: true } => false,
_ => true,
};
let result = validate_typed_dict_dict_literal(
&self.context,
typed_dict,
dict,
dict.into(),
report_diagnostics,
|expr| self.expression_type(expr),
);
return Type::TypedDict(typed_dict);
match result {
// Successfully validated the dictionary literal.
Ok(_) => return Type::TypedDict(typed_dict),
// The dictionary is not valid, but we are eagerly reporting diagnostics.
Err(_) if report_diagnostics => return Type::TypedDict(typed_dict),
// Otherwise, fallback to an untyped dictionary literal.
Err(_) => {}
}
}
// Avoid false positives for the functional `TypedDict` form, which is currently
@ -5976,7 +6131,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
let bindings = callable_type
.bindings(self.db())
.match_parameters(self.db(), &call_arguments);
self.infer_argument_types(arguments, &mut call_arguments, bindings.argument_forms());
self.infer_all_argument_types(arguments, &mut call_arguments, &bindings);
// Validate `TypedDict` constructor calls after argument type inference
if let Some(class_literal) = callable_type.into_class_literal() {
@ -9096,6 +9251,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
// builder only state
typevar_binding_context: _,
deferred_state: _,
multi_inference_state: _,
called_functions: _,
index: _,
region: _,
@ -9158,6 +9314,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
// builder only state
typevar_binding_context: _,
deferred_state: _,
multi_inference_state: _,
called_functions: _,
index: _,
region: _,
@ -9229,6 +9386,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
// Builder only state
typevar_binding_context: _,
deferred_state: _,
multi_inference_state: _,
called_functions: _,
index: _,
region: _,
@ -9274,6 +9432,22 @@ impl GenericContextError {
}
}
/// Dictates the behavior when an expression is inferred multiple times.
#[derive(Default, Debug, Clone, Copy)]
enum MultiInferenceState {
/// Panic if the expression has already been inferred.
#[default]
Panic,
/// Store the intersection of all types inferred for the expression.
Intersect {
// Determines whether or not a given expression is required to be assignable to its type context
// despite it being inferred multiple times, i.e. whether eager diagnostics are appropriate, or a
// fallback type should be assumed.
fallback: bool,
},
}
/// The deferred state of a specific expression in an inference region.
#[derive(Default, Debug, Clone, Copy)]
enum DeferredExpressionState {
@ -9547,7 +9721,7 @@ impl<K, V> Default for VecMap<K, V> {
/// Set based on a `Vec`. It doesn't enforce
/// uniqueness on insertion. Instead, it relies on the caller
/// that elements are uniuqe. For example, the way we visit definitions
/// that elements are unique. For example, the way we visit definitions
/// in the `TypeInference` builder make already implicitly guarantees that each definition
/// is only visited once.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]

View file

@ -132,6 +132,7 @@ impl TypedDictAssignmentKind {
}
/// Validates assignment of a value to a specific key on a `TypedDict`.
///
/// Returns true if the assignment is valid, false otherwise.
#[allow(clippy::too_many_arguments)]
pub(super) fn validate_typed_dict_key_assignment<'db, 'ast>(
@ -140,6 +141,7 @@ pub(super) fn validate_typed_dict_key_assignment<'db, 'ast>(
key: &str,
value_ty: Type<'db>,
typed_dict_node: impl Into<AnyNodeRef<'ast>>,
report_diagnostics: bool,
key_node: impl Into<AnyNodeRef<'ast>>,
value_node: impl Into<AnyNodeRef<'ast>>,
assignment_kind: TypedDictAssignmentKind,
@ -149,14 +151,17 @@ pub(super) fn validate_typed_dict_key_assignment<'db, 'ast>(
// Check if key exists in `TypedDict`
let Some((_, item)) = items.iter().find(|(name, _)| *name == key) else {
report_invalid_key_on_typed_dict(
context,
typed_dict_node.into(),
key_node.into(),
Type::TypedDict(typed_dict),
Type::string_literal(db, key),
&items,
);
if report_diagnostics {
report_invalid_key_on_typed_dict(
context,
typed_dict_node.into(),
key_node.into(),
Type::TypedDict(typed_dict),
Type::string_literal(db, key),
&items,
);
}
return false;
};
@ -177,8 +182,9 @@ pub(super) fn validate_typed_dict_key_assignment<'db, 'ast>(
};
if assignment_kind.is_subscript() && item.is_read_only() {
if let Some(builder) =
context.report_lint(assignment_kind.diagnostic_type(), key_node.into())
if report_diagnostics
&& let Some(builder) =
context.report_lint(assignment_kind.diagnostic_type(), key_node.into())
{
let typed_dict_ty = Type::TypedDict(typed_dict);
let typed_dict_d = typed_dict_ty.display(db);
@ -207,7 +213,9 @@ pub(super) fn validate_typed_dict_key_assignment<'db, 'ast>(
}
// Invalid assignment - emit diagnostic
if let Some(builder) = context.report_lint(assignment_kind.diagnostic_type(), value_node.into())
if report_diagnostics
&& let Some(builder) =
context.report_lint(assignment_kind.diagnostic_type(), value_node.into())
{
let typed_dict_ty = Type::TypedDict(typed_dict);
let typed_dict_d = typed_dict_ty.display(db);
@ -240,13 +248,17 @@ pub(super) fn validate_typed_dict_key_assignment<'db, 'ast>(
}
/// Validates that all required keys are provided in a `TypedDict` construction.
///
/// Reports errors for any keys that are required but not provided.
///
/// Returns true if the assignment is valid, false otherwise.
pub(super) fn validate_typed_dict_required_keys<'db, 'ast>(
context: &InferContext<'db, 'ast>,
typed_dict: TypedDictType<'db>,
provided_keys: &OrderSet<&str>,
error_node: AnyNodeRef<'ast>,
) {
report_diagnostics: bool,
) -> bool {
let db = context.db();
let items = typed_dict.items(db);
@ -255,14 +267,23 @@ pub(super) fn validate_typed_dict_required_keys<'db, 'ast>(
.filter_map(|(key_name, field)| field.is_required().then_some(key_name.as_str()))
.collect();
for missing_key in required_keys.difference(provided_keys) {
report_missing_typed_dict_key(
context,
error_node,
Type::TypedDict(typed_dict),
missing_key,
);
let missing_keys = required_keys.difference(provided_keys);
let mut has_missing_key = false;
for missing_key in missing_keys {
has_missing_key = true;
if report_diagnostics {
report_missing_typed_dict_key(
context,
error_node,
Type::TypedDict(typed_dict),
missing_key,
);
}
}
!has_missing_key
}
pub(super) fn validate_typed_dict_constructor<'db, 'ast>(
@ -292,7 +313,7 @@ pub(super) fn validate_typed_dict_constructor<'db, 'ast>(
)
};
validate_typed_dict_required_keys(context, typed_dict, &provided_keys, error_node);
validate_typed_dict_required_keys(context, typed_dict, &provided_keys, error_node, true);
}
/// Validates a `TypedDict` constructor call with a single positional dictionary argument
@ -325,6 +346,7 @@ fn validate_from_dict_literal<'db, 'ast>(
key_str,
value_type,
error_node,
true,
key_expr,
&dict_item.value,
TypedDictAssignmentKind::Constructor,
@ -363,6 +385,7 @@ fn validate_from_keywords<'db, 'ast>(
arg_name.as_str(),
arg_type,
error_node,
true,
keyword,
&keyword.value,
TypedDictAssignmentKind::Constructor,
@ -373,15 +396,17 @@ fn validate_from_keywords<'db, 'ast>(
provided_keys
}
/// Validates a `TypedDict` dictionary literal assignment
/// Validates a `TypedDict` dictionary literal assignment,
/// e.g. `person: Person = {"name": "Alice", "age": 30}`
pub(super) fn validate_typed_dict_dict_literal<'db, 'ast>(
context: &InferContext<'db, 'ast>,
typed_dict: TypedDictType<'db>,
dict_expr: &'ast ast::ExprDict,
error_node: AnyNodeRef<'ast>,
report_diagnostics: bool,
expression_type_fn: impl Fn(&ast::Expr) -> Type<'db>,
) -> OrderSet<&'ast str> {
) -> Result<OrderSet<&'ast str>, OrderSet<&'ast str>> {
let mut valid = true;
let mut provided_keys = OrderSet::new();
// Validate each key-value pair in the dictionary literal
@ -392,12 +417,14 @@ pub(super) fn validate_typed_dict_dict_literal<'db, 'ast>(
provided_keys.insert(key_str);
let value_type = expression_type_fn(&item.value);
validate_typed_dict_key_assignment(
valid &= validate_typed_dict_key_assignment(
context,
typed_dict,
key_str,
value_type,
error_node,
report_diagnostics,
key_expr,
&item.value,
TypedDictAssignmentKind::Constructor,
@ -406,7 +433,17 @@ pub(super) fn validate_typed_dict_dict_literal<'db, 'ast>(
}
}
validate_typed_dict_required_keys(context, typed_dict, &provided_keys, error_node);
valid &= validate_typed_dict_required_keys(
context,
typed_dict,
&provided_keys,
error_node,
report_diagnostics,
);
provided_keys
if valid {
Ok(provided_keys)
} else {
Err(provided_keys)
}
}