[red-knot] type narrowing (#12706)

Extend the `UseDefMap` to also track which constraints (provided by e.g.
`if` tests) apply to each visible definition.

Uses a custom `BitSet` and `BitSetArray` to track which constraints
apply to which definitions, while keeping data inline as much as
possible.
This commit is contained in:
Carl Meyer 2024-08-16 16:34:13 -07:00 committed by GitHub
parent a9847af6e8
commit 6359e55383
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 1065 additions and 242 deletions

View file

@ -29,6 +29,8 @@ salsa = { workspace = true }
tracing = { workspace = true }
rustc-hash = { workspace = true }
hashbrown = { workspace = true }
smallvec = { workspace = true }
static_assertions = { workspace = true }
[build-dependencies]
path-slash = { workspace = true }

View file

@ -16,10 +16,9 @@ use crate::semantic_index::expression::Expression;
use crate::semantic_index::symbol::{
FileScopeId, NodeWithScopeKey, NodeWithScopeRef, Scope, ScopeId, ScopedSymbolId, SymbolTable,
};
use crate::semantic_index::use_def::UseDefMap;
use crate::Db;
pub(crate) use self::use_def::UseDefMap;
pub mod ast_ids;
mod builder;
pub mod definition;
@ -27,6 +26,8 @@ pub mod expression;
pub mod symbol;
mod use_def;
pub(crate) use self::use_def::{DefinitionWithConstraints, DefinitionWithConstraintsIterator};
type SymbolMap = hashbrown::HashMap<ScopedSymbolId, (), ()>;
/// Returns the semantic index for `file`.
@ -310,12 +311,29 @@ mod tests {
use ruff_text_size::{Ranged, TextRange};
use crate::db::tests::TestDb;
use crate::semantic_index::ast_ids::HasScopedUseId;
use crate::semantic_index::definition::DefinitionKind;
use crate::semantic_index::symbol::{FileScopeId, Scope, ScopeKind, SymbolTable};
use crate::semantic_index::ast_ids::{HasScopedUseId, ScopedUseId};
use crate::semantic_index::definition::{Definition, DefinitionKind};
use crate::semantic_index::symbol::{
FileScopeId, Scope, ScopeKind, ScopedSymbolId, SymbolTable,
};
use crate::semantic_index::use_def::UseDefMap;
use crate::semantic_index::{global_scope, semantic_index, symbol_table, use_def_map};
use crate::Db;
impl UseDefMap<'_> {
fn first_public_definition(&self, symbol: ScopedSymbolId) -> Option<Definition<'_>> {
self.public_definitions(symbol)
.next()
.map(|constrained_definition| constrained_definition.definition)
}
fn first_use_definition(&self, use_id: ScopedUseId) -> Option<Definition<'_>> {
self.use_definitions(use_id)
.next()
.map(|constrained_definition| constrained_definition.definition)
}
}
struct TestCase {
db: TestDb,
file: File,
@ -374,9 +392,7 @@ mod tests {
let foo = global_table.symbol_id_by_name("foo").unwrap();
let use_def = use_def_map(&db, scope);
let [definition] = use_def.public_definitions(foo) else {
panic!("expected one definition");
};
let definition = use_def.first_public_definition(foo).unwrap();
assert!(matches!(definition.node(&db), DefinitionKind::Import(_)));
}
@ -411,13 +427,13 @@ mod tests {
);
let use_def = use_def_map(&db, scope);
let [definition] = use_def.public_definitions(
global_table
.symbol_id_by_name("foo")
.expect("symbol to exist"),
) else {
panic!("expected one definition");
};
let definition = use_def
.first_public_definition(
global_table
.symbol_id_by_name("foo")
.expect("symbol to exist"),
)
.unwrap();
assert!(matches!(
definition.node(&db),
DefinitionKind::ImportFrom(_)
@ -438,11 +454,9 @@ mod tests {
"a symbol used but not defined in a scope should have only the used flag"
);
let use_def = use_def_map(&db, scope);
let [definition] =
use_def.public_definitions(global_table.symbol_id_by_name("x").expect("symbol exists"))
else {
panic!("expected one definition");
};
let definition = use_def
.first_public_definition(global_table.symbol_id_by_name("x").expect("symbol exists"))
.unwrap();
assert!(matches!(
definition.node(&db),
DefinitionKind::Assignment(_)
@ -477,11 +491,9 @@ y = 2
assert_eq!(names(&class_table), vec!["x"]);
let use_def = index.use_def_map(class_scope_id);
let [definition] =
use_def.public_definitions(class_table.symbol_id_by_name("x").expect("symbol exists"))
else {
panic!("expected one definition");
};
let definition = use_def
.first_public_definition(class_table.symbol_id_by_name("x").expect("symbol exists"))
.unwrap();
assert!(matches!(
definition.node(&db),
DefinitionKind::Assignment(_)
@ -515,13 +527,13 @@ y = 2
assert_eq!(names(&function_table), vec!["x"]);
let use_def = index.use_def_map(function_scope_id);
let [definition] = use_def.public_definitions(
function_table
.symbol_id_by_name("x")
.expect("symbol exists"),
) else {
panic!("expected one definition");
};
let definition = use_def
.first_public_definition(
function_table
.symbol_id_by_name("x")
.expect("symbol exists"),
)
.unwrap();
assert!(matches!(
definition.node(&db),
DefinitionKind::Assignment(_)
@ -557,26 +569,26 @@ def f(a: str, /, b: str, c: int = 1, *args, d: int = 2, **kwargs):
let use_def = index.use_def_map(function_scope_id);
for name in ["a", "b", "c", "d"] {
let [definition] = use_def.public_definitions(
function_table
.symbol_id_by_name(name)
.expect("symbol exists"),
) else {
panic!("Expected parameter definition for {name}");
};
let definition = use_def
.first_public_definition(
function_table
.symbol_id_by_name(name)
.expect("symbol exists"),
)
.unwrap();
assert!(matches!(
definition.node(&db),
DefinitionKind::ParameterWithDefault(_)
));
}
for name in ["args", "kwargs"] {
let [definition] = use_def.public_definitions(
function_table
.symbol_id_by_name(name)
.expect("symbol exists"),
) else {
panic!("Expected parameter definition for {name}");
};
let definition = use_def
.first_public_definition(
function_table
.symbol_id_by_name(name)
.expect("symbol exists"),
)
.unwrap();
assert!(matches!(definition.node(&db), DefinitionKind::Parameter(_)));
}
}
@ -605,22 +617,22 @@ def f(a: str, /, b: str, c: int = 1, *args, d: int = 2, **kwargs):
let use_def = index.use_def_map(lambda_scope_id);
for name in ["a", "b", "c", "d"] {
let [definition] = use_def
.public_definitions(lambda_table.symbol_id_by_name(name).expect("symbol exists"))
else {
panic!("Expected parameter definition for {name}");
};
let definition = use_def
.first_public_definition(
lambda_table.symbol_id_by_name(name).expect("symbol exists"),
)
.unwrap();
assert!(matches!(
definition.node(&db),
DefinitionKind::ParameterWithDefault(_)
));
}
for name in ["args", "kwargs"] {
let [definition] = use_def
.public_definitions(lambda_table.symbol_id_by_name(name).expect("symbol exists"))
else {
panic!("Expected parameter definition for {name}");
};
let definition = use_def
.first_public_definition(
lambda_table.symbol_id_by_name(name).expect("symbol exists"),
)
.unwrap();
assert!(matches!(definition.node(&db), DefinitionKind::Parameter(_)));
}
}
@ -691,9 +703,7 @@ def f(a: str, /, b: str, c: int = 1, *args, d: int = 2, **kwargs):
let element_use_id =
element.scoped_use_id(&db, comprehension_scope_id.to_scope_id(&db, file));
let [definition] = use_def.use_definitions(element_use_id) else {
panic!("expected one definition")
};
let definition = use_def.first_use_definition(element_use_id).unwrap();
let DefinitionKind::Comprehension(comprehension) = definition.node(&db) else {
panic!("expected generator definition")
};
@ -790,13 +800,13 @@ def func():
assert_eq!(names(&func2_table), vec!["y"]);
let use_def = index.use_def_map(FileScopeId::global());
let [definition] = use_def.public_definitions(
global_table
.symbol_id_by_name("func")
.expect("symbol exists"),
) else {
panic!("expected one definition");
};
let definition = use_def
.first_public_definition(
global_table
.symbol_id_by_name("func")
.expect("symbol exists"),
)
.unwrap();
assert!(matches!(definition.node(&db), DefinitionKind::Function(_)));
}
@ -897,9 +907,7 @@ class C[T]:
};
let x_use_id = x_use_expr_name.scoped_use_id(&db, scope);
let use_def = use_def_map(&db, scope);
let [definition] = use_def.use_definitions(x_use_id) else {
panic!("expected one definition");
};
let definition = use_def.first_use_definition(x_use_id).unwrap();
let DefinitionKind::Assignment(assignment) = definition.node(&db) else {
panic!("should be an assignment definition")
};

View file

@ -155,7 +155,7 @@ impl<'db> SemanticIndexBuilder<'db> {
self.current_use_def_map_mut().restore(state);
}
fn flow_merge(&mut self, state: &FlowSnapshot) {
fn flow_merge(&mut self, state: FlowSnapshot) {
self.current_use_def_map_mut().merge(state);
}
@ -195,9 +195,16 @@ impl<'db> SemanticIndexBuilder<'db> {
definition
}
fn add_constraint(&mut self, constraint_node: &ast::Expr) -> Expression<'db> {
let expression = self.add_standalone_expression(constraint_node);
self.current_use_def_map_mut().record_constraint(expression);
expression
}
/// Record an expression that needs to be a Salsa ingredient, because we need to infer its type
/// standalone (type narrowing tests, RHS of an assignment.)
fn add_standalone_expression(&mut self, expression_node: &ast::Expr) {
fn add_standalone_expression(&mut self, expression_node: &ast::Expr) -> Expression<'db> {
let expression = Expression::new(
self.db,
self.file,
@ -210,6 +217,7 @@ impl<'db> SemanticIndexBuilder<'db> {
);
self.expressions_by_node
.insert(expression_node.into(), expression);
expression
}
fn with_type_params(
@ -476,6 +484,7 @@ where
ast::Stmt::If(node) => {
self.visit_expr(&node.test);
let pre_if = self.flow_snapshot();
self.add_constraint(&node.test);
self.visit_body(&node.body);
let mut post_clauses: Vec<FlowSnapshot> = vec![];
for clause in &node.elif_else_clauses {
@ -488,7 +497,7 @@ where
self.visit_elif_else_clause(clause);
}
for post_clause_state in post_clauses {
self.flow_merge(&post_clause_state);
self.flow_merge(post_clause_state);
}
let has_else = node
.elif_else_clauses
@ -497,7 +506,7 @@ where
if !has_else {
// if there's no else clause, then it's possible we took none of the branches,
// and the pre_if state can reach here
self.flow_merge(&pre_if);
self.flow_merge(pre_if);
}
}
ast::Stmt::While(node) => {
@ -515,13 +524,13 @@ where
// We may execute the `else` clause without ever executing the body, so merge in
// the pre-loop state before visiting `else`.
self.flow_merge(&pre_loop);
self.flow_merge(pre_loop);
self.visit_body(&node.orelse);
// Breaking out of a while loop bypasses the `else` clause, so merge in the break
// states after visiting `else`.
for break_state in break_states {
self.flow_merge(&break_state);
self.flow_merge(break_state);
}
}
ast::Stmt::Break(_) => {
@ -631,7 +640,7 @@ where
let post_body = self.flow_snapshot();
self.flow_restore(pre_if);
self.visit_expr(orelse);
self.flow_merge(&post_body);
self.flow_merge(post_body);
}
ast::Expr::ListComp(
list_comprehension @ ast::ExprListComp {

View file

@ -21,7 +21,7 @@ pub(crate) struct Expression<'db> {
/// The expression node.
#[no_eq]
#[return_ref]
pub(crate) node: AstNodeRef<ast::Expr>,
pub(crate) node_ref: AstNodeRef<ast::Expr>,
#[no_eq]
count: countme::Count<Expression<'static>>,

View file

@ -1,4 +1,5 @@
//! Build a map from each use of a symbol to the definitions visible from that use.
//! Build a map from each use of a symbol to the definitions visible from that use, and the
//! type-narrowing constraints that apply to each definition.
//!
//! Let's take this code sample:
//!
@ -6,7 +7,7 @@
//! x = 1
//! x = 2
//! y = x
//! if flag:
//! if y is not None:
//! x = 3
//! else:
//! x = 4
@ -34,8 +35,8 @@
//! [`AstIds`](crate::semantic_index::ast_ids::AstIds) we number all uses (that means a `Name` node
//! with `Load` context) so we have a `ScopedUseId` to efficiently represent each use.
//!
//! The other case we need to handle is when a symbol is referenced from a different scope (the
//! most obvious example of this is an import). We call this "public" use of a symbol. So the other
//! Another case we need to handle is when a symbol is referenced from a different scope (the most
//! obvious example of this is an import). We call this "public" use of a symbol. So the other
//! question we need to be able to answer is, what are the publicly-visible definitions of each
//! symbol?
//!
@ -53,42 +54,55 @@
//! start.)
//!
//! So this means that the publicly-visible definitions of a symbol are the definitions still
//! visible at the end of the scope.
//! visible at the end of the scope; effectively we have an implicit "use" of every symbol at the
//! end of the scope.
//!
//! The data structure we build to answer these two questions is the `UseDefMap`. It has a
//! We also need to know, for a given definition of a symbol, what type-narrowing constraints apply
//! to it. For instance, in this code sample:
//!
//! ```python
//! x = 1 if flag else None
//! if x is not None:
//! y = x
//! ```
//!
//! At the use of `x` in `y = x`, the visible definition of `x` is `1 if flag else None`, which
//! would infer as the type `Literal[1] | None`. But the constraint `x is not None` dominates this
//! use, which means we can rule out the possibility that `x` is `None` here, which should give us
//! the type `Literal[1]` for this use.
//!
//! The data structure we build to answer these questions is the `UseDefMap`. It has a
//! `definitions_by_use` vector indexed by [`ScopedUseId`] and a `public_definitions` vector
//! indexed by [`ScopedSymbolId`]. The values in each of these vectors are (in principle) a list of
//! visible definitions at that use, or at the end of the scope for that symbol.
//! visible definitions at that use, or at the end of the scope for that symbol, with a list of the
//! dominating constraints for each of those definitions.
//!
//! In order to avoid vectors-of-vectors and all the allocations that would entail, we don't
//! actually store these "list of visible definitions" as a vector of [`Definition`] IDs. Instead,
//! the values in `definitions_by_use` and `public_definitions` are a [`Definitions`] struct that
//! keeps a [`Range`] into a third vector of [`Definition`] IDs, `all_definitions`. The trick with
//! this representation is that it requires that the definitions visible at any given use of a
//! symbol are stored sequentially in `all_definitions`.
//! In order to avoid vectors-of-vectors-of-vectors and all the allocations that would entail, we
//! don't actually store these "list of visible definitions" as a vector of [`Definition`].
//! Instead, the values in `definitions_by_use` and `public_definitions` are a [`SymbolState`]
//! struct which uses bit-sets to track definitions and constraints in terms of
//! [`ScopedDefinitionId`] and [`ScopedConstraintId`], which are indices into the `all_definitions`
//! and `all_constraints` indexvecs in the [`UseDefMap`].
//!
//! There is another special kind of possible "definition" for a symbol: it might be unbound in the
//! scope. (This isn't equivalent to "zero visible definitions", since we may go through an `if`
//! that has a definition for the symbol, leaving us with one visible definition, but still also
//! the "unbound" possibility, since we might not have taken the `if` branch.)
//! There is another special kind of possible "definition" for a symbol: there might be a path from
//! the scope entry to a given use in which the symbol is never bound.
//!
//! The simplest way to model "unbound" would be as an actual [`Definition`] itself: the initial
//! visible [`Definition`] for each symbol in a scope. But actually modeling it this way would
//! dramatically increase the number of [`Definition`] that Salsa must track. Since "unbound" is a
//! unnecessarily increase the number of [`Definition`] that Salsa must track. Since "unbound" is a
//! special definition in that all symbols share it, and it doesn't have any additional per-symbol
//! state, we can represent it more efficiently: we use the `may_be_unbound` boolean on the
//! [`Definitions`] struct. If this flag is `true`, it means the symbol/use really has one
//! additional visible "definition", which is the unbound state. If this flag is `false`, it means
//! we've eliminated the possibility of unbound: every path we've followed includes a definition
//! for this symbol.
//! state, and constraints are irrelevant to it, we can represent it more efficiently: we use the
//! `may_be_unbound` boolean on the [`SymbolState`] struct. If this flag is `true`, it means the
//! symbol/use really has one additional visible "definition", which is the unbound state. If this
//! flag is `false`, it means we've eliminated the possibility of unbound: every path we've
//! followed includes a definition for this symbol.
//!
//! To build a [`UseDefMap`], the [`UseDefMapBuilder`] is notified of each new use and definition
//! as they are encountered by the
//! To build a [`UseDefMap`], the [`UseDefMapBuilder`] is notified of each new use, definition, and
//! constraint as they are encountered by the
//! [`SemanticIndexBuilder`](crate::semantic_index::builder::SemanticIndexBuilder) AST visit. For
//! each symbol, the builder tracks the currently-visible definitions for that symbol. When we hit
//! a use of a symbol, it records the currently-visible definitions for that symbol as the visible
//! definitions for that use. When we reach the end of the scope, it records the currently-visible
//! definitions for each symbol as the public definitions of that symbol.
//! each symbol, the builder tracks the `SymbolState` for that symbol. When we hit a use of a
//! symbol, it records the current state for that symbol for that use. When we reach the end of the
//! scope, it records the state for each symbol as the public definitions of that symbol.
//!
//! Let's walk through the above example. Initially we record for `x` that it has no visible
//! definitions, and may be unbound. When we see `x = 1`, we record that as the sole visible
@ -98,10 +112,11 @@
//!
//! Then we hit the `if` branch. We visit the `test` node (`flag` in this case), since that will
//! happen regardless. Then we take a pre-branch snapshot of the currently visible definitions for
//! all symbols, which we'll need later. Then we go ahead and visit the `if` body. When we see `x =
//! 3`, it replaces `x = 2` as the sole visible definition of `x`. At the end of the `if` body, we
//! take another snapshot of the currently-visible definitions; we'll call this the post-if-body
//! snapshot.
//! all symbols, which we'll need later. Then we record `flag` as a possible constraint on the
//! currently visible definition (`x = 2`), and go ahead and visit the `if` body. When we see `x =
//! 3`, it replaces `x = 2` (constrained by `flag`) as the sole visible definition of `x`. At the
//! end of the `if` body, we take another snapshot of the currently-visible definitions; we'll call
//! this the post-if-body snapshot.
//!
//! Now we need to visit the `else` clause. The conditions when entering the `else` clause should
//! be the pre-if conditions; if we are entering the `else` clause, we know that the `if` test
@ -125,98 +140,142 @@
//! (In the future we may have some other questions we want to answer as well, such as "is this
//! definition used?", which will require tracking a bit more info in our map, e.g. a "used" bit
//! for each [`Definition`] which is flipped to true when we record that definition for a use.)
use self::symbol_state::{
ConstraintIdIterator, DefinitionIdWithConstraintsIterator, ScopedConstraintId,
ScopedDefinitionId, SymbolState,
};
use crate::semantic_index::ast_ids::ScopedUseId;
use crate::semantic_index::definition::Definition;
use crate::semantic_index::expression::Expression;
use crate::semantic_index::symbol::ScopedSymbolId;
use ruff_index::IndexVec;
use std::ops::Range;
/// All definitions that can reach a given use of a name.
mod bitset;
mod symbol_state;
/// Applicable definitions and constraints for every use of a name.
#[derive(Debug, PartialEq, Eq)]
pub(crate) struct UseDefMap<'db> {
// TODO store constraints with definitions for type narrowing
/// Definition IDs array for `definitions_by_use` and `public_definitions` to slice into.
all_definitions: Vec<Definition<'db>>,
/// Array of [`Definition`] in this scope.
all_definitions: IndexVec<ScopedDefinitionId, Definition<'db>>,
/// Definitions that can reach a [`ScopedUseId`].
definitions_by_use: IndexVec<ScopedUseId, Definitions>,
/// Array of constraints (as [`Expression`]) in this scope.
all_constraints: IndexVec<ScopedConstraintId, Expression<'db>>,
/// Definitions of each symbol visible at end of scope.
public_definitions: IndexVec<ScopedSymbolId, Definitions>,
/// [`SymbolState`] visible at a [`ScopedUseId`].
definitions_by_use: IndexVec<ScopedUseId, SymbolState>,
/// [`SymbolState`] visible at end of scope for each symbol.
public_definitions: IndexVec<ScopedSymbolId, SymbolState>,
}
impl<'db> UseDefMap<'db> {
pub(crate) fn use_definitions(&self, use_id: ScopedUseId) -> &[Definition<'db>] {
&self.all_definitions[self.definitions_by_use[use_id].definitions_range.clone()]
pub(crate) fn use_definitions(
&self,
use_id: ScopedUseId,
) -> DefinitionWithConstraintsIterator<'_, 'db> {
DefinitionWithConstraintsIterator {
all_definitions: &self.all_definitions,
all_constraints: &self.all_constraints,
inner: self.definitions_by_use[use_id].visible_definitions(),
}
}
pub(crate) fn use_may_be_unbound(&self, use_id: ScopedUseId) -> bool {
self.definitions_by_use[use_id].may_be_unbound
self.definitions_by_use[use_id].may_be_unbound()
}
pub(crate) fn public_definitions(&self, symbol: ScopedSymbolId) -> &[Definition<'db>] {
&self.all_definitions[self.public_definitions[symbol].definitions_range.clone()]
pub(crate) fn public_definitions(
&self,
symbol: ScopedSymbolId,
) -> DefinitionWithConstraintsIterator<'_, 'db> {
DefinitionWithConstraintsIterator {
all_definitions: &self.all_definitions,
all_constraints: &self.all_constraints,
inner: self.public_definitions[symbol].visible_definitions(),
}
}
pub(crate) fn public_may_be_unbound(&self, symbol: ScopedSymbolId) -> bool {
self.public_definitions[symbol].may_be_unbound
self.public_definitions[symbol].may_be_unbound()
}
}
/// Definitions visible for a symbol at a particular use (or end-of-scope).
#[derive(Clone, Debug, PartialEq, Eq)]
struct Definitions {
/// [`Range`] in `all_definitions` of the visible definition IDs.
definitions_range: Range<usize>,
/// Is the symbol possibly unbound at this point?
may_be_unbound: bool,
}
impl Definitions {
/// The default state of a symbol is "no definitions, may be unbound", aka definitely-unbound.
fn unbound() -> Self {
Self {
definitions_range: Range::default(),
may_be_unbound: true,
}
}
}
impl Default for Definitions {
fn default() -> Self {
Definitions::unbound()
}
}
/// A snapshot of the visible definitions for each symbol at a particular point in control flow.
#[derive(Clone, Debug)]
pub(super) struct FlowSnapshot {
definitions_by_symbol: IndexVec<ScopedSymbolId, Definitions>,
}
#[derive(Debug)]
pub(crate) struct DefinitionWithConstraintsIterator<'map, 'db> {
all_definitions: &'map IndexVec<ScopedDefinitionId, Definition<'db>>,
all_constraints: &'map IndexVec<ScopedConstraintId, Expression<'db>>,
inner: DefinitionIdWithConstraintsIterator<'map>,
}
impl<'map, 'db> Iterator for DefinitionWithConstraintsIterator<'map, 'db> {
type Item = DefinitionWithConstraints<'map, 'db>;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.next()
.map(|def_id_with_constraints| DefinitionWithConstraints {
definition: self.all_definitions[def_id_with_constraints.definition],
constraints: ConstraintsIterator {
all_constraints: self.all_constraints,
constraint_ids: def_id_with_constraints.constraint_ids,
},
})
}
}
impl std::iter::FusedIterator for DefinitionWithConstraintsIterator<'_, '_> {}
pub(crate) struct DefinitionWithConstraints<'map, 'db> {
pub(crate) definition: Definition<'db>,
pub(crate) constraints: ConstraintsIterator<'map, 'db>,
}
pub(crate) struct ConstraintsIterator<'map, 'db> {
all_constraints: &'map IndexVec<ScopedConstraintId, Expression<'db>>,
constraint_ids: ConstraintIdIterator<'map>,
}
impl<'map, 'db> Iterator for ConstraintsIterator<'map, 'db> {
type Item = Expression<'db>;
fn next(&mut self) -> Option<Self::Item> {
self.constraint_ids
.next()
.map(|constraint_id| self.all_constraints[constraint_id])
}
}
impl std::iter::FusedIterator for ConstraintsIterator<'_, '_> {}
/// A snapshot of the definitions and constraints state at a particular point in control flow.
#[derive(Clone, Debug)]
pub(super) struct FlowSnapshot {
definitions_by_symbol: IndexVec<ScopedSymbolId, SymbolState>,
}
#[derive(Debug, Default)]
pub(super) struct UseDefMapBuilder<'db> {
/// Definition IDs array for `definitions_by_use` and `definitions_by_symbol` to slice into.
all_definitions: Vec<Definition<'db>>,
/// Append-only array of [`Definition`]; None is unbound.
all_definitions: IndexVec<ScopedDefinitionId, Definition<'db>>,
/// Append-only array of constraints (as [`Expression`]).
all_constraints: IndexVec<ScopedConstraintId, Expression<'db>>,
/// Visible definitions at each so-far-recorded use.
definitions_by_use: IndexVec<ScopedUseId, Definitions>,
definitions_by_use: IndexVec<ScopedUseId, SymbolState>,
/// Currently visible definitions for each symbol.
definitions_by_symbol: IndexVec<ScopedSymbolId, Definitions>,
definitions_by_symbol: IndexVec<ScopedSymbolId, SymbolState>,
}
impl<'db> UseDefMapBuilder<'db> {
pub(super) fn new() -> Self {
Self {
all_definitions: Vec::new(),
definitions_by_use: IndexVec::new(),
definitions_by_symbol: IndexVec::new(),
}
Self::default()
}
pub(super) fn add_symbol(&mut self, symbol: ScopedSymbolId) {
let new_symbol = self.definitions_by_symbol.push(Definitions::unbound());
let new_symbol = self.definitions_by_symbol.push(SymbolState::unbound());
debug_assert_eq!(symbol, new_symbol);
}
@ -227,13 +286,15 @@ impl<'db> UseDefMapBuilder<'db> {
) {
// We have a new definition of a symbol; this replaces any previous definitions in this
// path.
let def_idx = self.all_definitions.len();
self.all_definitions.push(definition);
self.definitions_by_symbol[symbol] = Definitions {
#[allow(clippy::range_plus_one)]
definitions_range: def_idx..(def_idx + 1),
may_be_unbound: false,
};
let def_id = self.all_definitions.push(definition);
self.definitions_by_symbol[symbol] = SymbolState::with(def_id);
}
pub(super) fn record_constraint(&mut self, constraint: Expression<'db>) {
let constraint_id = self.all_constraints.push(constraint);
for definitions in &mut self.definitions_by_symbol {
definitions.add_constraint(constraint_id);
}
}
pub(super) fn record_use(&mut self, symbol: ScopedSymbolId, use_id: ScopedUseId) {
@ -265,15 +326,15 @@ impl<'db> UseDefMapBuilder<'db> {
// If the snapshot we are restoring is missing some symbols we've recorded since, we need
// to fill them in so the symbol IDs continue to line up. Since they don't exist in the
// snapshot, the correct state to fill them in with is "unbound", the default.
// snapshot, the correct state to fill them in with is "unbound".
self.definitions_by_symbol
.resize(num_symbols, Definitions::unbound());
.resize(num_symbols, SymbolState::unbound());
}
/// Merge the given snapshot into the current state, reflecting that we might have taken either
/// path to get here. The new visible-definitions state for each symbol should include
/// definitions from both the prior state and the snapshot.
pub(super) fn merge(&mut self, snapshot: &FlowSnapshot) {
pub(super) fn merge(&mut self, snapshot: FlowSnapshot) {
// The tricky thing about merging two Ranges pointing into `all_definitions` is that if the
// two Ranges aren't already adjacent in `all_definitions`, we will have to copy at least
// one or the other of the ranges to the end of `all_definitions` so as to make them
@ -287,66 +348,26 @@ impl<'db> UseDefMapBuilder<'db> {
// greater than the number of known symbols in a previously-taken snapshot.
debug_assert!(self.definitions_by_symbol.len() >= snapshot.definitions_by_symbol.len());
for (symbol_id, current) in self.definitions_by_symbol.iter_mut_enumerated() {
let Some(snapshot) = snapshot.definitions_by_symbol.get(symbol_id) else {
// Symbol not present in snapshot, so it's unbound from that path.
current.may_be_unbound = true;
continue;
};
// If the symbol can be unbound in either predecessor, it can be unbound post-merge.
current.may_be_unbound |= snapshot.may_be_unbound;
// Merge the definition ranges.
let current = &mut current.definitions_range;
let snapshot = &snapshot.definitions_range;
// We never create reversed ranges.
debug_assert!(current.end >= current.start);
debug_assert!(snapshot.end >= snapshot.start);
if current == snapshot {
// Ranges already identical, nothing to do.
} else if snapshot.is_empty() {
// Merging from an empty range; nothing to do.
} else if (*current).is_empty() {
// Merging to an empty range; just use the incoming range.
*current = snapshot.clone();
} else if snapshot.end >= current.start && snapshot.start <= current.end {
// Ranges are adjacent or overlapping, merge them in-place.
*current = current.start.min(snapshot.start)..current.end.max(snapshot.end);
} else if current.end == self.all_definitions.len() {
// Ranges are not adjacent or overlapping, `current` is at the end of
// `all_definitions`, we need to copy `snapshot` to the end so they are adjacent
// and can be merged into one range.
self.all_definitions.extend_from_within(snapshot.clone());
current.end = self.all_definitions.len();
} else if snapshot.end == self.all_definitions.len() {
// Ranges are not adjacent or overlapping, `snapshot` is at the end of
// `all_definitions`, we need to copy `current` to the end so they are adjacent and
// can be merged into one range.
self.all_definitions.extend_from_within(current.clone());
current.start = snapshot.start;
current.end = self.all_definitions.len();
let mut snapshot_definitions_iter = snapshot.definitions_by_symbol.into_iter();
for current in &mut self.definitions_by_symbol {
if let Some(snapshot) = snapshot_definitions_iter.next() {
current.merge(snapshot);
} else {
// Ranges are not adjacent and neither one is at the end of `all_definitions`, we
// have to copy both to the end so they are adjacent and we can merge them.
let start = self.all_definitions.len();
self.all_definitions.extend_from_within(current.clone());
self.all_definitions.extend_from_within(snapshot.clone());
current.start = start;
current.end = self.all_definitions.len();
// Symbol not present in snapshot, so it's unbound from that path.
current.add_unbound();
}
}
}
pub(super) fn finish(mut self) -> UseDefMap<'db> {
self.all_definitions.shrink_to_fit();
self.all_constraints.shrink_to_fit();
self.definitions_by_symbol.shrink_to_fit();
self.definitions_by_use.shrink_to_fit();
UseDefMap {
all_definitions: self.all_definitions,
all_constraints: self.all_constraints,
definitions_by_use: self.definitions_by_use,
public_definitions: self.definitions_by_symbol,
}

View file

@ -0,0 +1,228 @@
/// Ordered set of `u32`.
///
/// Uses an inline bit-set for small values (up to 64 * B), falls back to heap allocated vector of
/// blocks for larger values.
#[derive(Debug, Clone, PartialEq, Eq)]
pub(super) enum BitSet<const B: usize> {
/// Bit-set (in 64-bit blocks) for the first 64 * B entries.
Inline([u64; B]),
/// Overflow beyond 64 * B.
Heap(Vec<u64>),
}
impl<const B: usize> Default for BitSet<B> {
fn default() -> Self {
// B * 64 must fit in a u32, or else we have unusable bits; this assertion makes the
// truncating casts to u32 below safe. This would be better as a const assertion, but
// that's not possible on stable with const generic params. (B should never really be
// anywhere close to this large.)
assert!(B * 64 < (u32::MAX as usize));
// This implementation requires usize >= 32 bits.
static_assertions::const_assert!(usize::BITS >= 32);
Self::Inline([0; B])
}
}
impl<const B: usize> BitSet<B> {
/// Create and return a new [`BitSet`] with a single `value` inserted.
pub(super) fn with(value: u32) -> Self {
let mut bitset = Self::default();
bitset.insert(value);
bitset
}
/// Convert from Inline to Heap, if needed, and resize the Heap vector, if needed.
fn resize(&mut self, value: u32) {
let num_blocks_needed = (value / 64) + 1;
match self {
Self::Inline(blocks) => {
let mut vec = blocks.to_vec();
vec.resize(num_blocks_needed as usize, 0);
*self = Self::Heap(vec);
}
Self::Heap(vec) => {
vec.resize(num_blocks_needed as usize, 0);
}
}
}
fn blocks_mut(&mut self) -> &mut [u64] {
match self {
Self::Inline(blocks) => blocks.as_mut_slice(),
Self::Heap(blocks) => blocks.as_mut_slice(),
}
}
fn blocks(&self) -> &[u64] {
match self {
Self::Inline(blocks) => blocks.as_slice(),
Self::Heap(blocks) => blocks.as_slice(),
}
}
/// Insert a value into the [`BitSet`].
///
/// Return true if the value was newly inserted, false if already present.
pub(super) fn insert(&mut self, value: u32) -> bool {
let value_usize = value as usize;
let (block, index) = (value_usize / 64, value_usize % 64);
if block >= self.blocks().len() {
self.resize(value);
}
let blocks = self.blocks_mut();
let missing = blocks[block] & (1 << index) == 0;
blocks[block] |= 1 << index;
missing
}
/// Intersect in-place with another [`BitSet`].
pub(super) fn intersect(&mut self, other: &BitSet<B>) {
let my_blocks = self.blocks_mut();
let other_blocks = other.blocks();
let min_len = my_blocks.len().min(other_blocks.len());
for i in 0..min_len {
my_blocks[i] &= other_blocks[i];
}
for block in my_blocks.iter_mut().skip(min_len) {
*block = 0;
}
}
/// Return an iterator over the values (in ascending order) in this [`BitSet`].
pub(super) fn iter(&self) -> BitSetIterator<'_, B> {
let blocks = self.blocks();
BitSetIterator {
blocks,
current_block_index: 0,
current_block: blocks[0],
}
}
}
/// Iterator over values in a [`BitSet`].
#[derive(Debug)]
pub(super) struct BitSetIterator<'a, const B: usize> {
/// The blocks we are iterating over.
blocks: &'a [u64],
/// The index of the block we are currently iterating through.
current_block_index: usize,
/// The block we are currently iterating through (and zeroing as we go.)
current_block: u64,
}
impl<const B: usize> Iterator for BitSetIterator<'_, B> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
while self.current_block == 0 {
if self.current_block_index + 1 >= self.blocks.len() {
return None;
}
self.current_block_index += 1;
self.current_block = self.blocks[self.current_block_index];
}
let lowest_bit_set = self.current_block.trailing_zeros();
// reset the lowest set bit, without a data dependency on `lowest_bit_set`
self.current_block &= self.current_block.wrapping_sub(1);
// SAFETY: `lowest_bit_set` cannot be more than 64, `current_block_index` cannot be more
// than `B - 1`, and we check above that `B * 64 < u32::MAX`. So both `64 *
// current_block_index` and the final value here must fit in u32.
#[allow(clippy::cast_possible_truncation)]
Some(lowest_bit_set + (64 * self.current_block_index) as u32)
}
}
impl<const B: usize> std::iter::FusedIterator for BitSetIterator<'_, B> {}
#[cfg(test)]
mod tests {
use super::BitSet;
fn assert_bitset<const B: usize>(bitset: &BitSet<B>, contents: &[u32]) {
assert_eq!(bitset.iter().collect::<Vec<_>>(), contents);
}
#[test]
fn iter() {
let mut b = BitSet::<1>::with(3);
b.insert(27);
b.insert(6);
assert!(matches!(b, BitSet::Inline(_)));
assert_bitset(&b, &[3, 6, 27]);
}
#[test]
fn iter_overflow() {
let mut b = BitSet::<1>::with(140);
b.insert(100);
b.insert(129);
assert!(matches!(b, BitSet::Heap(_)));
assert_bitset(&b, &[100, 129, 140]);
}
#[test]
fn intersect() {
let mut b1 = BitSet::<1>::with(4);
let mut b2 = BitSet::<1>::with(4);
b1.insert(23);
b2.insert(5);
b1.intersect(&b2);
assert_bitset(&b1, &[4]);
}
#[test]
fn intersect_mixed_1() {
let mut b1 = BitSet::<1>::with(4);
let mut b2 = BitSet::<1>::with(4);
b1.insert(89);
b2.insert(5);
b1.intersect(&b2);
assert_bitset(&b1, &[4]);
}
#[test]
fn intersect_mixed_2() {
let mut b1 = BitSet::<1>::with(4);
let mut b2 = BitSet::<1>::with(4);
b1.insert(23);
b2.insert(89);
b1.intersect(&b2);
assert_bitset(&b1, &[4]);
}
#[test]
fn intersect_heap() {
let mut b1 = BitSet::<1>::with(4);
let mut b2 = BitSet::<1>::with(4);
b1.insert(89);
b2.insert(90);
b1.intersect(&b2);
assert_bitset(&b1, &[4]);
}
#[test]
fn intersect_heap_2() {
let mut b1 = BitSet::<1>::with(89);
let mut b2 = BitSet::<1>::with(89);
b1.insert(91);
b2.insert(90);
b1.intersect(&b2);
assert_bitset(&b1, &[89]);
}
#[test]
fn multiple_blocks() {
let mut b = BitSet::<2>::with(120);
b.insert(45);
assert!(matches!(b, BitSet::Inline(_)));
assert_bitset(&b, &[45, 120]);
}
}

View file

@ -0,0 +1,374 @@
//! Track visible definitions of a symbol, and applicable constraints per definition.
//!
//! These data structures operate entirely on scope-local newtype-indices for definitions and
//! constraints, referring to their location in the `all_definitions` and `all_constraints`
//! indexvecs in [`super::UseDefMapBuilder`].
//!
//! We need to track arbitrary associations between definitions and constraints, not just a single
//! set of currently dominating constraints (where "dominating" means "control flow must have
//! passed through it to reach this point"), because we can have dominating constraints that apply
//! to some definitions but not others, as in this code:
//!
//! ```python
//! x = 1 if flag else None
//! if x is not None:
//! if flag2:
//! x = 2 if flag else None
//! x
//! ```
//!
//! The `x is not None` constraint dominates the final use of `x`, but it applies only to the first
//! definition of `x`, not the second, so `None` is a possible value for `x`.
//!
//! And we can't just track, for each definition, an index into a list of dominating constraints,
//! either, because we can have definitions which are still visible, but subject to constraints
//! that are no longer dominating, as in this code:
//!
//! ```python
//! x = 0
//! if flag1:
//! x = 1 if flag2 else None
//! assert x is not None
//! x
//! ```
//!
//! From the point of view of the final use of `x`, the `x is not None` constraint no longer
//! dominates, but it does dominate the `x = 1 if flag2 else None` definition, so we have to keep
//! track of that.
//!
//! The data structures used here ([`BitSet`] and [`smallvec::SmallVec`]) optimize for keeping all
//! data inline (avoiding lots of scattered allocations) in small-to-medium cases, and falling back
//! to heap allocation to be able to scale to arbitrary numbers of definitions and constraints when
//! needed.
use super::bitset::{BitSet, BitSetIterator};
use ruff_index::newtype_index;
use smallvec::SmallVec;
/// A newtype-index for a definition in a particular scope.
#[newtype_index]
pub(super) struct ScopedDefinitionId;
/// A newtype-index for a constraint expression in a particular scope.
#[newtype_index]
pub(super) struct ScopedConstraintId;
/// Can reference this * 64 total definitions inline; more will fall back to the heap.
const INLINE_DEFINITION_BLOCKS: usize = 3;
/// A [`BitSet`] of [`ScopedDefinitionId`], representing visible definitions of a symbol in a scope.
type Definitions = BitSet<INLINE_DEFINITION_BLOCKS>;
type DefinitionsIterator<'a> = BitSetIterator<'a, INLINE_DEFINITION_BLOCKS>;
/// Can reference this * 64 total constraints inline; more will fall back to the heap.
const INLINE_CONSTRAINT_BLOCKS: usize = 2;
/// Can keep inline this many visible definitions per symbol at a given time; more will go to heap.
const INLINE_VISIBLE_DEFINITIONS_PER_SYMBOL: usize = 4;
/// One [`BitSet`] of applicable [`ScopedConstraintId`] per visible definition.
type InlineConstraintArray =
[BitSet<INLINE_CONSTRAINT_BLOCKS>; INLINE_VISIBLE_DEFINITIONS_PER_SYMBOL];
type Constraints = SmallVec<InlineConstraintArray>;
type ConstraintsIterator<'a> = std::slice::Iter<'a, BitSet<INLINE_CONSTRAINT_BLOCKS>>;
type ConstraintsIntoIterator = smallvec::IntoIter<InlineConstraintArray>;
/// Visible definitions and narrowing constraints for a single symbol at some point in control flow.
#[derive(Clone, Debug, PartialEq, Eq)]
pub(super) struct SymbolState {
/// [`BitSet`]: which [`ScopedDefinitionId`] are visible for this symbol?
visible_definitions: Definitions,
/// For each definition, which [`ScopedConstraintId`] apply?
///
/// This is a [`smallvec::SmallVec`] which should always have one [`BitSet`] of constraints per
/// definition in `visible_definitions`.
constraints: Constraints,
/// Could the symbol be unbound at this point?
may_be_unbound: bool,
}
/// A single [`ScopedDefinitionId`] with an iterator of its applicable [`ScopedConstraintId`].
#[derive(Debug)]
pub(super) struct DefinitionIdWithConstraints<'a> {
pub(super) definition: ScopedDefinitionId,
pub(super) constraint_ids: ConstraintIdIterator<'a>,
}
impl SymbolState {
/// Return a new [`SymbolState`] representing an unbound symbol.
pub(super) fn unbound() -> Self {
Self {
visible_definitions: Definitions::default(),
constraints: Constraints::default(),
may_be_unbound: true,
}
}
/// Return a new [`SymbolState`] representing a symbol with a single visible definition.
pub(super) fn with(definition_id: ScopedDefinitionId) -> Self {
let mut constraints = Constraints::with_capacity(1);
constraints.push(BitSet::default());
Self {
visible_definitions: Definitions::with(definition_id.into()),
constraints,
may_be_unbound: false,
}
}
/// Add Unbound as a possibility for this symbol.
pub(super) fn add_unbound(&mut self) {
self.may_be_unbound = true;
}
/// Add given constraint to all currently-visible definitions.
pub(super) fn add_constraint(&mut self, constraint_id: ScopedConstraintId) {
for bitset in &mut self.constraints {
bitset.insert(constraint_id.into());
}
}
/// Merge another [`SymbolState`] into this one.
pub(super) fn merge(&mut self, b: SymbolState) {
let mut a = Self {
visible_definitions: Definitions::default(),
constraints: Constraints::default(),
may_be_unbound: self.may_be_unbound || b.may_be_unbound,
};
std::mem::swap(&mut a, self);
let mut a_defs_iter = a.visible_definitions.iter();
let mut b_defs_iter = b.visible_definitions.iter();
let mut a_constraints_iter = a.constraints.into_iter();
let mut b_constraints_iter = b.constraints.into_iter();
let mut opt_a_def: Option<u32> = a_defs_iter.next();
let mut opt_b_def: Option<u32> = b_defs_iter.next();
// Iterate through the definitions from `a` and `b`, always processing the lower definition
// ID first, and pushing each definition onto the merged `SymbolState` with its
// constraints. If a definition is found in both `a` and `b`, push it with the intersection
// of the constraints from the two paths; a constraint that applies from only one possible
// path is irrelevant.
// Helper to push `def`, with constraints in `constraints_iter`, onto `self`.
let push = |def, constraints_iter: &mut ConstraintsIntoIterator, merged: &mut Self| {
merged.visible_definitions.insert(def);
// SAFETY: we only ever create SymbolState with either no definitions and no constraint
// bitsets (`::unbound`) or one definition and one constraint bitset (`::with`), and
// `::merge` always pushes one definition and one constraint bitset together (just
// below), so the number of definitions and the number of constraint bitsets can never
// get out of sync.
let constraints = constraints_iter
.next()
.expect("definitions and constraints length mismatch");
merged.constraints.push(constraints);
};
loop {
match (opt_a_def, opt_b_def) {
(Some(a_def), Some(b_def)) => match a_def.cmp(&b_def) {
std::cmp::Ordering::Less => {
// Next definition ID is only in `a`, push it to `self` and advance `a`.
push(a_def, &mut a_constraints_iter, self);
opt_a_def = a_defs_iter.next();
}
std::cmp::Ordering::Greater => {
// Next definition ID is only in `b`, push it to `self` and advance `b`.
push(b_def, &mut b_constraints_iter, self);
opt_b_def = b_defs_iter.next();
}
std::cmp::Ordering::Equal => {
// Next definition is in both; push to `self` and intersect constraints.
push(a_def, &mut b_constraints_iter, self);
// SAFETY: we only ever create SymbolState with either no definitions and
// no constraint bitsets (`::unbound`) or one definition and one constraint
// bitset (`::with`), and `::merge` always pushes one definition and one
// constraint bitset together (just below), so the number of definitions
// and the number of constraint bitsets can never get out of sync.
let a_constraints = a_constraints_iter
.next()
.expect("definitions and constraints length mismatch");
// If the same definition is visible through both paths, any constraint
// that applies on only one path is irrelevant to the resulting type from
// unioning the two paths, so we intersect the constraints.
self.constraints
.last_mut()
.unwrap()
.intersect(&a_constraints);
opt_a_def = a_defs_iter.next();
opt_b_def = b_defs_iter.next();
}
},
(Some(a_def), None) => {
// We've exhausted `b`, just push the def from `a` and move on to the next.
push(a_def, &mut a_constraints_iter, self);
opt_a_def = a_defs_iter.next();
}
(None, Some(b_def)) => {
// We've exhausted `a`, just push the def from `b` and move on to the next.
push(b_def, &mut b_constraints_iter, self);
opt_b_def = b_defs_iter.next();
}
(None, None) => break,
}
}
}
/// Get iterator over visible definitions with constraints.
pub(super) fn visible_definitions(&self) -> DefinitionIdWithConstraintsIterator {
DefinitionIdWithConstraintsIterator {
definitions: self.visible_definitions.iter(),
constraints: self.constraints.iter(),
}
}
/// Could the symbol be unbound?
pub(super) fn may_be_unbound(&self) -> bool {
self.may_be_unbound
}
}
/// The default state of a symbol (if we've seen no definitions of it) is unbound.
impl Default for SymbolState {
fn default() -> Self {
SymbolState::unbound()
}
}
#[derive(Debug)]
pub(super) struct DefinitionIdWithConstraintsIterator<'a> {
definitions: DefinitionsIterator<'a>,
constraints: ConstraintsIterator<'a>,
}
impl<'a> Iterator for DefinitionIdWithConstraintsIterator<'a> {
type Item = DefinitionIdWithConstraints<'a>;
fn next(&mut self) -> Option<Self::Item> {
match (self.definitions.next(), self.constraints.next()) {
(None, None) => None,
(Some(def), Some(constraints)) => Some(DefinitionIdWithConstraints {
definition: ScopedDefinitionId::from_u32(def),
constraint_ids: ConstraintIdIterator {
wrapped: constraints.iter(),
},
}),
// SAFETY: see above.
_ => unreachable!("definitions and constraints length mismatch"),
}
}
}
impl std::iter::FusedIterator for DefinitionIdWithConstraintsIterator<'_> {}
#[derive(Debug)]
pub(super) struct ConstraintIdIterator<'a> {
wrapped: BitSetIterator<'a, INLINE_CONSTRAINT_BLOCKS>,
}
impl Iterator for ConstraintIdIterator<'_> {
type Item = ScopedConstraintId;
fn next(&mut self) -> Option<Self::Item> {
self.wrapped.next().map(ScopedConstraintId::from_u32)
}
}
impl std::iter::FusedIterator for ConstraintIdIterator<'_> {}
#[cfg(test)]
mod tests {
use super::{ScopedConstraintId, ScopedDefinitionId, SymbolState};
impl SymbolState {
pub(crate) fn assert(&self, may_be_unbound: bool, expected: &[&str]) {
assert_eq!(self.may_be_unbound(), may_be_unbound);
let actual = self
.visible_definitions()
.map(|def_id_with_constraints| {
format!(
"{}<{}>",
def_id_with_constraints.definition.as_u32(),
def_id_with_constraints
.constraint_ids
.map(ScopedConstraintId::as_u32)
.map(|idx| idx.to_string())
.collect::<Vec<_>>()
.join(", ")
)
})
.collect::<Vec<_>>();
assert_eq!(actual, expected);
}
}
#[test]
fn unbound() {
let cd = SymbolState::unbound();
cd.assert(true, &[]);
}
#[test]
fn with() {
let cd = SymbolState::with(ScopedDefinitionId::from_u32(0));
cd.assert(false, &["0<>"]);
}
#[test]
fn add_unbound() {
let mut cd = SymbolState::with(ScopedDefinitionId::from_u32(0));
cd.add_unbound();
cd.assert(true, &["0<>"]);
}
#[test]
fn add_constraint() {
let mut cd = SymbolState::with(ScopedDefinitionId::from_u32(0));
cd.add_constraint(ScopedConstraintId::from_u32(0));
cd.assert(false, &["0<0>"]);
}
#[test]
fn merge() {
// merging the same definition with the same constraint keeps the constraint
let mut cd0a = SymbolState::with(ScopedDefinitionId::from_u32(0));
cd0a.add_constraint(ScopedConstraintId::from_u32(0));
let mut cd0b = SymbolState::with(ScopedDefinitionId::from_u32(0));
cd0b.add_constraint(ScopedConstraintId::from_u32(0));
cd0a.merge(cd0b);
let mut cd0 = cd0a;
cd0.assert(false, &["0<0>"]);
// merging the same definition with differing constraints drops all constraints
let mut cd1a = SymbolState::with(ScopedDefinitionId::from_u32(1));
cd1a.add_constraint(ScopedConstraintId::from_u32(1));
let mut cd1b = SymbolState::with(ScopedDefinitionId::from_u32(1));
cd1b.add_constraint(ScopedConstraintId::from_u32(2));
cd1a.merge(cd1b);
let cd1 = cd1a;
cd1.assert(false, &["1<>"]);
// merging a constrained definition with unbound keeps both
let mut cd2a = SymbolState::with(ScopedDefinitionId::from_u32(2));
cd2a.add_constraint(ScopedConstraintId::from_u32(3));
let cd2b = SymbolState::unbound();
cd2a.merge(cd2b);
let cd2 = cd2a;
cd2.assert(true, &["2<3>"]);
// merging different definitions keeps them each with their existing constraints
cd0.merge(cd2);
let cd = cd0;
cd.assert(true, &["0<0>", "2<3>"]);
}
}

View file

@ -4,15 +4,22 @@ use ruff_python_ast::name::Name;
use crate::builtins::builtins_scope;
use crate::semantic_index::definition::Definition;
use crate::semantic_index::symbol::{ScopeId, ScopedSymbolId};
use crate::semantic_index::{global_scope, symbol_table, use_def_map};
use crate::semantic_index::{
global_scope, symbol_table, use_def_map, DefinitionWithConstraints,
DefinitionWithConstraintsIterator,
};
use crate::types::narrow::narrowing_constraint;
use crate::{Db, FxOrderSet};
mod builder;
mod display;
mod infer;
mod narrow;
pub(crate) use self::builder::UnionBuilder;
pub(crate) use self::infer::{infer_definition_types, infer_scope_types};
pub(crate) use self::builder::{IntersectionBuilder, UnionBuilder};
pub(crate) use self::infer::{
infer_definition_types, infer_expression_types, infer_scope_types, TypeInference,
};
/// Infer the public type of a symbol (its type as seen from outside its scope).
pub(crate) fn symbol_ty<'db>(
@ -82,10 +89,31 @@ pub(crate) fn definition_ty<'db>(db: &'db dyn Db, definition: Definition<'db>) -
/// provide an `unbound_ty`.
pub(crate) fn definitions_ty<'db>(
db: &'db dyn Db,
definitions: &[Definition<'db>],
definitions_with_constraints: DefinitionWithConstraintsIterator<'_, 'db>,
unbound_ty: Option<Type<'db>>,
) -> Type<'db> {
let def_types = definitions.iter().map(|def| definition_ty(db, *def));
let def_types = definitions_with_constraints.map(
|DefinitionWithConstraints {
definition,
constraints,
}| {
let mut constraint_tys =
constraints.filter_map(|test| narrowing_constraint(db, test, definition));
let definition_ty = definition_ty(db, definition);
if let Some(first_constraint_ty) = constraint_tys.next() {
let mut builder = IntersectionBuilder::new(db);
builder = builder
.add_positive(definition_ty)
.add_positive(first_constraint_ty);
for constraint_ty in constraint_tys {
builder = builder.add_positive(constraint_ty);
}
builder.build()
} else {
definition_ty
}
},
);
let mut all_types = unbound_ty.into_iter().chain(def_types);
let Some(first) = all_types.next() else {

View file

@ -65,7 +65,6 @@ impl<'db> UnionBuilder<'db> {
}
}
#[allow(unused)]
#[derive(Clone)]
pub(crate) struct IntersectionBuilder<'db> {
// Really this builds a union-of-intersections, because we always keep our set-theoretic types
@ -78,8 +77,7 @@ pub(crate) struct IntersectionBuilder<'db> {
}
impl<'db> IntersectionBuilder<'db> {
#[allow(dead_code)]
fn new(db: &'db dyn Db) -> Self {
pub(crate) fn new(db: &'db dyn Db) -> Self {
Self {
db,
intersections: vec![InnerIntersectionBuilder::new()],
@ -93,8 +91,7 @@ impl<'db> IntersectionBuilder<'db> {
}
}
#[allow(dead_code)]
fn add_positive(mut self, ty: Type<'db>) -> Self {
pub(crate) fn add_positive(mut self, ty: Type<'db>) -> Self {
if let Type::Union(union) = ty {
// Distribute ourself over this union: for each union element, clone ourself and
// intersect with that union element, then create a new union-of-intersections with all
@ -122,8 +119,7 @@ impl<'db> IntersectionBuilder<'db> {
}
}
#[allow(dead_code)]
fn add_negative(mut self, ty: Type<'db>) -> Self {
pub(crate) fn add_negative(mut self, ty: Type<'db>) -> Self {
// See comments above in `add_positive`; this is just the negated version.
if let Type::Union(union) = ty {
union
@ -142,8 +138,7 @@ impl<'db> IntersectionBuilder<'db> {
}
}
#[allow(dead_code)]
fn build(mut self) -> Type<'db> {
pub(crate) fn build(mut self) -> Type<'db> {
// Avoid allocating the UnionBuilder unnecessarily if we have just one intersection:
if self.intersections.len() == 1 {
self.intersections.pop().unwrap().build(self.db)
@ -157,7 +152,6 @@ impl<'db> IntersectionBuilder<'db> {
}
}
#[allow(unused)]
#[derive(Debug, Clone, Default)]
struct InnerIntersectionBuilder<'db> {
positive: FxOrderSet<Type<'db>>,
@ -223,6 +217,16 @@ impl<'db> InnerIntersectionBuilder<'db> {
self.positive.retain(Type::is_unbound);
self.negative.clear();
}
// None intersects only with object
for pos in &self.positive {
if let Type::Instance(_) = pos {
// could be `object` type
} else {
self.negative.remove(&Type::None);
break;
}
}
}
fn build(mut self, db: &'db dyn Db) -> Type<'db> {
@ -453,4 +457,15 @@ mod tests {
assert_eq!(ty, Type::IntLiteral(1));
}
#[test]
fn build_intersection_simplify_negative_none() {
let db = setup_db();
let ty = IntersectionBuilder::new(&db)
.add_negative(Type::None)
.add_positive(Type::IntLiteral(1))
.build();
assert_eq!(ty, Type::IntLiteral(1));
}
}

View file

@ -319,7 +319,7 @@ impl<'db> TypeInferenceBuilder<'db> {
}
fn infer_region_expression(&mut self, expression: Expression<'db>) {
self.infer_expression(expression.node(self.db));
self.infer_expression(expression.node_ref(self.db));
}
fn infer_module(&mut self, module: &ast::ModModule) {
@ -2587,6 +2587,26 @@ mod tests {
Ok(())
}
#[test]
fn narrow_not_none() -> anyhow::Result<()> {
let mut db = setup_db();
db.write_dedented(
"/src/a.py",
"
x = None if flag else 1
y = 0
if x is not None:
y = x
",
)?;
assert_public_ty(&db, "/src/a.py", "x", "Literal[1] | None");
assert_public_ty(&db, "/src/a.py", "y", "Literal[0, 1]");
Ok(())
}
#[test]
fn while_loop() -> anyhow::Result<()> {
let mut db = setup_db();
@ -2684,10 +2704,11 @@ mod tests {
fn first_public_def<'db>(db: &'db TestDb, file: File, name: &str) -> Definition<'db> {
let scope = global_scope(db, file);
*use_def_map(db, scope)
use_def_map(db, scope)
.public_definitions(symbol_table(db, scope).symbol_id_by_name(name).unwrap())
.first()
.next()
.unwrap()
.definition
}
#[test]

View file

@ -0,0 +1,115 @@
use crate::semantic_index::ast_ids::HasScopedAstId;
use crate::semantic_index::definition::Definition;
use crate::semantic_index::expression::Expression;
use crate::semantic_index::symbol::{ScopeId, ScopedSymbolId, SymbolTable};
use crate::semantic_index::symbol_table;
use crate::types::{infer_expression_types, IntersectionBuilder, Type, TypeInference};
use crate::Db;
use ruff_python_ast as ast;
use rustc_hash::FxHashMap;
use std::sync::Arc;
/// Return the type constraint that `test` (if true) would place on `definition`, if any.
///
/// For example, if we have this code:
///
/// ```python
/// y = 1 if flag else None
/// x = 1 if flag else None
/// if x is not None:
/// ...
/// ```
///
/// The `test` expression `x is not None` places the constraint "not None" on the definition of
/// `x`, so in that case we'd return `Some(Type::Intersection(negative=[Type::None]))`.
///
/// But if we called this with the same `test` expression, but the `definition` of `y`, no
/// constraint is applied to that definition, so we'd just return `None`.
pub(crate) fn narrowing_constraint<'db>(
db: &'db dyn Db,
test: Expression<'db>,
definition: Definition<'db>,
) -> Option<Type<'db>> {
all_narrowing_constraints(db, test)
.get(&definition.symbol(db))
.copied()
}
#[salsa::tracked(return_ref)]
fn all_narrowing_constraints<'db>(
db: &'db dyn Db,
test: Expression<'db>,
) -> NarrowingConstraints<'db> {
NarrowingConstraintsBuilder::new(db, test).finish()
}
type NarrowingConstraints<'db> = FxHashMap<ScopedSymbolId, Type<'db>>;
struct NarrowingConstraintsBuilder<'db> {
db: &'db dyn Db,
expression: Expression<'db>,
constraints: NarrowingConstraints<'db>,
}
impl<'db> NarrowingConstraintsBuilder<'db> {
fn new(db: &'db dyn Db, expression: Expression<'db>) -> Self {
Self {
db,
expression,
constraints: NarrowingConstraints::default(),
}
}
fn finish(mut self) -> NarrowingConstraints<'db> {
if let ast::Expr::Compare(expr_compare) = self.expression.node_ref(self.db).node() {
self.add_expr_compare(expr_compare);
}
// TODO other test expression kinds
self.constraints.shrink_to_fit();
self.constraints
}
fn symbols(&self) -> Arc<SymbolTable> {
symbol_table(self.db, self.scope())
}
fn scope(&self) -> ScopeId<'db> {
self.expression.scope(self.db)
}
fn inference(&self) -> &'db TypeInference<'db> {
infer_expression_types(self.db, self.expression)
}
fn add_expr_compare(&mut self, expr_compare: &ast::ExprCompare) {
let ast::ExprCompare {
range: _,
left,
ops,
comparators,
} = expr_compare;
if let ast::Expr::Name(ast::ExprName {
range: _,
id,
ctx: _,
}) = left.as_ref()
{
// SAFETY: we should always have a symbol for every Name node.
let symbol = self.symbols().symbol_id_by_name(id).unwrap();
let scope = self.scope();
let inference = self.inference();
for (op, comparator) in std::iter::zip(&**ops, &**comparators) {
let comp_ty = inference.expression_ty(comparator.scoped_ast_id(self.db, scope));
if matches!(op, ast::CmpOp::IsNot) {
let ty = IntersectionBuilder::new(self.db)
.add_negative(comp_ty)
.build();
self.constraints.insert(symbol, ty);
};
// TODO other comparison types
}
}
}
}