mirror of
https://github.com/astral-sh/ruff.git
synced 2025-08-02 09:52:18 +00:00
[red-knot] type narrowing (#12706)
Extend the `UseDefMap` to also track which constraints (provided by e.g. `if` tests) apply to each visible definition. Uses a custom `BitSet` and `BitSetArray` to track which constraints apply to which definitions, while keeping data inline as much as possible.
This commit is contained in:
parent
a9847af6e8
commit
6359e55383
12 changed files with 1065 additions and 242 deletions
|
@ -29,6 +29,8 @@ salsa = { workspace = true }
|
|||
tracing = { workspace = true }
|
||||
rustc-hash = { workspace = true }
|
||||
hashbrown = { workspace = true }
|
||||
smallvec = { workspace = true }
|
||||
static_assertions = { workspace = true }
|
||||
|
||||
[build-dependencies]
|
||||
path-slash = { workspace = true }
|
||||
|
|
|
@ -16,10 +16,9 @@ use crate::semantic_index::expression::Expression;
|
|||
use crate::semantic_index::symbol::{
|
||||
FileScopeId, NodeWithScopeKey, NodeWithScopeRef, Scope, ScopeId, ScopedSymbolId, SymbolTable,
|
||||
};
|
||||
use crate::semantic_index::use_def::UseDefMap;
|
||||
use crate::Db;
|
||||
|
||||
pub(crate) use self::use_def::UseDefMap;
|
||||
|
||||
pub mod ast_ids;
|
||||
mod builder;
|
||||
pub mod definition;
|
||||
|
@ -27,6 +26,8 @@ pub mod expression;
|
|||
pub mod symbol;
|
||||
mod use_def;
|
||||
|
||||
pub(crate) use self::use_def::{DefinitionWithConstraints, DefinitionWithConstraintsIterator};
|
||||
|
||||
type SymbolMap = hashbrown::HashMap<ScopedSymbolId, (), ()>;
|
||||
|
||||
/// Returns the semantic index for `file`.
|
||||
|
@ -310,12 +311,29 @@ mod tests {
|
|||
use ruff_text_size::{Ranged, TextRange};
|
||||
|
||||
use crate::db::tests::TestDb;
|
||||
use crate::semantic_index::ast_ids::HasScopedUseId;
|
||||
use crate::semantic_index::definition::DefinitionKind;
|
||||
use crate::semantic_index::symbol::{FileScopeId, Scope, ScopeKind, SymbolTable};
|
||||
use crate::semantic_index::ast_ids::{HasScopedUseId, ScopedUseId};
|
||||
use crate::semantic_index::definition::{Definition, DefinitionKind};
|
||||
use crate::semantic_index::symbol::{
|
||||
FileScopeId, Scope, ScopeKind, ScopedSymbolId, SymbolTable,
|
||||
};
|
||||
use crate::semantic_index::use_def::UseDefMap;
|
||||
use crate::semantic_index::{global_scope, semantic_index, symbol_table, use_def_map};
|
||||
use crate::Db;
|
||||
|
||||
impl UseDefMap<'_> {
|
||||
fn first_public_definition(&self, symbol: ScopedSymbolId) -> Option<Definition<'_>> {
|
||||
self.public_definitions(symbol)
|
||||
.next()
|
||||
.map(|constrained_definition| constrained_definition.definition)
|
||||
}
|
||||
|
||||
fn first_use_definition(&self, use_id: ScopedUseId) -> Option<Definition<'_>> {
|
||||
self.use_definitions(use_id)
|
||||
.next()
|
||||
.map(|constrained_definition| constrained_definition.definition)
|
||||
}
|
||||
}
|
||||
|
||||
struct TestCase {
|
||||
db: TestDb,
|
||||
file: File,
|
||||
|
@ -374,9 +392,7 @@ mod tests {
|
|||
let foo = global_table.symbol_id_by_name("foo").unwrap();
|
||||
|
||||
let use_def = use_def_map(&db, scope);
|
||||
let [definition] = use_def.public_definitions(foo) else {
|
||||
panic!("expected one definition");
|
||||
};
|
||||
let definition = use_def.first_public_definition(foo).unwrap();
|
||||
assert!(matches!(definition.node(&db), DefinitionKind::Import(_)));
|
||||
}
|
||||
|
||||
|
@ -411,13 +427,13 @@ mod tests {
|
|||
);
|
||||
|
||||
let use_def = use_def_map(&db, scope);
|
||||
let [definition] = use_def.public_definitions(
|
||||
global_table
|
||||
.symbol_id_by_name("foo")
|
||||
.expect("symbol to exist"),
|
||||
) else {
|
||||
panic!("expected one definition");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(
|
||||
global_table
|
||||
.symbol_id_by_name("foo")
|
||||
.expect("symbol to exist"),
|
||||
)
|
||||
.unwrap();
|
||||
assert!(matches!(
|
||||
definition.node(&db),
|
||||
DefinitionKind::ImportFrom(_)
|
||||
|
@ -438,11 +454,9 @@ mod tests {
|
|||
"a symbol used but not defined in a scope should have only the used flag"
|
||||
);
|
||||
let use_def = use_def_map(&db, scope);
|
||||
let [definition] =
|
||||
use_def.public_definitions(global_table.symbol_id_by_name("x").expect("symbol exists"))
|
||||
else {
|
||||
panic!("expected one definition");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(global_table.symbol_id_by_name("x").expect("symbol exists"))
|
||||
.unwrap();
|
||||
assert!(matches!(
|
||||
definition.node(&db),
|
||||
DefinitionKind::Assignment(_)
|
||||
|
@ -477,11 +491,9 @@ y = 2
|
|||
assert_eq!(names(&class_table), vec!["x"]);
|
||||
|
||||
let use_def = index.use_def_map(class_scope_id);
|
||||
let [definition] =
|
||||
use_def.public_definitions(class_table.symbol_id_by_name("x").expect("symbol exists"))
|
||||
else {
|
||||
panic!("expected one definition");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(class_table.symbol_id_by_name("x").expect("symbol exists"))
|
||||
.unwrap();
|
||||
assert!(matches!(
|
||||
definition.node(&db),
|
||||
DefinitionKind::Assignment(_)
|
||||
|
@ -515,13 +527,13 @@ y = 2
|
|||
assert_eq!(names(&function_table), vec!["x"]);
|
||||
|
||||
let use_def = index.use_def_map(function_scope_id);
|
||||
let [definition] = use_def.public_definitions(
|
||||
function_table
|
||||
.symbol_id_by_name("x")
|
||||
.expect("symbol exists"),
|
||||
) else {
|
||||
panic!("expected one definition");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(
|
||||
function_table
|
||||
.symbol_id_by_name("x")
|
||||
.expect("symbol exists"),
|
||||
)
|
||||
.unwrap();
|
||||
assert!(matches!(
|
||||
definition.node(&db),
|
||||
DefinitionKind::Assignment(_)
|
||||
|
@ -557,26 +569,26 @@ def f(a: str, /, b: str, c: int = 1, *args, d: int = 2, **kwargs):
|
|||
|
||||
let use_def = index.use_def_map(function_scope_id);
|
||||
for name in ["a", "b", "c", "d"] {
|
||||
let [definition] = use_def.public_definitions(
|
||||
function_table
|
||||
.symbol_id_by_name(name)
|
||||
.expect("symbol exists"),
|
||||
) else {
|
||||
panic!("Expected parameter definition for {name}");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(
|
||||
function_table
|
||||
.symbol_id_by_name(name)
|
||||
.expect("symbol exists"),
|
||||
)
|
||||
.unwrap();
|
||||
assert!(matches!(
|
||||
definition.node(&db),
|
||||
DefinitionKind::ParameterWithDefault(_)
|
||||
));
|
||||
}
|
||||
for name in ["args", "kwargs"] {
|
||||
let [definition] = use_def.public_definitions(
|
||||
function_table
|
||||
.symbol_id_by_name(name)
|
||||
.expect("symbol exists"),
|
||||
) else {
|
||||
panic!("Expected parameter definition for {name}");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(
|
||||
function_table
|
||||
.symbol_id_by_name(name)
|
||||
.expect("symbol exists"),
|
||||
)
|
||||
.unwrap();
|
||||
assert!(matches!(definition.node(&db), DefinitionKind::Parameter(_)));
|
||||
}
|
||||
}
|
||||
|
@ -605,22 +617,22 @@ def f(a: str, /, b: str, c: int = 1, *args, d: int = 2, **kwargs):
|
|||
|
||||
let use_def = index.use_def_map(lambda_scope_id);
|
||||
for name in ["a", "b", "c", "d"] {
|
||||
let [definition] = use_def
|
||||
.public_definitions(lambda_table.symbol_id_by_name(name).expect("symbol exists"))
|
||||
else {
|
||||
panic!("Expected parameter definition for {name}");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(
|
||||
lambda_table.symbol_id_by_name(name).expect("symbol exists"),
|
||||
)
|
||||
.unwrap();
|
||||
assert!(matches!(
|
||||
definition.node(&db),
|
||||
DefinitionKind::ParameterWithDefault(_)
|
||||
));
|
||||
}
|
||||
for name in ["args", "kwargs"] {
|
||||
let [definition] = use_def
|
||||
.public_definitions(lambda_table.symbol_id_by_name(name).expect("symbol exists"))
|
||||
else {
|
||||
panic!("Expected parameter definition for {name}");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(
|
||||
lambda_table.symbol_id_by_name(name).expect("symbol exists"),
|
||||
)
|
||||
.unwrap();
|
||||
assert!(matches!(definition.node(&db), DefinitionKind::Parameter(_)));
|
||||
}
|
||||
}
|
||||
|
@ -691,9 +703,7 @@ def f(a: str, /, b: str, c: int = 1, *args, d: int = 2, **kwargs):
|
|||
let element_use_id =
|
||||
element.scoped_use_id(&db, comprehension_scope_id.to_scope_id(&db, file));
|
||||
|
||||
let [definition] = use_def.use_definitions(element_use_id) else {
|
||||
panic!("expected one definition")
|
||||
};
|
||||
let definition = use_def.first_use_definition(element_use_id).unwrap();
|
||||
let DefinitionKind::Comprehension(comprehension) = definition.node(&db) else {
|
||||
panic!("expected generator definition")
|
||||
};
|
||||
|
@ -790,13 +800,13 @@ def func():
|
|||
assert_eq!(names(&func2_table), vec!["y"]);
|
||||
|
||||
let use_def = index.use_def_map(FileScopeId::global());
|
||||
let [definition] = use_def.public_definitions(
|
||||
global_table
|
||||
.symbol_id_by_name("func")
|
||||
.expect("symbol exists"),
|
||||
) else {
|
||||
panic!("expected one definition");
|
||||
};
|
||||
let definition = use_def
|
||||
.first_public_definition(
|
||||
global_table
|
||||
.symbol_id_by_name("func")
|
||||
.expect("symbol exists"),
|
||||
)
|
||||
.unwrap();
|
||||
assert!(matches!(definition.node(&db), DefinitionKind::Function(_)));
|
||||
}
|
||||
|
||||
|
@ -897,9 +907,7 @@ class C[T]:
|
|||
};
|
||||
let x_use_id = x_use_expr_name.scoped_use_id(&db, scope);
|
||||
let use_def = use_def_map(&db, scope);
|
||||
let [definition] = use_def.use_definitions(x_use_id) else {
|
||||
panic!("expected one definition");
|
||||
};
|
||||
let definition = use_def.first_use_definition(x_use_id).unwrap();
|
||||
let DefinitionKind::Assignment(assignment) = definition.node(&db) else {
|
||||
panic!("should be an assignment definition")
|
||||
};
|
||||
|
|
|
@ -155,7 +155,7 @@ impl<'db> SemanticIndexBuilder<'db> {
|
|||
self.current_use_def_map_mut().restore(state);
|
||||
}
|
||||
|
||||
fn flow_merge(&mut self, state: &FlowSnapshot) {
|
||||
fn flow_merge(&mut self, state: FlowSnapshot) {
|
||||
self.current_use_def_map_mut().merge(state);
|
||||
}
|
||||
|
||||
|
@ -195,9 +195,16 @@ impl<'db> SemanticIndexBuilder<'db> {
|
|||
definition
|
||||
}
|
||||
|
||||
fn add_constraint(&mut self, constraint_node: &ast::Expr) -> Expression<'db> {
|
||||
let expression = self.add_standalone_expression(constraint_node);
|
||||
self.current_use_def_map_mut().record_constraint(expression);
|
||||
|
||||
expression
|
||||
}
|
||||
|
||||
/// Record an expression that needs to be a Salsa ingredient, because we need to infer its type
|
||||
/// standalone (type narrowing tests, RHS of an assignment.)
|
||||
fn add_standalone_expression(&mut self, expression_node: &ast::Expr) {
|
||||
fn add_standalone_expression(&mut self, expression_node: &ast::Expr) -> Expression<'db> {
|
||||
let expression = Expression::new(
|
||||
self.db,
|
||||
self.file,
|
||||
|
@ -210,6 +217,7 @@ impl<'db> SemanticIndexBuilder<'db> {
|
|||
);
|
||||
self.expressions_by_node
|
||||
.insert(expression_node.into(), expression);
|
||||
expression
|
||||
}
|
||||
|
||||
fn with_type_params(
|
||||
|
@ -476,6 +484,7 @@ where
|
|||
ast::Stmt::If(node) => {
|
||||
self.visit_expr(&node.test);
|
||||
let pre_if = self.flow_snapshot();
|
||||
self.add_constraint(&node.test);
|
||||
self.visit_body(&node.body);
|
||||
let mut post_clauses: Vec<FlowSnapshot> = vec![];
|
||||
for clause in &node.elif_else_clauses {
|
||||
|
@ -488,7 +497,7 @@ where
|
|||
self.visit_elif_else_clause(clause);
|
||||
}
|
||||
for post_clause_state in post_clauses {
|
||||
self.flow_merge(&post_clause_state);
|
||||
self.flow_merge(post_clause_state);
|
||||
}
|
||||
let has_else = node
|
||||
.elif_else_clauses
|
||||
|
@ -497,7 +506,7 @@ where
|
|||
if !has_else {
|
||||
// if there's no else clause, then it's possible we took none of the branches,
|
||||
// and the pre_if state can reach here
|
||||
self.flow_merge(&pre_if);
|
||||
self.flow_merge(pre_if);
|
||||
}
|
||||
}
|
||||
ast::Stmt::While(node) => {
|
||||
|
@ -515,13 +524,13 @@ where
|
|||
|
||||
// We may execute the `else` clause without ever executing the body, so merge in
|
||||
// the pre-loop state before visiting `else`.
|
||||
self.flow_merge(&pre_loop);
|
||||
self.flow_merge(pre_loop);
|
||||
self.visit_body(&node.orelse);
|
||||
|
||||
// Breaking out of a while loop bypasses the `else` clause, so merge in the break
|
||||
// states after visiting `else`.
|
||||
for break_state in break_states {
|
||||
self.flow_merge(&break_state);
|
||||
self.flow_merge(break_state);
|
||||
}
|
||||
}
|
||||
ast::Stmt::Break(_) => {
|
||||
|
@ -631,7 +640,7 @@ where
|
|||
let post_body = self.flow_snapshot();
|
||||
self.flow_restore(pre_if);
|
||||
self.visit_expr(orelse);
|
||||
self.flow_merge(&post_body);
|
||||
self.flow_merge(post_body);
|
||||
}
|
||||
ast::Expr::ListComp(
|
||||
list_comprehension @ ast::ExprListComp {
|
||||
|
|
|
@ -21,7 +21,7 @@ pub(crate) struct Expression<'db> {
|
|||
/// The expression node.
|
||||
#[no_eq]
|
||||
#[return_ref]
|
||||
pub(crate) node: AstNodeRef<ast::Expr>,
|
||||
pub(crate) node_ref: AstNodeRef<ast::Expr>,
|
||||
|
||||
#[no_eq]
|
||||
count: countme::Count<Expression<'static>>,
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
//! Build a map from each use of a symbol to the definitions visible from that use.
|
||||
//! Build a map from each use of a symbol to the definitions visible from that use, and the
|
||||
//! type-narrowing constraints that apply to each definition.
|
||||
//!
|
||||
//! Let's take this code sample:
|
||||
//!
|
||||
|
@ -6,7 +7,7 @@
|
|||
//! x = 1
|
||||
//! x = 2
|
||||
//! y = x
|
||||
//! if flag:
|
||||
//! if y is not None:
|
||||
//! x = 3
|
||||
//! else:
|
||||
//! x = 4
|
||||
|
@ -34,8 +35,8 @@
|
|||
//! [`AstIds`](crate::semantic_index::ast_ids::AstIds) we number all uses (that means a `Name` node
|
||||
//! with `Load` context) so we have a `ScopedUseId` to efficiently represent each use.
|
||||
//!
|
||||
//! The other case we need to handle is when a symbol is referenced from a different scope (the
|
||||
//! most obvious example of this is an import). We call this "public" use of a symbol. So the other
|
||||
//! Another case we need to handle is when a symbol is referenced from a different scope (the most
|
||||
//! obvious example of this is an import). We call this "public" use of a symbol. So the other
|
||||
//! question we need to be able to answer is, what are the publicly-visible definitions of each
|
||||
//! symbol?
|
||||
//!
|
||||
|
@ -53,42 +54,55 @@
|
|||
//! start.)
|
||||
//!
|
||||
//! So this means that the publicly-visible definitions of a symbol are the definitions still
|
||||
//! visible at the end of the scope.
|
||||
//! visible at the end of the scope; effectively we have an implicit "use" of every symbol at the
|
||||
//! end of the scope.
|
||||
//!
|
||||
//! The data structure we build to answer these two questions is the `UseDefMap`. It has a
|
||||
//! We also need to know, for a given definition of a symbol, what type-narrowing constraints apply
|
||||
//! to it. For instance, in this code sample:
|
||||
//!
|
||||
//! ```python
|
||||
//! x = 1 if flag else None
|
||||
//! if x is not None:
|
||||
//! y = x
|
||||
//! ```
|
||||
//!
|
||||
//! At the use of `x` in `y = x`, the visible definition of `x` is `1 if flag else None`, which
|
||||
//! would infer as the type `Literal[1] | None`. But the constraint `x is not None` dominates this
|
||||
//! use, which means we can rule out the possibility that `x` is `None` here, which should give us
|
||||
//! the type `Literal[1]` for this use.
|
||||
//!
|
||||
//! The data structure we build to answer these questions is the `UseDefMap`. It has a
|
||||
//! `definitions_by_use` vector indexed by [`ScopedUseId`] and a `public_definitions` vector
|
||||
//! indexed by [`ScopedSymbolId`]. The values in each of these vectors are (in principle) a list of
|
||||
//! visible definitions at that use, or at the end of the scope for that symbol.
|
||||
//! visible definitions at that use, or at the end of the scope for that symbol, with a list of the
|
||||
//! dominating constraints for each of those definitions.
|
||||
//!
|
||||
//! In order to avoid vectors-of-vectors and all the allocations that would entail, we don't
|
||||
//! actually store these "list of visible definitions" as a vector of [`Definition`] IDs. Instead,
|
||||
//! the values in `definitions_by_use` and `public_definitions` are a [`Definitions`] struct that
|
||||
//! keeps a [`Range`] into a third vector of [`Definition`] IDs, `all_definitions`. The trick with
|
||||
//! this representation is that it requires that the definitions visible at any given use of a
|
||||
//! symbol are stored sequentially in `all_definitions`.
|
||||
//! In order to avoid vectors-of-vectors-of-vectors and all the allocations that would entail, we
|
||||
//! don't actually store these "list of visible definitions" as a vector of [`Definition`].
|
||||
//! Instead, the values in `definitions_by_use` and `public_definitions` are a [`SymbolState`]
|
||||
//! struct which uses bit-sets to track definitions and constraints in terms of
|
||||
//! [`ScopedDefinitionId`] and [`ScopedConstraintId`], which are indices into the `all_definitions`
|
||||
//! and `all_constraints` indexvecs in the [`UseDefMap`].
|
||||
//!
|
||||
//! There is another special kind of possible "definition" for a symbol: it might be unbound in the
|
||||
//! scope. (This isn't equivalent to "zero visible definitions", since we may go through an `if`
|
||||
//! that has a definition for the symbol, leaving us with one visible definition, but still also
|
||||
//! the "unbound" possibility, since we might not have taken the `if` branch.)
|
||||
//! There is another special kind of possible "definition" for a symbol: there might be a path from
|
||||
//! the scope entry to a given use in which the symbol is never bound.
|
||||
//!
|
||||
//! The simplest way to model "unbound" would be as an actual [`Definition`] itself: the initial
|
||||
//! visible [`Definition`] for each symbol in a scope. But actually modeling it this way would
|
||||
//! dramatically increase the number of [`Definition`] that Salsa must track. Since "unbound" is a
|
||||
//! unnecessarily increase the number of [`Definition`] that Salsa must track. Since "unbound" is a
|
||||
//! special definition in that all symbols share it, and it doesn't have any additional per-symbol
|
||||
//! state, we can represent it more efficiently: we use the `may_be_unbound` boolean on the
|
||||
//! [`Definitions`] struct. If this flag is `true`, it means the symbol/use really has one
|
||||
//! additional visible "definition", which is the unbound state. If this flag is `false`, it means
|
||||
//! we've eliminated the possibility of unbound: every path we've followed includes a definition
|
||||
//! for this symbol.
|
||||
//! state, and constraints are irrelevant to it, we can represent it more efficiently: we use the
|
||||
//! `may_be_unbound` boolean on the [`SymbolState`] struct. If this flag is `true`, it means the
|
||||
//! symbol/use really has one additional visible "definition", which is the unbound state. If this
|
||||
//! flag is `false`, it means we've eliminated the possibility of unbound: every path we've
|
||||
//! followed includes a definition for this symbol.
|
||||
//!
|
||||
//! To build a [`UseDefMap`], the [`UseDefMapBuilder`] is notified of each new use and definition
|
||||
//! as they are encountered by the
|
||||
//! To build a [`UseDefMap`], the [`UseDefMapBuilder`] is notified of each new use, definition, and
|
||||
//! constraint as they are encountered by the
|
||||
//! [`SemanticIndexBuilder`](crate::semantic_index::builder::SemanticIndexBuilder) AST visit. For
|
||||
//! each symbol, the builder tracks the currently-visible definitions for that symbol. When we hit
|
||||
//! a use of a symbol, it records the currently-visible definitions for that symbol as the visible
|
||||
//! definitions for that use. When we reach the end of the scope, it records the currently-visible
|
||||
//! definitions for each symbol as the public definitions of that symbol.
|
||||
//! each symbol, the builder tracks the `SymbolState` for that symbol. When we hit a use of a
|
||||
//! symbol, it records the current state for that symbol for that use. When we reach the end of the
|
||||
//! scope, it records the state for each symbol as the public definitions of that symbol.
|
||||
//!
|
||||
//! Let's walk through the above example. Initially we record for `x` that it has no visible
|
||||
//! definitions, and may be unbound. When we see `x = 1`, we record that as the sole visible
|
||||
|
@ -98,10 +112,11 @@
|
|||
//!
|
||||
//! Then we hit the `if` branch. We visit the `test` node (`flag` in this case), since that will
|
||||
//! happen regardless. Then we take a pre-branch snapshot of the currently visible definitions for
|
||||
//! all symbols, which we'll need later. Then we go ahead and visit the `if` body. When we see `x =
|
||||
//! 3`, it replaces `x = 2` as the sole visible definition of `x`. At the end of the `if` body, we
|
||||
//! take another snapshot of the currently-visible definitions; we'll call this the post-if-body
|
||||
//! snapshot.
|
||||
//! all symbols, which we'll need later. Then we record `flag` as a possible constraint on the
|
||||
//! currently visible definition (`x = 2`), and go ahead and visit the `if` body. When we see `x =
|
||||
//! 3`, it replaces `x = 2` (constrained by `flag`) as the sole visible definition of `x`. At the
|
||||
//! end of the `if` body, we take another snapshot of the currently-visible definitions; we'll call
|
||||
//! this the post-if-body snapshot.
|
||||
//!
|
||||
//! Now we need to visit the `else` clause. The conditions when entering the `else` clause should
|
||||
//! be the pre-if conditions; if we are entering the `else` clause, we know that the `if` test
|
||||
|
@ -125,98 +140,142 @@
|
|||
//! (In the future we may have some other questions we want to answer as well, such as "is this
|
||||
//! definition used?", which will require tracking a bit more info in our map, e.g. a "used" bit
|
||||
//! for each [`Definition`] which is flipped to true when we record that definition for a use.)
|
||||
use self::symbol_state::{
|
||||
ConstraintIdIterator, DefinitionIdWithConstraintsIterator, ScopedConstraintId,
|
||||
ScopedDefinitionId, SymbolState,
|
||||
};
|
||||
use crate::semantic_index::ast_ids::ScopedUseId;
|
||||
use crate::semantic_index::definition::Definition;
|
||||
use crate::semantic_index::expression::Expression;
|
||||
use crate::semantic_index::symbol::ScopedSymbolId;
|
||||
use ruff_index::IndexVec;
|
||||
use std::ops::Range;
|
||||
|
||||
/// All definitions that can reach a given use of a name.
|
||||
mod bitset;
|
||||
mod symbol_state;
|
||||
|
||||
/// Applicable definitions and constraints for every use of a name.
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub(crate) struct UseDefMap<'db> {
|
||||
// TODO store constraints with definitions for type narrowing
|
||||
/// Definition IDs array for `definitions_by_use` and `public_definitions` to slice into.
|
||||
all_definitions: Vec<Definition<'db>>,
|
||||
/// Array of [`Definition`] in this scope.
|
||||
all_definitions: IndexVec<ScopedDefinitionId, Definition<'db>>,
|
||||
|
||||
/// Definitions that can reach a [`ScopedUseId`].
|
||||
definitions_by_use: IndexVec<ScopedUseId, Definitions>,
|
||||
/// Array of constraints (as [`Expression`]) in this scope.
|
||||
all_constraints: IndexVec<ScopedConstraintId, Expression<'db>>,
|
||||
|
||||
/// Definitions of each symbol visible at end of scope.
|
||||
public_definitions: IndexVec<ScopedSymbolId, Definitions>,
|
||||
/// [`SymbolState`] visible at a [`ScopedUseId`].
|
||||
definitions_by_use: IndexVec<ScopedUseId, SymbolState>,
|
||||
|
||||
/// [`SymbolState`] visible at end of scope for each symbol.
|
||||
public_definitions: IndexVec<ScopedSymbolId, SymbolState>,
|
||||
}
|
||||
|
||||
impl<'db> UseDefMap<'db> {
|
||||
pub(crate) fn use_definitions(&self, use_id: ScopedUseId) -> &[Definition<'db>] {
|
||||
&self.all_definitions[self.definitions_by_use[use_id].definitions_range.clone()]
|
||||
pub(crate) fn use_definitions(
|
||||
&self,
|
||||
use_id: ScopedUseId,
|
||||
) -> DefinitionWithConstraintsIterator<'_, 'db> {
|
||||
DefinitionWithConstraintsIterator {
|
||||
all_definitions: &self.all_definitions,
|
||||
all_constraints: &self.all_constraints,
|
||||
inner: self.definitions_by_use[use_id].visible_definitions(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn use_may_be_unbound(&self, use_id: ScopedUseId) -> bool {
|
||||
self.definitions_by_use[use_id].may_be_unbound
|
||||
self.definitions_by_use[use_id].may_be_unbound()
|
||||
}
|
||||
|
||||
pub(crate) fn public_definitions(&self, symbol: ScopedSymbolId) -> &[Definition<'db>] {
|
||||
&self.all_definitions[self.public_definitions[symbol].definitions_range.clone()]
|
||||
pub(crate) fn public_definitions(
|
||||
&self,
|
||||
symbol: ScopedSymbolId,
|
||||
) -> DefinitionWithConstraintsIterator<'_, 'db> {
|
||||
DefinitionWithConstraintsIterator {
|
||||
all_definitions: &self.all_definitions,
|
||||
all_constraints: &self.all_constraints,
|
||||
inner: self.public_definitions[symbol].visible_definitions(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn public_may_be_unbound(&self, symbol: ScopedSymbolId) -> bool {
|
||||
self.public_definitions[symbol].may_be_unbound
|
||||
self.public_definitions[symbol].may_be_unbound()
|
||||
}
|
||||
}
|
||||
|
||||
/// Definitions visible for a symbol at a particular use (or end-of-scope).
|
||||
#[derive(Clone, Debug, PartialEq, Eq)]
|
||||
struct Definitions {
|
||||
/// [`Range`] in `all_definitions` of the visible definition IDs.
|
||||
definitions_range: Range<usize>,
|
||||
/// Is the symbol possibly unbound at this point?
|
||||
may_be_unbound: bool,
|
||||
}
|
||||
|
||||
impl Definitions {
|
||||
/// The default state of a symbol is "no definitions, may be unbound", aka definitely-unbound.
|
||||
fn unbound() -> Self {
|
||||
Self {
|
||||
definitions_range: Range::default(),
|
||||
may_be_unbound: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Definitions {
|
||||
fn default() -> Self {
|
||||
Definitions::unbound()
|
||||
}
|
||||
}
|
||||
|
||||
/// A snapshot of the visible definitions for each symbol at a particular point in control flow.
|
||||
#[derive(Clone, Debug)]
|
||||
pub(super) struct FlowSnapshot {
|
||||
definitions_by_symbol: IndexVec<ScopedSymbolId, Definitions>,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct DefinitionWithConstraintsIterator<'map, 'db> {
|
||||
all_definitions: &'map IndexVec<ScopedDefinitionId, Definition<'db>>,
|
||||
all_constraints: &'map IndexVec<ScopedConstraintId, Expression<'db>>,
|
||||
inner: DefinitionIdWithConstraintsIterator<'map>,
|
||||
}
|
||||
|
||||
impl<'map, 'db> Iterator for DefinitionWithConstraintsIterator<'map, 'db> {
|
||||
type Item = DefinitionWithConstraints<'map, 'db>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
self.inner
|
||||
.next()
|
||||
.map(|def_id_with_constraints| DefinitionWithConstraints {
|
||||
definition: self.all_definitions[def_id_with_constraints.definition],
|
||||
constraints: ConstraintsIterator {
|
||||
all_constraints: self.all_constraints,
|
||||
constraint_ids: def_id_with_constraints.constraint_ids,
|
||||
},
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl std::iter::FusedIterator for DefinitionWithConstraintsIterator<'_, '_> {}
|
||||
|
||||
pub(crate) struct DefinitionWithConstraints<'map, 'db> {
|
||||
pub(crate) definition: Definition<'db>,
|
||||
pub(crate) constraints: ConstraintsIterator<'map, 'db>,
|
||||
}
|
||||
|
||||
pub(crate) struct ConstraintsIterator<'map, 'db> {
|
||||
all_constraints: &'map IndexVec<ScopedConstraintId, Expression<'db>>,
|
||||
constraint_ids: ConstraintIdIterator<'map>,
|
||||
}
|
||||
|
||||
impl<'map, 'db> Iterator for ConstraintsIterator<'map, 'db> {
|
||||
type Item = Expression<'db>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
self.constraint_ids
|
||||
.next()
|
||||
.map(|constraint_id| self.all_constraints[constraint_id])
|
||||
}
|
||||
}
|
||||
|
||||
impl std::iter::FusedIterator for ConstraintsIterator<'_, '_> {}
|
||||
|
||||
/// A snapshot of the definitions and constraints state at a particular point in control flow.
|
||||
#[derive(Clone, Debug)]
|
||||
pub(super) struct FlowSnapshot {
|
||||
definitions_by_symbol: IndexVec<ScopedSymbolId, SymbolState>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
pub(super) struct UseDefMapBuilder<'db> {
|
||||
/// Definition IDs array for `definitions_by_use` and `definitions_by_symbol` to slice into.
|
||||
all_definitions: Vec<Definition<'db>>,
|
||||
/// Append-only array of [`Definition`]; None is unbound.
|
||||
all_definitions: IndexVec<ScopedDefinitionId, Definition<'db>>,
|
||||
|
||||
/// Append-only array of constraints (as [`Expression`]).
|
||||
all_constraints: IndexVec<ScopedConstraintId, Expression<'db>>,
|
||||
|
||||
/// Visible definitions at each so-far-recorded use.
|
||||
definitions_by_use: IndexVec<ScopedUseId, Definitions>,
|
||||
definitions_by_use: IndexVec<ScopedUseId, SymbolState>,
|
||||
|
||||
/// Currently visible definitions for each symbol.
|
||||
definitions_by_symbol: IndexVec<ScopedSymbolId, Definitions>,
|
||||
definitions_by_symbol: IndexVec<ScopedSymbolId, SymbolState>,
|
||||
}
|
||||
|
||||
impl<'db> UseDefMapBuilder<'db> {
|
||||
pub(super) fn new() -> Self {
|
||||
Self {
|
||||
all_definitions: Vec::new(),
|
||||
definitions_by_use: IndexVec::new(),
|
||||
definitions_by_symbol: IndexVec::new(),
|
||||
}
|
||||
Self::default()
|
||||
}
|
||||
|
||||
pub(super) fn add_symbol(&mut self, symbol: ScopedSymbolId) {
|
||||
let new_symbol = self.definitions_by_symbol.push(Definitions::unbound());
|
||||
let new_symbol = self.definitions_by_symbol.push(SymbolState::unbound());
|
||||
debug_assert_eq!(symbol, new_symbol);
|
||||
}
|
||||
|
||||
|
@ -227,13 +286,15 @@ impl<'db> UseDefMapBuilder<'db> {
|
|||
) {
|
||||
// We have a new definition of a symbol; this replaces any previous definitions in this
|
||||
// path.
|
||||
let def_idx = self.all_definitions.len();
|
||||
self.all_definitions.push(definition);
|
||||
self.definitions_by_symbol[symbol] = Definitions {
|
||||
#[allow(clippy::range_plus_one)]
|
||||
definitions_range: def_idx..(def_idx + 1),
|
||||
may_be_unbound: false,
|
||||
};
|
||||
let def_id = self.all_definitions.push(definition);
|
||||
self.definitions_by_symbol[symbol] = SymbolState::with(def_id);
|
||||
}
|
||||
|
||||
pub(super) fn record_constraint(&mut self, constraint: Expression<'db>) {
|
||||
let constraint_id = self.all_constraints.push(constraint);
|
||||
for definitions in &mut self.definitions_by_symbol {
|
||||
definitions.add_constraint(constraint_id);
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn record_use(&mut self, symbol: ScopedSymbolId, use_id: ScopedUseId) {
|
||||
|
@ -265,15 +326,15 @@ impl<'db> UseDefMapBuilder<'db> {
|
|||
|
||||
// If the snapshot we are restoring is missing some symbols we've recorded since, we need
|
||||
// to fill them in so the symbol IDs continue to line up. Since they don't exist in the
|
||||
// snapshot, the correct state to fill them in with is "unbound", the default.
|
||||
// snapshot, the correct state to fill them in with is "unbound".
|
||||
self.definitions_by_symbol
|
||||
.resize(num_symbols, Definitions::unbound());
|
||||
.resize(num_symbols, SymbolState::unbound());
|
||||
}
|
||||
|
||||
/// Merge the given snapshot into the current state, reflecting that we might have taken either
|
||||
/// path to get here. The new visible-definitions state for each symbol should include
|
||||
/// definitions from both the prior state and the snapshot.
|
||||
pub(super) fn merge(&mut self, snapshot: &FlowSnapshot) {
|
||||
pub(super) fn merge(&mut self, snapshot: FlowSnapshot) {
|
||||
// The tricky thing about merging two Ranges pointing into `all_definitions` is that if the
|
||||
// two Ranges aren't already adjacent in `all_definitions`, we will have to copy at least
|
||||
// one or the other of the ranges to the end of `all_definitions` so as to make them
|
||||
|
@ -287,66 +348,26 @@ impl<'db> UseDefMapBuilder<'db> {
|
|||
// greater than the number of known symbols in a previously-taken snapshot.
|
||||
debug_assert!(self.definitions_by_symbol.len() >= snapshot.definitions_by_symbol.len());
|
||||
|
||||
for (symbol_id, current) in self.definitions_by_symbol.iter_mut_enumerated() {
|
||||
let Some(snapshot) = snapshot.definitions_by_symbol.get(symbol_id) else {
|
||||
// Symbol not present in snapshot, so it's unbound from that path.
|
||||
current.may_be_unbound = true;
|
||||
continue;
|
||||
};
|
||||
|
||||
// If the symbol can be unbound in either predecessor, it can be unbound post-merge.
|
||||
current.may_be_unbound |= snapshot.may_be_unbound;
|
||||
|
||||
// Merge the definition ranges.
|
||||
let current = &mut current.definitions_range;
|
||||
let snapshot = &snapshot.definitions_range;
|
||||
|
||||
// We never create reversed ranges.
|
||||
debug_assert!(current.end >= current.start);
|
||||
debug_assert!(snapshot.end >= snapshot.start);
|
||||
|
||||
if current == snapshot {
|
||||
// Ranges already identical, nothing to do.
|
||||
} else if snapshot.is_empty() {
|
||||
// Merging from an empty range; nothing to do.
|
||||
} else if (*current).is_empty() {
|
||||
// Merging to an empty range; just use the incoming range.
|
||||
*current = snapshot.clone();
|
||||
} else if snapshot.end >= current.start && snapshot.start <= current.end {
|
||||
// Ranges are adjacent or overlapping, merge them in-place.
|
||||
*current = current.start.min(snapshot.start)..current.end.max(snapshot.end);
|
||||
} else if current.end == self.all_definitions.len() {
|
||||
// Ranges are not adjacent or overlapping, `current` is at the end of
|
||||
// `all_definitions`, we need to copy `snapshot` to the end so they are adjacent
|
||||
// and can be merged into one range.
|
||||
self.all_definitions.extend_from_within(snapshot.clone());
|
||||
current.end = self.all_definitions.len();
|
||||
} else if snapshot.end == self.all_definitions.len() {
|
||||
// Ranges are not adjacent or overlapping, `snapshot` is at the end of
|
||||
// `all_definitions`, we need to copy `current` to the end so they are adjacent and
|
||||
// can be merged into one range.
|
||||
self.all_definitions.extend_from_within(current.clone());
|
||||
current.start = snapshot.start;
|
||||
current.end = self.all_definitions.len();
|
||||
let mut snapshot_definitions_iter = snapshot.definitions_by_symbol.into_iter();
|
||||
for current in &mut self.definitions_by_symbol {
|
||||
if let Some(snapshot) = snapshot_definitions_iter.next() {
|
||||
current.merge(snapshot);
|
||||
} else {
|
||||
// Ranges are not adjacent and neither one is at the end of `all_definitions`, we
|
||||
// have to copy both to the end so they are adjacent and we can merge them.
|
||||
let start = self.all_definitions.len();
|
||||
self.all_definitions.extend_from_within(current.clone());
|
||||
self.all_definitions.extend_from_within(snapshot.clone());
|
||||
current.start = start;
|
||||
current.end = self.all_definitions.len();
|
||||
// Symbol not present in snapshot, so it's unbound from that path.
|
||||
current.add_unbound();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn finish(mut self) -> UseDefMap<'db> {
|
||||
self.all_definitions.shrink_to_fit();
|
||||
self.all_constraints.shrink_to_fit();
|
||||
self.definitions_by_symbol.shrink_to_fit();
|
||||
self.definitions_by_use.shrink_to_fit();
|
||||
|
||||
UseDefMap {
|
||||
all_definitions: self.all_definitions,
|
||||
all_constraints: self.all_constraints,
|
||||
definitions_by_use: self.definitions_by_use,
|
||||
public_definitions: self.definitions_by_symbol,
|
||||
}
|
||||
|
|
|
@ -0,0 +1,228 @@
|
|||
/// Ordered set of `u32`.
|
||||
///
|
||||
/// Uses an inline bit-set for small values (up to 64 * B), falls back to heap allocated vector of
|
||||
/// blocks for larger values.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub(super) enum BitSet<const B: usize> {
|
||||
/// Bit-set (in 64-bit blocks) for the first 64 * B entries.
|
||||
Inline([u64; B]),
|
||||
|
||||
/// Overflow beyond 64 * B.
|
||||
Heap(Vec<u64>),
|
||||
}
|
||||
|
||||
impl<const B: usize> Default for BitSet<B> {
|
||||
fn default() -> Self {
|
||||
// B * 64 must fit in a u32, or else we have unusable bits; this assertion makes the
|
||||
// truncating casts to u32 below safe. This would be better as a const assertion, but
|
||||
// that's not possible on stable with const generic params. (B should never really be
|
||||
// anywhere close to this large.)
|
||||
assert!(B * 64 < (u32::MAX as usize));
|
||||
// This implementation requires usize >= 32 bits.
|
||||
static_assertions::const_assert!(usize::BITS >= 32);
|
||||
Self::Inline([0; B])
|
||||
}
|
||||
}
|
||||
|
||||
impl<const B: usize> BitSet<B> {
|
||||
/// Create and return a new [`BitSet`] with a single `value` inserted.
|
||||
pub(super) fn with(value: u32) -> Self {
|
||||
let mut bitset = Self::default();
|
||||
bitset.insert(value);
|
||||
bitset
|
||||
}
|
||||
|
||||
/// Convert from Inline to Heap, if needed, and resize the Heap vector, if needed.
|
||||
fn resize(&mut self, value: u32) {
|
||||
let num_blocks_needed = (value / 64) + 1;
|
||||
match self {
|
||||
Self::Inline(blocks) => {
|
||||
let mut vec = blocks.to_vec();
|
||||
vec.resize(num_blocks_needed as usize, 0);
|
||||
*self = Self::Heap(vec);
|
||||
}
|
||||
Self::Heap(vec) => {
|
||||
vec.resize(num_blocks_needed as usize, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn blocks_mut(&mut self) -> &mut [u64] {
|
||||
match self {
|
||||
Self::Inline(blocks) => blocks.as_mut_slice(),
|
||||
Self::Heap(blocks) => blocks.as_mut_slice(),
|
||||
}
|
||||
}
|
||||
|
||||
fn blocks(&self) -> &[u64] {
|
||||
match self {
|
||||
Self::Inline(blocks) => blocks.as_slice(),
|
||||
Self::Heap(blocks) => blocks.as_slice(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Insert a value into the [`BitSet`].
|
||||
///
|
||||
/// Return true if the value was newly inserted, false if already present.
|
||||
pub(super) fn insert(&mut self, value: u32) -> bool {
|
||||
let value_usize = value as usize;
|
||||
let (block, index) = (value_usize / 64, value_usize % 64);
|
||||
if block >= self.blocks().len() {
|
||||
self.resize(value);
|
||||
}
|
||||
let blocks = self.blocks_mut();
|
||||
let missing = blocks[block] & (1 << index) == 0;
|
||||
blocks[block] |= 1 << index;
|
||||
missing
|
||||
}
|
||||
|
||||
/// Intersect in-place with another [`BitSet`].
|
||||
pub(super) fn intersect(&mut self, other: &BitSet<B>) {
|
||||
let my_blocks = self.blocks_mut();
|
||||
let other_blocks = other.blocks();
|
||||
let min_len = my_blocks.len().min(other_blocks.len());
|
||||
for i in 0..min_len {
|
||||
my_blocks[i] &= other_blocks[i];
|
||||
}
|
||||
for block in my_blocks.iter_mut().skip(min_len) {
|
||||
*block = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// Return an iterator over the values (in ascending order) in this [`BitSet`].
|
||||
pub(super) fn iter(&self) -> BitSetIterator<'_, B> {
|
||||
let blocks = self.blocks();
|
||||
BitSetIterator {
|
||||
blocks,
|
||||
current_block_index: 0,
|
||||
current_block: blocks[0],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator over values in a [`BitSet`].
|
||||
#[derive(Debug)]
|
||||
pub(super) struct BitSetIterator<'a, const B: usize> {
|
||||
/// The blocks we are iterating over.
|
||||
blocks: &'a [u64],
|
||||
|
||||
/// The index of the block we are currently iterating through.
|
||||
current_block_index: usize,
|
||||
|
||||
/// The block we are currently iterating through (and zeroing as we go.)
|
||||
current_block: u64,
|
||||
}
|
||||
|
||||
impl<const B: usize> Iterator for BitSetIterator<'_, B> {
|
||||
type Item = u32;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
while self.current_block == 0 {
|
||||
if self.current_block_index + 1 >= self.blocks.len() {
|
||||
return None;
|
||||
}
|
||||
self.current_block_index += 1;
|
||||
self.current_block = self.blocks[self.current_block_index];
|
||||
}
|
||||
let lowest_bit_set = self.current_block.trailing_zeros();
|
||||
// reset the lowest set bit, without a data dependency on `lowest_bit_set`
|
||||
self.current_block &= self.current_block.wrapping_sub(1);
|
||||
// SAFETY: `lowest_bit_set` cannot be more than 64, `current_block_index` cannot be more
|
||||
// than `B - 1`, and we check above that `B * 64 < u32::MAX`. So both `64 *
|
||||
// current_block_index` and the final value here must fit in u32.
|
||||
#[allow(clippy::cast_possible_truncation)]
|
||||
Some(lowest_bit_set + (64 * self.current_block_index) as u32)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const B: usize> std::iter::FusedIterator for BitSetIterator<'_, B> {}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::BitSet;
|
||||
|
||||
fn assert_bitset<const B: usize>(bitset: &BitSet<B>, contents: &[u32]) {
|
||||
assert_eq!(bitset.iter().collect::<Vec<_>>(), contents);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn iter() {
|
||||
let mut b = BitSet::<1>::with(3);
|
||||
b.insert(27);
|
||||
b.insert(6);
|
||||
assert!(matches!(b, BitSet::Inline(_)));
|
||||
assert_bitset(&b, &[3, 6, 27]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn iter_overflow() {
|
||||
let mut b = BitSet::<1>::with(140);
|
||||
b.insert(100);
|
||||
b.insert(129);
|
||||
assert!(matches!(b, BitSet::Heap(_)));
|
||||
assert_bitset(&b, &[100, 129, 140]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersect() {
|
||||
let mut b1 = BitSet::<1>::with(4);
|
||||
let mut b2 = BitSet::<1>::with(4);
|
||||
b1.insert(23);
|
||||
b2.insert(5);
|
||||
|
||||
b1.intersect(&b2);
|
||||
assert_bitset(&b1, &[4]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersect_mixed_1() {
|
||||
let mut b1 = BitSet::<1>::with(4);
|
||||
let mut b2 = BitSet::<1>::with(4);
|
||||
b1.insert(89);
|
||||
b2.insert(5);
|
||||
|
||||
b1.intersect(&b2);
|
||||
assert_bitset(&b1, &[4]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersect_mixed_2() {
|
||||
let mut b1 = BitSet::<1>::with(4);
|
||||
let mut b2 = BitSet::<1>::with(4);
|
||||
b1.insert(23);
|
||||
b2.insert(89);
|
||||
|
||||
b1.intersect(&b2);
|
||||
assert_bitset(&b1, &[4]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersect_heap() {
|
||||
let mut b1 = BitSet::<1>::with(4);
|
||||
let mut b2 = BitSet::<1>::with(4);
|
||||
b1.insert(89);
|
||||
b2.insert(90);
|
||||
|
||||
b1.intersect(&b2);
|
||||
assert_bitset(&b1, &[4]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersect_heap_2() {
|
||||
let mut b1 = BitSet::<1>::with(89);
|
||||
let mut b2 = BitSet::<1>::with(89);
|
||||
b1.insert(91);
|
||||
b2.insert(90);
|
||||
|
||||
b1.intersect(&b2);
|
||||
assert_bitset(&b1, &[89]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn multiple_blocks() {
|
||||
let mut b = BitSet::<2>::with(120);
|
||||
b.insert(45);
|
||||
assert!(matches!(b, BitSet::Inline(_)));
|
||||
assert_bitset(&b, &[45, 120]);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,374 @@
|
|||
//! Track visible definitions of a symbol, and applicable constraints per definition.
|
||||
//!
|
||||
//! These data structures operate entirely on scope-local newtype-indices for definitions and
|
||||
//! constraints, referring to their location in the `all_definitions` and `all_constraints`
|
||||
//! indexvecs in [`super::UseDefMapBuilder`].
|
||||
//!
|
||||
//! We need to track arbitrary associations between definitions and constraints, not just a single
|
||||
//! set of currently dominating constraints (where "dominating" means "control flow must have
|
||||
//! passed through it to reach this point"), because we can have dominating constraints that apply
|
||||
//! to some definitions but not others, as in this code:
|
||||
//!
|
||||
//! ```python
|
||||
//! x = 1 if flag else None
|
||||
//! if x is not None:
|
||||
//! if flag2:
|
||||
//! x = 2 if flag else None
|
||||
//! x
|
||||
//! ```
|
||||
//!
|
||||
//! The `x is not None` constraint dominates the final use of `x`, but it applies only to the first
|
||||
//! definition of `x`, not the second, so `None` is a possible value for `x`.
|
||||
//!
|
||||
//! And we can't just track, for each definition, an index into a list of dominating constraints,
|
||||
//! either, because we can have definitions which are still visible, but subject to constraints
|
||||
//! that are no longer dominating, as in this code:
|
||||
//!
|
||||
//! ```python
|
||||
//! x = 0
|
||||
//! if flag1:
|
||||
//! x = 1 if flag2 else None
|
||||
//! assert x is not None
|
||||
//! x
|
||||
//! ```
|
||||
//!
|
||||
//! From the point of view of the final use of `x`, the `x is not None` constraint no longer
|
||||
//! dominates, but it does dominate the `x = 1 if flag2 else None` definition, so we have to keep
|
||||
//! track of that.
|
||||
//!
|
||||
//! The data structures used here ([`BitSet`] and [`smallvec::SmallVec`]) optimize for keeping all
|
||||
//! data inline (avoiding lots of scattered allocations) in small-to-medium cases, and falling back
|
||||
//! to heap allocation to be able to scale to arbitrary numbers of definitions and constraints when
|
||||
//! needed.
|
||||
use super::bitset::{BitSet, BitSetIterator};
|
||||
use ruff_index::newtype_index;
|
||||
use smallvec::SmallVec;
|
||||
|
||||
/// A newtype-index for a definition in a particular scope.
|
||||
#[newtype_index]
|
||||
pub(super) struct ScopedDefinitionId;
|
||||
|
||||
/// A newtype-index for a constraint expression in a particular scope.
|
||||
#[newtype_index]
|
||||
pub(super) struct ScopedConstraintId;
|
||||
|
||||
/// Can reference this * 64 total definitions inline; more will fall back to the heap.
|
||||
const INLINE_DEFINITION_BLOCKS: usize = 3;
|
||||
|
||||
/// A [`BitSet`] of [`ScopedDefinitionId`], representing visible definitions of a symbol in a scope.
|
||||
type Definitions = BitSet<INLINE_DEFINITION_BLOCKS>;
|
||||
type DefinitionsIterator<'a> = BitSetIterator<'a, INLINE_DEFINITION_BLOCKS>;
|
||||
|
||||
/// Can reference this * 64 total constraints inline; more will fall back to the heap.
|
||||
const INLINE_CONSTRAINT_BLOCKS: usize = 2;
|
||||
|
||||
/// Can keep inline this many visible definitions per symbol at a given time; more will go to heap.
|
||||
const INLINE_VISIBLE_DEFINITIONS_PER_SYMBOL: usize = 4;
|
||||
|
||||
/// One [`BitSet`] of applicable [`ScopedConstraintId`] per visible definition.
|
||||
type InlineConstraintArray =
|
||||
[BitSet<INLINE_CONSTRAINT_BLOCKS>; INLINE_VISIBLE_DEFINITIONS_PER_SYMBOL];
|
||||
type Constraints = SmallVec<InlineConstraintArray>;
|
||||
type ConstraintsIterator<'a> = std::slice::Iter<'a, BitSet<INLINE_CONSTRAINT_BLOCKS>>;
|
||||
type ConstraintsIntoIterator = smallvec::IntoIter<InlineConstraintArray>;
|
||||
|
||||
/// Visible definitions and narrowing constraints for a single symbol at some point in control flow.
|
||||
#[derive(Clone, Debug, PartialEq, Eq)]
|
||||
pub(super) struct SymbolState {
|
||||
/// [`BitSet`]: which [`ScopedDefinitionId`] are visible for this symbol?
|
||||
visible_definitions: Definitions,
|
||||
|
||||
/// For each definition, which [`ScopedConstraintId`] apply?
|
||||
///
|
||||
/// This is a [`smallvec::SmallVec`] which should always have one [`BitSet`] of constraints per
|
||||
/// definition in `visible_definitions`.
|
||||
constraints: Constraints,
|
||||
|
||||
/// Could the symbol be unbound at this point?
|
||||
may_be_unbound: bool,
|
||||
}
|
||||
|
||||
/// A single [`ScopedDefinitionId`] with an iterator of its applicable [`ScopedConstraintId`].
|
||||
#[derive(Debug)]
|
||||
pub(super) struct DefinitionIdWithConstraints<'a> {
|
||||
pub(super) definition: ScopedDefinitionId,
|
||||
pub(super) constraint_ids: ConstraintIdIterator<'a>,
|
||||
}
|
||||
|
||||
impl SymbolState {
|
||||
/// Return a new [`SymbolState`] representing an unbound symbol.
|
||||
pub(super) fn unbound() -> Self {
|
||||
Self {
|
||||
visible_definitions: Definitions::default(),
|
||||
constraints: Constraints::default(),
|
||||
may_be_unbound: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Return a new [`SymbolState`] representing a symbol with a single visible definition.
|
||||
pub(super) fn with(definition_id: ScopedDefinitionId) -> Self {
|
||||
let mut constraints = Constraints::with_capacity(1);
|
||||
constraints.push(BitSet::default());
|
||||
Self {
|
||||
visible_definitions: Definitions::with(definition_id.into()),
|
||||
constraints,
|
||||
may_be_unbound: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Add Unbound as a possibility for this symbol.
|
||||
pub(super) fn add_unbound(&mut self) {
|
||||
self.may_be_unbound = true;
|
||||
}
|
||||
|
||||
/// Add given constraint to all currently-visible definitions.
|
||||
pub(super) fn add_constraint(&mut self, constraint_id: ScopedConstraintId) {
|
||||
for bitset in &mut self.constraints {
|
||||
bitset.insert(constraint_id.into());
|
||||
}
|
||||
}
|
||||
|
||||
/// Merge another [`SymbolState`] into this one.
|
||||
pub(super) fn merge(&mut self, b: SymbolState) {
|
||||
let mut a = Self {
|
||||
visible_definitions: Definitions::default(),
|
||||
constraints: Constraints::default(),
|
||||
may_be_unbound: self.may_be_unbound || b.may_be_unbound,
|
||||
};
|
||||
std::mem::swap(&mut a, self);
|
||||
let mut a_defs_iter = a.visible_definitions.iter();
|
||||
let mut b_defs_iter = b.visible_definitions.iter();
|
||||
let mut a_constraints_iter = a.constraints.into_iter();
|
||||
let mut b_constraints_iter = b.constraints.into_iter();
|
||||
|
||||
let mut opt_a_def: Option<u32> = a_defs_iter.next();
|
||||
let mut opt_b_def: Option<u32> = b_defs_iter.next();
|
||||
|
||||
// Iterate through the definitions from `a` and `b`, always processing the lower definition
|
||||
// ID first, and pushing each definition onto the merged `SymbolState` with its
|
||||
// constraints. If a definition is found in both `a` and `b`, push it with the intersection
|
||||
// of the constraints from the two paths; a constraint that applies from only one possible
|
||||
// path is irrelevant.
|
||||
|
||||
// Helper to push `def`, with constraints in `constraints_iter`, onto `self`.
|
||||
let push = |def, constraints_iter: &mut ConstraintsIntoIterator, merged: &mut Self| {
|
||||
merged.visible_definitions.insert(def);
|
||||
// SAFETY: we only ever create SymbolState with either no definitions and no constraint
|
||||
// bitsets (`::unbound`) or one definition and one constraint bitset (`::with`), and
|
||||
// `::merge` always pushes one definition and one constraint bitset together (just
|
||||
// below), so the number of definitions and the number of constraint bitsets can never
|
||||
// get out of sync.
|
||||
let constraints = constraints_iter
|
||||
.next()
|
||||
.expect("definitions and constraints length mismatch");
|
||||
merged.constraints.push(constraints);
|
||||
};
|
||||
|
||||
loop {
|
||||
match (opt_a_def, opt_b_def) {
|
||||
(Some(a_def), Some(b_def)) => match a_def.cmp(&b_def) {
|
||||
std::cmp::Ordering::Less => {
|
||||
// Next definition ID is only in `a`, push it to `self` and advance `a`.
|
||||
push(a_def, &mut a_constraints_iter, self);
|
||||
opt_a_def = a_defs_iter.next();
|
||||
}
|
||||
std::cmp::Ordering::Greater => {
|
||||
// Next definition ID is only in `b`, push it to `self` and advance `b`.
|
||||
push(b_def, &mut b_constraints_iter, self);
|
||||
opt_b_def = b_defs_iter.next();
|
||||
}
|
||||
std::cmp::Ordering::Equal => {
|
||||
// Next definition is in both; push to `self` and intersect constraints.
|
||||
push(a_def, &mut b_constraints_iter, self);
|
||||
// SAFETY: we only ever create SymbolState with either no definitions and
|
||||
// no constraint bitsets (`::unbound`) or one definition and one constraint
|
||||
// bitset (`::with`), and `::merge` always pushes one definition and one
|
||||
// constraint bitset together (just below), so the number of definitions
|
||||
// and the number of constraint bitsets can never get out of sync.
|
||||
let a_constraints = a_constraints_iter
|
||||
.next()
|
||||
.expect("definitions and constraints length mismatch");
|
||||
// If the same definition is visible through both paths, any constraint
|
||||
// that applies on only one path is irrelevant to the resulting type from
|
||||
// unioning the two paths, so we intersect the constraints.
|
||||
self.constraints
|
||||
.last_mut()
|
||||
.unwrap()
|
||||
.intersect(&a_constraints);
|
||||
opt_a_def = a_defs_iter.next();
|
||||
opt_b_def = b_defs_iter.next();
|
||||
}
|
||||
},
|
||||
(Some(a_def), None) => {
|
||||
// We've exhausted `b`, just push the def from `a` and move on to the next.
|
||||
push(a_def, &mut a_constraints_iter, self);
|
||||
opt_a_def = a_defs_iter.next();
|
||||
}
|
||||
(None, Some(b_def)) => {
|
||||
// We've exhausted `a`, just push the def from `b` and move on to the next.
|
||||
push(b_def, &mut b_constraints_iter, self);
|
||||
opt_b_def = b_defs_iter.next();
|
||||
}
|
||||
(None, None) => break,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Get iterator over visible definitions with constraints.
|
||||
pub(super) fn visible_definitions(&self) -> DefinitionIdWithConstraintsIterator {
|
||||
DefinitionIdWithConstraintsIterator {
|
||||
definitions: self.visible_definitions.iter(),
|
||||
constraints: self.constraints.iter(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Could the symbol be unbound?
|
||||
pub(super) fn may_be_unbound(&self) -> bool {
|
||||
self.may_be_unbound
|
||||
}
|
||||
}
|
||||
|
||||
/// The default state of a symbol (if we've seen no definitions of it) is unbound.
|
||||
impl Default for SymbolState {
|
||||
fn default() -> Self {
|
||||
SymbolState::unbound()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(super) struct DefinitionIdWithConstraintsIterator<'a> {
|
||||
definitions: DefinitionsIterator<'a>,
|
||||
constraints: ConstraintsIterator<'a>,
|
||||
}
|
||||
|
||||
impl<'a> Iterator for DefinitionIdWithConstraintsIterator<'a> {
|
||||
type Item = DefinitionIdWithConstraints<'a>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
match (self.definitions.next(), self.constraints.next()) {
|
||||
(None, None) => None,
|
||||
(Some(def), Some(constraints)) => Some(DefinitionIdWithConstraints {
|
||||
definition: ScopedDefinitionId::from_u32(def),
|
||||
constraint_ids: ConstraintIdIterator {
|
||||
wrapped: constraints.iter(),
|
||||
},
|
||||
}),
|
||||
// SAFETY: see above.
|
||||
_ => unreachable!("definitions and constraints length mismatch"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::iter::FusedIterator for DefinitionIdWithConstraintsIterator<'_> {}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(super) struct ConstraintIdIterator<'a> {
|
||||
wrapped: BitSetIterator<'a, INLINE_CONSTRAINT_BLOCKS>,
|
||||
}
|
||||
|
||||
impl Iterator for ConstraintIdIterator<'_> {
|
||||
type Item = ScopedConstraintId;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
self.wrapped.next().map(ScopedConstraintId::from_u32)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::iter::FusedIterator for ConstraintIdIterator<'_> {}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{ScopedConstraintId, ScopedDefinitionId, SymbolState};
|
||||
|
||||
impl SymbolState {
|
||||
pub(crate) fn assert(&self, may_be_unbound: bool, expected: &[&str]) {
|
||||
assert_eq!(self.may_be_unbound(), may_be_unbound);
|
||||
let actual = self
|
||||
.visible_definitions()
|
||||
.map(|def_id_with_constraints| {
|
||||
format!(
|
||||
"{}<{}>",
|
||||
def_id_with_constraints.definition.as_u32(),
|
||||
def_id_with_constraints
|
||||
.constraint_ids
|
||||
.map(ScopedConstraintId::as_u32)
|
||||
.map(|idx| idx.to_string())
|
||||
.collect::<Vec<_>>()
|
||||
.join(", ")
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
assert_eq!(actual, expected);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn unbound() {
|
||||
let cd = SymbolState::unbound();
|
||||
|
||||
cd.assert(true, &[]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn with() {
|
||||
let cd = SymbolState::with(ScopedDefinitionId::from_u32(0));
|
||||
|
||||
cd.assert(false, &["0<>"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_unbound() {
|
||||
let mut cd = SymbolState::with(ScopedDefinitionId::from_u32(0));
|
||||
cd.add_unbound();
|
||||
|
||||
cd.assert(true, &["0<>"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_constraint() {
|
||||
let mut cd = SymbolState::with(ScopedDefinitionId::from_u32(0));
|
||||
cd.add_constraint(ScopedConstraintId::from_u32(0));
|
||||
|
||||
cd.assert(false, &["0<0>"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn merge() {
|
||||
// merging the same definition with the same constraint keeps the constraint
|
||||
let mut cd0a = SymbolState::with(ScopedDefinitionId::from_u32(0));
|
||||
cd0a.add_constraint(ScopedConstraintId::from_u32(0));
|
||||
|
||||
let mut cd0b = SymbolState::with(ScopedDefinitionId::from_u32(0));
|
||||
cd0b.add_constraint(ScopedConstraintId::from_u32(0));
|
||||
|
||||
cd0a.merge(cd0b);
|
||||
let mut cd0 = cd0a;
|
||||
cd0.assert(false, &["0<0>"]);
|
||||
|
||||
// merging the same definition with differing constraints drops all constraints
|
||||
let mut cd1a = SymbolState::with(ScopedDefinitionId::from_u32(1));
|
||||
cd1a.add_constraint(ScopedConstraintId::from_u32(1));
|
||||
|
||||
let mut cd1b = SymbolState::with(ScopedDefinitionId::from_u32(1));
|
||||
cd1b.add_constraint(ScopedConstraintId::from_u32(2));
|
||||
|
||||
cd1a.merge(cd1b);
|
||||
let cd1 = cd1a;
|
||||
cd1.assert(false, &["1<>"]);
|
||||
|
||||
// merging a constrained definition with unbound keeps both
|
||||
let mut cd2a = SymbolState::with(ScopedDefinitionId::from_u32(2));
|
||||
cd2a.add_constraint(ScopedConstraintId::from_u32(3));
|
||||
|
||||
let cd2b = SymbolState::unbound();
|
||||
|
||||
cd2a.merge(cd2b);
|
||||
let cd2 = cd2a;
|
||||
cd2.assert(true, &["2<3>"]);
|
||||
|
||||
// merging different definitions keeps them each with their existing constraints
|
||||
cd0.merge(cd2);
|
||||
let cd = cd0;
|
||||
cd.assert(true, &["0<0>", "2<3>"]);
|
||||
}
|
||||
}
|
|
@ -4,15 +4,22 @@ use ruff_python_ast::name::Name;
|
|||
use crate::builtins::builtins_scope;
|
||||
use crate::semantic_index::definition::Definition;
|
||||
use crate::semantic_index::symbol::{ScopeId, ScopedSymbolId};
|
||||
use crate::semantic_index::{global_scope, symbol_table, use_def_map};
|
||||
use crate::semantic_index::{
|
||||
global_scope, symbol_table, use_def_map, DefinitionWithConstraints,
|
||||
DefinitionWithConstraintsIterator,
|
||||
};
|
||||
use crate::types::narrow::narrowing_constraint;
|
||||
use crate::{Db, FxOrderSet};
|
||||
|
||||
mod builder;
|
||||
mod display;
|
||||
mod infer;
|
||||
mod narrow;
|
||||
|
||||
pub(crate) use self::builder::UnionBuilder;
|
||||
pub(crate) use self::infer::{infer_definition_types, infer_scope_types};
|
||||
pub(crate) use self::builder::{IntersectionBuilder, UnionBuilder};
|
||||
pub(crate) use self::infer::{
|
||||
infer_definition_types, infer_expression_types, infer_scope_types, TypeInference,
|
||||
};
|
||||
|
||||
/// Infer the public type of a symbol (its type as seen from outside its scope).
|
||||
pub(crate) fn symbol_ty<'db>(
|
||||
|
@ -82,10 +89,31 @@ pub(crate) fn definition_ty<'db>(db: &'db dyn Db, definition: Definition<'db>) -
|
|||
/// provide an `unbound_ty`.
|
||||
pub(crate) fn definitions_ty<'db>(
|
||||
db: &'db dyn Db,
|
||||
definitions: &[Definition<'db>],
|
||||
definitions_with_constraints: DefinitionWithConstraintsIterator<'_, 'db>,
|
||||
unbound_ty: Option<Type<'db>>,
|
||||
) -> Type<'db> {
|
||||
let def_types = definitions.iter().map(|def| definition_ty(db, *def));
|
||||
let def_types = definitions_with_constraints.map(
|
||||
|DefinitionWithConstraints {
|
||||
definition,
|
||||
constraints,
|
||||
}| {
|
||||
let mut constraint_tys =
|
||||
constraints.filter_map(|test| narrowing_constraint(db, test, definition));
|
||||
let definition_ty = definition_ty(db, definition);
|
||||
if let Some(first_constraint_ty) = constraint_tys.next() {
|
||||
let mut builder = IntersectionBuilder::new(db);
|
||||
builder = builder
|
||||
.add_positive(definition_ty)
|
||||
.add_positive(first_constraint_ty);
|
||||
for constraint_ty in constraint_tys {
|
||||
builder = builder.add_positive(constraint_ty);
|
||||
}
|
||||
builder.build()
|
||||
} else {
|
||||
definition_ty
|
||||
}
|
||||
},
|
||||
);
|
||||
let mut all_types = unbound_ty.into_iter().chain(def_types);
|
||||
|
||||
let Some(first) = all_types.next() else {
|
||||
|
|
|
@ -65,7 +65,6 @@ impl<'db> UnionBuilder<'db> {
|
|||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
#[derive(Clone)]
|
||||
pub(crate) struct IntersectionBuilder<'db> {
|
||||
// Really this builds a union-of-intersections, because we always keep our set-theoretic types
|
||||
|
@ -78,8 +77,7 @@ pub(crate) struct IntersectionBuilder<'db> {
|
|||
}
|
||||
|
||||
impl<'db> IntersectionBuilder<'db> {
|
||||
#[allow(dead_code)]
|
||||
fn new(db: &'db dyn Db) -> Self {
|
||||
pub(crate) fn new(db: &'db dyn Db) -> Self {
|
||||
Self {
|
||||
db,
|
||||
intersections: vec![InnerIntersectionBuilder::new()],
|
||||
|
@ -93,8 +91,7 @@ impl<'db> IntersectionBuilder<'db> {
|
|||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn add_positive(mut self, ty: Type<'db>) -> Self {
|
||||
pub(crate) fn add_positive(mut self, ty: Type<'db>) -> Self {
|
||||
if let Type::Union(union) = ty {
|
||||
// Distribute ourself over this union: for each union element, clone ourself and
|
||||
// intersect with that union element, then create a new union-of-intersections with all
|
||||
|
@ -122,8 +119,7 @@ impl<'db> IntersectionBuilder<'db> {
|
|||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn add_negative(mut self, ty: Type<'db>) -> Self {
|
||||
pub(crate) fn add_negative(mut self, ty: Type<'db>) -> Self {
|
||||
// See comments above in `add_positive`; this is just the negated version.
|
||||
if let Type::Union(union) = ty {
|
||||
union
|
||||
|
@ -142,8 +138,7 @@ impl<'db> IntersectionBuilder<'db> {
|
|||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn build(mut self) -> Type<'db> {
|
||||
pub(crate) fn build(mut self) -> Type<'db> {
|
||||
// Avoid allocating the UnionBuilder unnecessarily if we have just one intersection:
|
||||
if self.intersections.len() == 1 {
|
||||
self.intersections.pop().unwrap().build(self.db)
|
||||
|
@ -157,7 +152,6 @@ impl<'db> IntersectionBuilder<'db> {
|
|||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
#[derive(Debug, Clone, Default)]
|
||||
struct InnerIntersectionBuilder<'db> {
|
||||
positive: FxOrderSet<Type<'db>>,
|
||||
|
@ -223,6 +217,16 @@ impl<'db> InnerIntersectionBuilder<'db> {
|
|||
self.positive.retain(Type::is_unbound);
|
||||
self.negative.clear();
|
||||
}
|
||||
|
||||
// None intersects only with object
|
||||
for pos in &self.positive {
|
||||
if let Type::Instance(_) = pos {
|
||||
// could be `object` type
|
||||
} else {
|
||||
self.negative.remove(&Type::None);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn build(mut self, db: &'db dyn Db) -> Type<'db> {
|
||||
|
@ -453,4 +457,15 @@ mod tests {
|
|||
|
||||
assert_eq!(ty, Type::IntLiteral(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_simplify_negative_none() {
|
||||
let db = setup_db();
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_negative(Type::None)
|
||||
.add_positive(Type::IntLiteral(1))
|
||||
.build();
|
||||
|
||||
assert_eq!(ty, Type::IntLiteral(1));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -319,7 +319,7 @@ impl<'db> TypeInferenceBuilder<'db> {
|
|||
}
|
||||
|
||||
fn infer_region_expression(&mut self, expression: Expression<'db>) {
|
||||
self.infer_expression(expression.node(self.db));
|
||||
self.infer_expression(expression.node_ref(self.db));
|
||||
}
|
||||
|
||||
fn infer_module(&mut self, module: &ast::ModModule) {
|
||||
|
@ -2587,6 +2587,26 @@ mod tests {
|
|||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn narrow_not_none() -> anyhow::Result<()> {
|
||||
let mut db = setup_db();
|
||||
|
||||
db.write_dedented(
|
||||
"/src/a.py",
|
||||
"
|
||||
x = None if flag else 1
|
||||
y = 0
|
||||
if x is not None:
|
||||
y = x
|
||||
",
|
||||
)?;
|
||||
|
||||
assert_public_ty(&db, "/src/a.py", "x", "Literal[1] | None");
|
||||
assert_public_ty(&db, "/src/a.py", "y", "Literal[0, 1]");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn while_loop() -> anyhow::Result<()> {
|
||||
let mut db = setup_db();
|
||||
|
@ -2684,10 +2704,11 @@ mod tests {
|
|||
|
||||
fn first_public_def<'db>(db: &'db TestDb, file: File, name: &str) -> Definition<'db> {
|
||||
let scope = global_scope(db, file);
|
||||
*use_def_map(db, scope)
|
||||
use_def_map(db, scope)
|
||||
.public_definitions(symbol_table(db, scope).symbol_id_by_name(name).unwrap())
|
||||
.first()
|
||||
.next()
|
||||
.unwrap()
|
||||
.definition
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
|
115
crates/red_knot_python_semantic/src/types/narrow.rs
Normal file
115
crates/red_knot_python_semantic/src/types/narrow.rs
Normal file
|
@ -0,0 +1,115 @@
|
|||
use crate::semantic_index::ast_ids::HasScopedAstId;
|
||||
use crate::semantic_index::definition::Definition;
|
||||
use crate::semantic_index::expression::Expression;
|
||||
use crate::semantic_index::symbol::{ScopeId, ScopedSymbolId, SymbolTable};
|
||||
use crate::semantic_index::symbol_table;
|
||||
use crate::types::{infer_expression_types, IntersectionBuilder, Type, TypeInference};
|
||||
use crate::Db;
|
||||
use ruff_python_ast as ast;
|
||||
use rustc_hash::FxHashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
/// Return the type constraint that `test` (if true) would place on `definition`, if any.
|
||||
///
|
||||
/// For example, if we have this code:
|
||||
///
|
||||
/// ```python
|
||||
/// y = 1 if flag else None
|
||||
/// x = 1 if flag else None
|
||||
/// if x is not None:
|
||||
/// ...
|
||||
/// ```
|
||||
///
|
||||
/// The `test` expression `x is not None` places the constraint "not None" on the definition of
|
||||
/// `x`, so in that case we'd return `Some(Type::Intersection(negative=[Type::None]))`.
|
||||
///
|
||||
/// But if we called this with the same `test` expression, but the `definition` of `y`, no
|
||||
/// constraint is applied to that definition, so we'd just return `None`.
|
||||
pub(crate) fn narrowing_constraint<'db>(
|
||||
db: &'db dyn Db,
|
||||
test: Expression<'db>,
|
||||
definition: Definition<'db>,
|
||||
) -> Option<Type<'db>> {
|
||||
all_narrowing_constraints(db, test)
|
||||
.get(&definition.symbol(db))
|
||||
.copied()
|
||||
}
|
||||
|
||||
#[salsa::tracked(return_ref)]
|
||||
fn all_narrowing_constraints<'db>(
|
||||
db: &'db dyn Db,
|
||||
test: Expression<'db>,
|
||||
) -> NarrowingConstraints<'db> {
|
||||
NarrowingConstraintsBuilder::new(db, test).finish()
|
||||
}
|
||||
|
||||
type NarrowingConstraints<'db> = FxHashMap<ScopedSymbolId, Type<'db>>;
|
||||
|
||||
struct NarrowingConstraintsBuilder<'db> {
|
||||
db: &'db dyn Db,
|
||||
expression: Expression<'db>,
|
||||
constraints: NarrowingConstraints<'db>,
|
||||
}
|
||||
|
||||
impl<'db> NarrowingConstraintsBuilder<'db> {
|
||||
fn new(db: &'db dyn Db, expression: Expression<'db>) -> Self {
|
||||
Self {
|
||||
db,
|
||||
expression,
|
||||
constraints: NarrowingConstraints::default(),
|
||||
}
|
||||
}
|
||||
|
||||
fn finish(mut self) -> NarrowingConstraints<'db> {
|
||||
if let ast::Expr::Compare(expr_compare) = self.expression.node_ref(self.db).node() {
|
||||
self.add_expr_compare(expr_compare);
|
||||
}
|
||||
// TODO other test expression kinds
|
||||
|
||||
self.constraints.shrink_to_fit();
|
||||
self.constraints
|
||||
}
|
||||
|
||||
fn symbols(&self) -> Arc<SymbolTable> {
|
||||
symbol_table(self.db, self.scope())
|
||||
}
|
||||
|
||||
fn scope(&self) -> ScopeId<'db> {
|
||||
self.expression.scope(self.db)
|
||||
}
|
||||
|
||||
fn inference(&self) -> &'db TypeInference<'db> {
|
||||
infer_expression_types(self.db, self.expression)
|
||||
}
|
||||
|
||||
fn add_expr_compare(&mut self, expr_compare: &ast::ExprCompare) {
|
||||
let ast::ExprCompare {
|
||||
range: _,
|
||||
left,
|
||||
ops,
|
||||
comparators,
|
||||
} = expr_compare;
|
||||
|
||||
if let ast::Expr::Name(ast::ExprName {
|
||||
range: _,
|
||||
id,
|
||||
ctx: _,
|
||||
}) = left.as_ref()
|
||||
{
|
||||
// SAFETY: we should always have a symbol for every Name node.
|
||||
let symbol = self.symbols().symbol_id_by_name(id).unwrap();
|
||||
let scope = self.scope();
|
||||
let inference = self.inference();
|
||||
for (op, comparator) in std::iter::zip(&**ops, &**comparators) {
|
||||
let comp_ty = inference.expression_ty(comparator.scoped_ast_id(self.db, scope));
|
||||
if matches!(op, ast::CmpOp::IsNot) {
|
||||
let ty = IntersectionBuilder::new(self.db)
|
||||
.add_negative(comp_ty)
|
||||
.build();
|
||||
self.constraints.insert(symbol, ty);
|
||||
};
|
||||
// TODO other comparison types
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue