mirror of
https://github.com/astral-sh/ruff.git
synced 2025-11-17 19:27:11 +00:00
[ty] Implement constraint implication for compound types (#21366)
Some checks are pending
CI / cargo test (${{ github.repository == 'astral-sh/ruff' && 'depot-windows-2022-16' || 'windows-latest' }}) (push) Blocked by required conditions
CI / Determine changes (push) Waiting to run
CI / cargo fmt (push) Waiting to run
CI / cargo clippy (push) Blocked by required conditions
CI / cargo test (linux) (push) Blocked by required conditions
CI / cargo test (linux, release) (push) Blocked by required conditions
CI / cargo test (macos-latest) (push) Blocked by required conditions
CI / cargo test (wasm) (push) Blocked by required conditions
CI / cargo build (msrv) (push) Blocked by required conditions
CI / cargo fuzz build (push) Blocked by required conditions
CI / fuzz parser (push) Blocked by required conditions
CI / test scripts (push) Blocked by required conditions
CI / ecosystem (push) Blocked by required conditions
CI / Fuzz for new ty panics (push) Blocked by required conditions
CI / cargo shear (push) Blocked by required conditions
CI / ty completion evaluation (push) Blocked by required conditions
CI / python package (push) Waiting to run
CI / pre-commit (push) Waiting to run
CI / mkdocs (push) Waiting to run
CI / formatter instabilities and black similarity (push) Blocked by required conditions
CI / test ruff-lsp (push) Blocked by required conditions
CI / check playground (push) Blocked by required conditions
CI / benchmarks instrumented (ruff) (push) Blocked by required conditions
CI / benchmarks instrumented (ty) (push) Blocked by required conditions
CI / benchmarks walltime (medium|multithreaded) (push) Blocked by required conditions
CI / benchmarks walltime (small|large) (push) Blocked by required conditions
[ty Playground] Release / publish (push) Waiting to run
Some checks are pending
CI / cargo test (${{ github.repository == 'astral-sh/ruff' && 'depot-windows-2022-16' || 'windows-latest' }}) (push) Blocked by required conditions
CI / Determine changes (push) Waiting to run
CI / cargo fmt (push) Waiting to run
CI / cargo clippy (push) Blocked by required conditions
CI / cargo test (linux) (push) Blocked by required conditions
CI / cargo test (linux, release) (push) Blocked by required conditions
CI / cargo test (macos-latest) (push) Blocked by required conditions
CI / cargo test (wasm) (push) Blocked by required conditions
CI / cargo build (msrv) (push) Blocked by required conditions
CI / cargo fuzz build (push) Blocked by required conditions
CI / fuzz parser (push) Blocked by required conditions
CI / test scripts (push) Blocked by required conditions
CI / ecosystem (push) Blocked by required conditions
CI / Fuzz for new ty panics (push) Blocked by required conditions
CI / cargo shear (push) Blocked by required conditions
CI / ty completion evaluation (push) Blocked by required conditions
CI / python package (push) Waiting to run
CI / pre-commit (push) Waiting to run
CI / mkdocs (push) Waiting to run
CI / formatter instabilities and black similarity (push) Blocked by required conditions
CI / test ruff-lsp (push) Blocked by required conditions
CI / check playground (push) Blocked by required conditions
CI / benchmarks instrumented (ruff) (push) Blocked by required conditions
CI / benchmarks instrumented (ty) (push) Blocked by required conditions
CI / benchmarks walltime (medium|multithreaded) (push) Blocked by required conditions
CI / benchmarks walltime (small|large) (push) Blocked by required conditions
[ty Playground] Release / publish (push) Waiting to run
This PR updates the constraint implication type relationship to work on compound types as well. (A compound type is a non-atomic type, like `list[T]`.) The goal of constraint implication is to check whether the requirements of a constraint imply that a particular subtyping relationship holds. Before, we were only checking atomic typevars. That would let us verify that the constraint set `T ≤ bool` implies that `T` is always a subtype of `int`. (In this case, the lhs of the subtyping check, `T`, is an atomic typevar.) But we weren't recursing into compound types, to look for nested occurrences of typevars. That means that we weren't able to see that `T ≤ bool` implies that `Covariant[T]` is always a subtype of `Covariant[int]`. Doing this recursion means that we have to carry the constraint set along with us as we recurse into types as part of `has_relation_to`, by adding constraint implication as a new `TypeRelation` variant. (Before it was just a method on `ConstraintSet`.) --------- Co-authored-by: David Peter <sharkdp@users.noreply.github.com>
This commit is contained in:
parent
d63b4b0383
commit
698231a47a
12 changed files with 321 additions and 111 deletions
|
|
@ -12,8 +12,7 @@ a particular constraint set hold_.
|
|||
## Concrete types
|
||||
|
||||
For concrete types, constraint implication is exactly the same as subtyping. (A concrete type is any
|
||||
fully static type that is not a typevar. It can _contain_ a typevar, though — `list[T]` is
|
||||
considered concrete.)
|
||||
fully static type that does not contain a typevar.)
|
||||
|
||||
```py
|
||||
from ty_extensions import ConstraintSet, is_subtype_of, static_assert
|
||||
|
|
@ -191,4 +190,163 @@ def mutually_constrained[T, U]():
|
|||
static_assert(not given_int.implies_subtype_of(T, str))
|
||||
```
|
||||
|
||||
## Compound types
|
||||
|
||||
All of the relationships in the above section also apply when a typevar appears in a compound type.
|
||||
|
||||
```py
|
||||
from typing import Never
|
||||
from ty_extensions import ConstraintSet, static_assert
|
||||
|
||||
class Covariant[T]:
|
||||
def get(self) -> T:
|
||||
raise ValueError
|
||||
|
||||
def given_constraints[T]():
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
# These are vacuously true; false implies anything
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
# For a covariant typevar, (T ≤ int) implies that (Covariant[T] ≤ Covariant[int]).
|
||||
given_int = ConstraintSet.range(Never, T, int)
|
||||
static_assert(given_int.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
given_bool = ConstraintSet.range(Never, T, bool)
|
||||
static_assert(given_bool.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(given_bool.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_bool.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
given_bool_int = ConstraintSet.range(bool, T, int)
|
||||
static_assert(not given_bool_int.implies_subtype_of(Covariant[int], Covariant[T]))
|
||||
static_assert(given_bool_int.implies_subtype_of(Covariant[bool], Covariant[T]))
|
||||
static_assert(not given_bool_int.implies_subtype_of(Covariant[str], Covariant[T]))
|
||||
|
||||
def mutually_constrained[T, U]():
|
||||
# If (T = U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Covariant[T] ≤ Covariant[int]).
|
||||
given_int = ConstraintSet.range(U, T, U) & ConstraintSet.range(Never, U, int)
|
||||
static_assert(given_int.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
# If (T ≤ U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Covariant[T] ≤ Covariant[int]).
|
||||
given_int = ConstraintSet.range(Never, T, U) & ConstraintSet.range(Never, U, int)
|
||||
static_assert(given_int.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
```
|
||||
|
||||
Many of the relationships are reversed for typevars that appear in contravariant types.
|
||||
|
||||
```py
|
||||
class Contravariant[T]:
|
||||
def set(self, value: T):
|
||||
pass
|
||||
|
||||
def given_constraints[T]():
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
# These are vacuously true; false implies anything
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
# For a contravariant typevar, (T ≤ int) implies that (Contravariant[int] ≤ Contravariant[T]).
|
||||
# (The order of the comparison is reversed because of contravariance.)
|
||||
given_int = ConstraintSet.range(Never, T, int)
|
||||
static_assert(given_int.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
given_bool = ConstraintSet.range(Never, T, int)
|
||||
static_assert(given_bool.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not given_bool.implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not given_bool.implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
def mutually_constrained[T, U]():
|
||||
# If (T = U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Contravariant[int] ≤ Contravariant[T]).
|
||||
given_int = ConstraintSet.range(U, T, U) & ConstraintSet.range(Never, U, int)
|
||||
static_assert(given_int.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
# If (T ≤ U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Contravariant[int] ≤ Contravariant[T]).
|
||||
given_int = ConstraintSet.range(Never, T, U) & ConstraintSet.range(Never, U, int)
|
||||
static_assert(given_int.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
```
|
||||
|
||||
For invariant typevars, subtyping of the typevar does not imply subtyping of the compound type in
|
||||
either direction. But an equality constraint on the typevar does.
|
||||
|
||||
```py
|
||||
class Invariant[T]:
|
||||
def get(self) -> T:
|
||||
raise ValueError
|
||||
|
||||
def set(self, value: T):
|
||||
pass
|
||||
|
||||
def given_constraints[T]():
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
static_assert(not ConstraintSet.always().implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
|
||||
# These are vacuously true; false implies anything
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
|
||||
# For an invariant typevar, (T ≤ int) does not imply that (Invariant[T] ≤ Invariant[int]).
|
||||
given_int = ConstraintSet.range(Never, T, int)
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
|
||||
# It also does not imply the contravariant ordering (Invariant[int] ≤ Invariant[T]).
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[int], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[bool], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[str], Invariant[T]))
|
||||
|
||||
# But (T = int) does imply both.
|
||||
given_int = ConstraintSet.range(int, T, int)
|
||||
static_assert(given_int.implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
static_assert(given_int.implies_subtype_of(Invariant[int], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[bool], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[str], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
|
||||
def mutually_constrained[T, U]():
|
||||
# If (T = U ∧ U ≤ int), then (T ≤ int) must be true as well. But because T is invariant, that
|
||||
# does _not_ imply that (Invariant[T] ≤ Invariant[int]).
|
||||
given_int = ConstraintSet.range(U, T, U) & ConstraintSet.range(Never, U, int)
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
|
||||
# If (T = U ∧ U = int), then (T = int) must be true as well. That is an equality constraint, so
|
||||
# even though T is invariant, it does imply that (Invariant[T] ≤ Invariant[int]).
|
||||
given_int = ConstraintSet.range(U, T, U) & ConstraintSet.range(int, U, int)
|
||||
static_assert(given_int.implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
static_assert(given_int.implies_subtype_of(Invariant[int], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[bool], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[str], Invariant[T]))
|
||||
```
|
||||
|
||||
[subtyping]: https://typing.python.org/en/latest/spec/concepts.html#subtype-supertype-and-type-equivalence
|
||||
|
|
|
|||
|
|
@ -200,7 +200,7 @@ pub(crate) type ApplyTypeMappingVisitor<'db> = TypeTransformer<'db, TypeMapping<
|
|||
|
||||
/// A [`PairVisitor`] that is used in `has_relation_to` methods.
|
||||
pub(crate) type HasRelationToVisitor<'db> =
|
||||
CycleDetector<TypeRelation, (Type<'db>, Type<'db>, TypeRelation), ConstraintSet<'db>>;
|
||||
CycleDetector<TypeRelation<'db>, (Type<'db>, Type<'db>, TypeRelation<'db>), ConstraintSet<'db>>;
|
||||
|
||||
impl Default for HasRelationToVisitor<'_> {
|
||||
fn default() -> Self {
|
||||
|
|
@ -1623,6 +1623,25 @@ impl<'db> Type<'db> {
|
|||
self.has_relation_to(db, target, inferable, TypeRelation::Subtyping)
|
||||
}
|
||||
|
||||
/// Return the constraints under which this type is a subtype of type `target`, assuming that
|
||||
/// all of the restrictions in `constraints` hold.
|
||||
///
|
||||
/// See [`TypeRelation::SubtypingAssuming`] for more details.
|
||||
fn when_subtype_of_assuming(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
target: Type<'db>,
|
||||
assuming: ConstraintSet<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
self.has_relation_to(
|
||||
db,
|
||||
target,
|
||||
inferable,
|
||||
TypeRelation::SubtypingAssuming(assuming),
|
||||
)
|
||||
}
|
||||
|
||||
/// Return true if this type is assignable to type `target`.
|
||||
///
|
||||
/// See [`TypeRelation::Assignability`] for more details.
|
||||
|
|
@ -1654,7 +1673,7 @@ impl<'db> Type<'db> {
|
|||
db: &'db dyn Db,
|
||||
target: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
self.has_relation_to_impl(
|
||||
db,
|
||||
|
|
@ -1671,7 +1690,7 @@ impl<'db> Type<'db> {
|
|||
db: &'db dyn Db,
|
||||
target: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -1684,6 +1703,14 @@ impl<'db> Type<'db> {
|
|||
return ConstraintSet::from(true);
|
||||
}
|
||||
|
||||
// Handle constraint implication first. If either `self` or `target` is a typevar, check
|
||||
// the constraint set to see if the corresponding constraint is satisfied.
|
||||
if let TypeRelation::SubtypingAssuming(constraints) = relation
|
||||
&& (self.is_type_var() || target.is_type_var())
|
||||
{
|
||||
return constraints.implies_subtype_of(db, self, target);
|
||||
}
|
||||
|
||||
match (self, target) {
|
||||
// Everything is a subtype of `object`.
|
||||
(_, Type::NominalInstance(instance)) if instance.is_object() => {
|
||||
|
|
@ -1763,7 +1790,7 @@ impl<'db> Type<'db> {
|
|||
"DynamicType::Divergent should have been handled in an earlier branch"
|
||||
);
|
||||
ConstraintSet::from(match relation {
|
||||
TypeRelation::Subtyping => false,
|
||||
TypeRelation::Subtyping | TypeRelation::SubtypingAssuming(_) => false,
|
||||
TypeRelation::Assignability => true,
|
||||
TypeRelation::Redundancy => match target {
|
||||
Type::Dynamic(_) => true,
|
||||
|
|
@ -1773,7 +1800,7 @@ impl<'db> Type<'db> {
|
|||
})
|
||||
}
|
||||
(_, Type::Dynamic(_)) => ConstraintSet::from(match relation {
|
||||
TypeRelation::Subtyping => false,
|
||||
TypeRelation::Subtyping | TypeRelation::SubtypingAssuming(_) => false,
|
||||
TypeRelation::Assignability => true,
|
||||
TypeRelation::Redundancy => match self {
|
||||
Type::Dynamic(_) => true,
|
||||
|
|
@ -1970,12 +1997,16 @@ impl<'db> Type<'db> {
|
|||
// to non-transitivity (highly undesirable); and pragmatically, a full implementation
|
||||
// of redundancy may not generally lead to simpler types in many situations.
|
||||
let self_ty = match relation {
|
||||
TypeRelation::Subtyping | TypeRelation::Redundancy => self,
|
||||
TypeRelation::Subtyping
|
||||
| TypeRelation::Redundancy
|
||||
| TypeRelation::SubtypingAssuming(_) => self,
|
||||
TypeRelation::Assignability => self.bottom_materialization(db),
|
||||
};
|
||||
intersection.negative(db).iter().when_all(db, |&neg_ty| {
|
||||
let neg_ty = match relation {
|
||||
TypeRelation::Subtyping | TypeRelation::Redundancy => neg_ty,
|
||||
TypeRelation::Subtyping
|
||||
| TypeRelation::Redundancy
|
||||
| TypeRelation::SubtypingAssuming(_) => neg_ty,
|
||||
TypeRelation::Assignability => neg_ty.bottom_materialization(db),
|
||||
};
|
||||
self_ty.is_disjoint_from_impl(
|
||||
|
|
@ -10322,7 +10353,7 @@ impl<'db> ConstructorCallError<'db> {
|
|||
|
||||
/// A non-exhaustive enumeration of relations that can exist between types.
|
||||
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
||||
pub(crate) enum TypeRelation {
|
||||
pub(crate) enum TypeRelation<'db> {
|
||||
/// The "subtyping" relation.
|
||||
///
|
||||
/// A [fully static] type `B` is a subtype of a fully static type `A` if and only if
|
||||
|
|
@ -10446,9 +10477,46 @@ pub(crate) enum TypeRelation {
|
|||
/// [fully static]: https://typing.python.org/en/latest/spec/glossary.html#term-fully-static-type
|
||||
/// [materializations]: https://typing.python.org/en/latest/spec/glossary.html#term-materialize
|
||||
Redundancy,
|
||||
|
||||
/// The "constraint implication" relationship, aka "implies subtype of".
|
||||
///
|
||||
/// This relationship tests whether one type is a [subtype][Self::Subtyping] of another,
|
||||
/// assuming that the constraints in a particular constraint set hold.
|
||||
///
|
||||
/// For concrete types (types that do not contain typevars), this relationship is the same as
|
||||
/// [subtyping][Self::Subtyping]. (Constraint sets place restrictions on typevars, so if you
|
||||
/// are not comparing typevars, the constraint set can have no effect on whether subtyping
|
||||
/// holds.)
|
||||
///
|
||||
/// If you're comparing a typevar, we have to consider what restrictions the constraint set
|
||||
/// places on that typevar to determine if subtyping holds. For instance, if you want to check
|
||||
/// whether `T ≤ int`, then the answer will depend on what constraint set you are considering:
|
||||
///
|
||||
/// ```text
|
||||
/// implies_subtype_of(T ≤ bool, T, int) ⇒ true
|
||||
/// implies_subtype_of(T ≤ int, T, int) ⇒ true
|
||||
/// implies_subtype_of(T ≤ str, T, int) ⇒ false
|
||||
/// ```
|
||||
///
|
||||
/// In the first two cases, the constraint set ensures that `T` will always specialize to a
|
||||
/// type that is a subtype of `int`. In the final case, the constraint set requires `T` to
|
||||
/// specialize to a subtype of `str`, and there is no such type that is also a subtype of
|
||||
/// `int`.
|
||||
///
|
||||
/// There are two constraint sets that deserve special consideration.
|
||||
///
|
||||
/// - The "always true" constraint set does not place any restrictions on any typevar. In this
|
||||
/// case, `implies_subtype_of` will return the same result as `when_subtype_of`, even if
|
||||
/// you're comparing against a typevar.
|
||||
///
|
||||
/// - The "always false" constraint set represents an impossible situation. In this case, every
|
||||
/// subtype check will be vacuously true, even if you're comparing two concrete types that
|
||||
/// are not actually subtypes of each other. (That is, `implies_subtype_of(false, int, str)`
|
||||
/// will return true!)
|
||||
SubtypingAssuming(ConstraintSet<'db>),
|
||||
}
|
||||
|
||||
impl TypeRelation {
|
||||
impl TypeRelation<'_> {
|
||||
pub(crate) const fn is_assignability(self) -> bool {
|
||||
matches!(self, TypeRelation::Assignability)
|
||||
}
|
||||
|
|
@ -10615,7 +10683,7 @@ impl<'db> BoundMethodType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -10782,7 +10850,7 @@ impl<'db> CallableType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -10891,7 +10959,7 @@ impl<'db> KnownBoundMethodType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
|
|||
|
|
@ -1216,10 +1216,10 @@ impl<'db> Bindings<'db> {
|
|||
continue;
|
||||
};
|
||||
|
||||
let result = tracked.constraints(db).when_subtype_of_given(
|
||||
let result = ty_a.when_subtype_of_assuming(
|
||||
db,
|
||||
*ty_a,
|
||||
*ty_b,
|
||||
tracked.constraints(db),
|
||||
InferableTypeVars::None,
|
||||
);
|
||||
let tracked = TrackedConstraintSet::new(db, result);
|
||||
|
|
|
|||
|
|
@ -541,14 +541,16 @@ impl<'db> ClassType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
self.iter_mro(db).when_any(db, |base| {
|
||||
match base {
|
||||
ClassBase::Dynamic(_) => match relation {
|
||||
TypeRelation::Subtyping | TypeRelation::Redundancy => {
|
||||
TypeRelation::Subtyping
|
||||
| TypeRelation::Redundancy
|
||||
| TypeRelation::SubtypingAssuming(_) => {
|
||||
ConstraintSet::from(other.is_object(db))
|
||||
}
|
||||
TypeRelation::Assignability => ConstraintSet::from(!other.is_final(db)),
|
||||
|
|
|
|||
|
|
@ -185,11 +185,12 @@ impl<'db> ConstraintSet<'db> {
|
|||
typevar: BoundTypeVarInstance<'db>,
|
||||
lower: Type<'db>,
|
||||
upper: Type<'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
) -> Self {
|
||||
let (lower, upper) = match relation {
|
||||
// TODO: Is this the correct constraint for redundancy?
|
||||
TypeRelation::Subtyping | TypeRelation::Redundancy => (
|
||||
TypeRelation::Subtyping
|
||||
| TypeRelation::Redundancy
|
||||
| TypeRelation::SubtypingAssuming(_) => (
|
||||
lower.top_materialization(db),
|
||||
upper.bottom_materialization(db),
|
||||
),
|
||||
|
|
@ -215,47 +216,16 @@ impl<'db> ConstraintSet<'db> {
|
|||
}
|
||||
|
||||
/// Returns the constraints under which `lhs` is a subtype of `rhs`, assuming that the
|
||||
/// constraints in this constraint set hold.
|
||||
///
|
||||
/// For concrete types (types that are not typevars), this returns the same result as
|
||||
/// [`when_subtype_of`][Type::when_subtype_of]. (Constraint sets place restrictions on
|
||||
/// typevars, so if you are not comparing typevars, the constraint set can have no effect on
|
||||
/// whether subtyping holds.)
|
||||
///
|
||||
/// If you're comparing a typevar, we have to consider what restrictions the constraint set
|
||||
/// places on that typevar to determine if subtyping holds. For instance, if you want to check
|
||||
/// whether `T ≤ int`, then answer will depend on what constraint set you are considering:
|
||||
///
|
||||
/// ```text
|
||||
/// when_subtype_of_given(T ≤ bool, T, int) ⇒ true
|
||||
/// when_subtype_of_given(T ≤ int, T, int) ⇒ true
|
||||
/// when_subtype_of_given(T ≤ str, T, int) ⇒ false
|
||||
/// ```
|
||||
///
|
||||
/// In the first two cases, the constraint set ensures that `T` will always specialize to a
|
||||
/// type that is a subtype of `int`. In the final case, the constraint set requires `T` to
|
||||
/// specialize to a subtype of `str`, and there is no such type that is also a subtype of
|
||||
/// `int`.
|
||||
///
|
||||
/// There are two constraint sets that deserve special consideration.
|
||||
///
|
||||
/// - The "always true" constraint set does not place any restrictions on any typevar. In this
|
||||
/// case, `when_subtype_of_given` will return the same result as `when_subtype_of`, even if
|
||||
/// you're comparing against a typevar.
|
||||
///
|
||||
/// - The "always false" constraint set represents an impossible situation. In this case, every
|
||||
/// subtype check will be vacuously true, even if you're comparing two concrete types that
|
||||
/// are not actually subtypes of each other. (That is,
|
||||
/// `when_subtype_of_given(false, int, str)` will return true!)
|
||||
pub(crate) fn when_subtype_of_given(
|
||||
/// constraints in this constraint set hold. Panics if neither of the types being compared are
|
||||
/// a typevar. (That case is handled by `Type::has_relation_to`.)
|
||||
pub(crate) fn implies_subtype_of(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
lhs: Type<'db>,
|
||||
rhs: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
) -> Self {
|
||||
Self {
|
||||
node: self.node.when_subtype_of_given(db, lhs, rhs, inferable),
|
||||
node: self.node.implies_subtype_of(db, lhs, rhs),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -829,13 +799,7 @@ impl<'db> Node<'db> {
|
|||
simplified.and(db, domain)
|
||||
}
|
||||
|
||||
fn when_subtype_of_given(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
lhs: Type<'db>,
|
||||
rhs: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
) -> Self {
|
||||
fn implies_subtype_of(self, db: &'db dyn Db, lhs: Type<'db>, rhs: Type<'db>) -> Self {
|
||||
// When checking subtyping involving a typevar, we can turn the subtyping check into a
|
||||
// constraint (i.e, "is `T` a subtype of `int` becomes the constraint `T ≤ int`), and then
|
||||
// check when the BDD implies that constraint.
|
||||
|
|
@ -846,8 +810,7 @@ impl<'db> Node<'db> {
|
|||
(_, Type::TypeVar(bound_typevar)) => {
|
||||
ConstrainedTypeVar::new_node(db, bound_typevar, lhs, Type::object())
|
||||
}
|
||||
// If neither type is a typevar, then we fall back on a normal subtyping check.
|
||||
_ => return lhs.when_subtype_of(db, rhs, inferable).node,
|
||||
_ => panic!("at least one type should be a typevar"),
|
||||
};
|
||||
|
||||
self.satisfies(db, constraint)
|
||||
|
|
@ -1464,10 +1427,12 @@ impl<'db> InteriorNode<'db> {
|
|||
_ => continue,
|
||||
};
|
||||
|
||||
let new_node = Node::new_constraint(
|
||||
db,
|
||||
ConstrainedTypeVar::new(db, constrained_typevar, new_lower, new_upper),
|
||||
);
|
||||
let new_constraint =
|
||||
ConstrainedTypeVar::new(db, constrained_typevar, new_lower, new_upper);
|
||||
if seen_constraints.contains(&new_constraint) {
|
||||
continue;
|
||||
}
|
||||
let new_node = Node::new_constraint(db, new_constraint);
|
||||
let positive_left_node =
|
||||
Node::new_satisfied_constraint(db, left_constraint.when_true());
|
||||
let positive_right_node =
|
||||
|
|
@ -1481,7 +1446,18 @@ impl<'db> InteriorNode<'db> {
|
|||
continue;
|
||||
}
|
||||
|
||||
// From here on out we know that both constraints constrain the same typevar.
|
||||
// From here on out we know that both constraints constrain the same typevar. The
|
||||
// clause above will propagate all that we know about the current typevar relative to
|
||||
// other typevars, producing constraints on this typevar that have concrete lower/upper
|
||||
// bounds. That means we can skip the simplifications below if any bound is another
|
||||
// typevar.
|
||||
if left_constraint.lower(db).is_type_var()
|
||||
|| left_constraint.upper(db).is_type_var()
|
||||
|| right_constraint.lower(db).is_type_var()
|
||||
|| right_constraint.upper(db).is_type_var()
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
// Containment: The range of one constraint might completely contain the range of the
|
||||
// other. If so, there are several potential simplifications.
|
||||
|
|
|
|||
|
|
@ -971,7 +971,7 @@ impl<'db> FunctionType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -979,8 +979,10 @@ impl<'db> FunctionType<'db> {
|
|||
// our representation of a function type includes any specialization that should be applied
|
||||
// to the signature. Different specializations of the same function type are only subtypes
|
||||
// of each other if they result in subtype signatures.
|
||||
if matches!(relation, TypeRelation::Subtyping | TypeRelation::Redundancy)
|
||||
&& self.normalized(db) == other.normalized(db)
|
||||
if matches!(
|
||||
relation,
|
||||
TypeRelation::Subtyping | TypeRelation::Redundancy | TypeRelation::SubtypingAssuming(_)
|
||||
) && self.normalized(db) == other.normalized(db)
|
||||
{
|
||||
return ConstraintSet::from(true);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -732,7 +732,7 @@ fn has_relation_in_invariant_position<'db>(
|
|||
base_type: &Type<'db>,
|
||||
base_materialization: Option<MaterializationKind>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -781,30 +781,34 @@ fn has_relation_in_invariant_position<'db>(
|
|||
)
|
||||
}),
|
||||
// For gradual types, A <: B (subtyping) is defined as Top[A] <: Bottom[B]
|
||||
(None, Some(base_mat), TypeRelation::Subtyping | TypeRelation::Redundancy) => {
|
||||
is_subtype_in_invariant_position(
|
||||
db,
|
||||
derived_type,
|
||||
MaterializationKind::Top,
|
||||
base_type,
|
||||
base_mat,
|
||||
inferable,
|
||||
relation_visitor,
|
||||
disjointness_visitor,
|
||||
)
|
||||
}
|
||||
(Some(derived_mat), None, TypeRelation::Subtyping | TypeRelation::Redundancy) => {
|
||||
is_subtype_in_invariant_position(
|
||||
db,
|
||||
derived_type,
|
||||
derived_mat,
|
||||
base_type,
|
||||
MaterializationKind::Bottom,
|
||||
inferable,
|
||||
relation_visitor,
|
||||
disjointness_visitor,
|
||||
)
|
||||
}
|
||||
(
|
||||
None,
|
||||
Some(base_mat),
|
||||
TypeRelation::Subtyping | TypeRelation::Redundancy | TypeRelation::SubtypingAssuming(_),
|
||||
) => is_subtype_in_invariant_position(
|
||||
db,
|
||||
derived_type,
|
||||
MaterializationKind::Top,
|
||||
base_type,
|
||||
base_mat,
|
||||
inferable,
|
||||
relation_visitor,
|
||||
disjointness_visitor,
|
||||
),
|
||||
(
|
||||
Some(derived_mat),
|
||||
None,
|
||||
TypeRelation::Subtyping | TypeRelation::Redundancy | TypeRelation::SubtypingAssuming(_),
|
||||
) => is_subtype_in_invariant_position(
|
||||
db,
|
||||
derived_type,
|
||||
derived_mat,
|
||||
base_type,
|
||||
MaterializationKind::Bottom,
|
||||
inferable,
|
||||
relation_visitor,
|
||||
disjointness_visitor,
|
||||
),
|
||||
// And A <~ B (assignability) is Bottom[A] <: Top[B]
|
||||
(None, Some(base_mat), TypeRelation::Assignability) => is_subtype_in_invariant_position(
|
||||
db,
|
||||
|
|
@ -1072,7 +1076,7 @@ impl<'db> Specialization<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
|
|||
|
|
@ -127,7 +127,7 @@ impl<'db> Type<'db> {
|
|||
db: &'db dyn Db,
|
||||
protocol: ProtocolInstanceType<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -370,7 +370,7 @@ impl<'db> NominalInstanceType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
|
|||
|
|
@ -234,7 +234,7 @@ impl<'db> ProtocolInterface<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -634,7 +634,7 @@ impl<'a, 'db> ProtocolMember<'a, 'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
|
|||
|
|
@ -234,7 +234,7 @@ impl<'db> CallableSignature<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: &Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -256,7 +256,7 @@ impl<'db> CallableSignature<'db> {
|
|||
self_signatures: &[Signature<'db>],
|
||||
other_signatures: &[Signature<'db>],
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -732,7 +732,7 @@ impl<'db> Signature<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: &Signature<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
|
|||
|
|
@ -137,7 +137,7 @@ impl<'db> SubclassOfType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: SubclassOfType<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
|
|||
|
|
@ -260,7 +260,7 @@ impl<'db> TupleType<'db> {
|
|||
db: &'db dyn Db,
|
||||
other: Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -442,7 +442,7 @@ impl<'db> FixedLengthTuple<Type<'db>> {
|
|||
db: &'db dyn Db,
|
||||
other: &Tuple<Type<'db>>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -799,7 +799,7 @@ impl<'db> VariableLengthTuple<Type<'db>> {
|
|||
db: &'db dyn Db,
|
||||
other: &Tuple<Type<'db>>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
@ -1191,7 +1191,7 @@ impl<'db> Tuple<Type<'db>> {
|
|||
db: &'db dyn Db,
|
||||
other: &Self,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
relation: TypeRelation,
|
||||
relation: TypeRelation<'db>,
|
||||
relation_visitor: &HasRelationToVisitor<'db>,
|
||||
disjointness_visitor: &IsDisjointVisitor<'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue