[ty] Use C[T] instead of C[Unknown] for the upper bound of Self (#20479)

### Summary

This PR includes two changes, both of which are necessary to resolve
https://github.com/astral-sh/ty/issues/1196:

* For a generic class `C[T]`, we previously used `C[Unknown]` as the
upper bound of the `Self` type variable. There were two problems with
this. For one, when `Self` appeared in contravariant position, we would
materialize its upper bound to `Bottom[C[Unknown]]` (which might
simplify to `C[Never]` if `C` is covariant in `T`) when accessing
methods on `Top[C[Unknown]]`. This would result in `invalid-argument`
errors on the `self` parameter. Also, using an upper bound of
`C[Unknown]` would mean that inside methods, references to `T` would be
treated as `Unknown`. This could lead to false negatives. To fix this,
we now use `C[T]` (with a "nested" typevar) as the upper bound for
`Self` on `C[T]`.
* In order to make this work, we needed to allow assignability/subtyping
of inferable typevars to other types, since we now check assignability
of e.g. `C[int]` to `C[T]` (when checking assignability to the upper
bound of `Self`) when calling an instance-method on `C[int]` whose
`self` parameter is annotated as `self: Self` (or implicitly `Self`,
following https://github.com/astral-sh/ruff/pull/18007).

closes https://github.com/astral-sh/ty/issues/1196
closes https://github.com/astral-sh/ty/issues/1208


### Test Plan

Regression tests for both issues.
This commit is contained in:
David Peter 2025-09-23 14:02:25 +02:00 committed by GitHub
parent fd5c48c539
commit 742f8a4ee6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 213 additions and 15 deletions

View file

@ -366,6 +366,31 @@ reveal_type(f(g("a"))) # revealed: tuple[Literal["a"] | None, int]
reveal_type(g(f("a"))) # revealed: tuple[Literal["a"], int] | None
```
## Passing generic functions to generic functions
```py
from typing import Callable, TypeVar
A = TypeVar("A")
B = TypeVar("B")
T = TypeVar("T")
def invoke(fn: Callable[[A], B], value: A) -> B:
return fn(value)
def identity(x: T) -> T:
return x
def head(xs: list[T]) -> T:
return xs[0]
# TODO: this should be `Literal[1]`
reveal_type(invoke(identity, 1)) # revealed: Unknown
# TODO: this should be `Unknown | int`
reveal_type(invoke(head, [1, 2, 3])) # revealed: Unknown
```
## Opaque decorators don't affect typevar binding
Inside the body of a generic function, we should be able to see that the typevars bound by that

View file

@ -323,6 +323,27 @@ reveal_type(f(g("a"))) # revealed: tuple[Literal["a"] | None, int]
reveal_type(g(f("a"))) # revealed: tuple[Literal["a"], int] | None
```
## Passing generic functions to generic functions
```py
from typing import Callable
def invoke[A, B](fn: Callable[[A], B], value: A) -> B:
return fn(value)
def identity[T](x: T) -> T:
return x
def head[T](xs: list[T]) -> T:
return xs[0]
# TODO: this should be `Literal[1]`
reveal_type(invoke(identity, 1)) # revealed: Unknown
# TODO: this should be `Unknown | int`
reveal_type(invoke(head, [1, 2, 3])) # revealed: Unknown
```
## Protocols as TypeVar bounds
Protocol types can be used as TypeVar bounds, just like nominal types.

View file

@ -321,8 +321,11 @@ a covariant generic, this is equivalent to using the upper bound of the type par
`object`):
```py
from typing import Self
class Covariant[T]:
def get(self) -> T:
# TODO: remove the explicit `Self` annotation, once we support the implicit type of `self`
def get(self: Self) -> T:
raise NotImplementedError
def _(x: object):
@ -335,7 +338,8 @@ Similarly, contravariant type parameters use their lower bound of `Never`:
```py
class Contravariant[T]:
def push(self, x: T) -> None: ...
# TODO: remove the explicit `Self` annotation, once we support the implicit type of `self`
def push(self: Self, x: T) -> None: ...
def _(x: object):
if isinstance(x, Contravariant):
@ -350,8 +354,10 @@ the type system, so we represent it with the internal `Top[]` special form.
```py
class Invariant[T]:
def push(self, x: T) -> None: ...
def get(self) -> T:
# TODO: remove the explicit `Self` annotation, once we support the implicit type of `self`
def push(self: Self, x: T) -> None: ...
# TODO: remove the explicit `Self` annotation, once we support the implicit type of `self`
def get(self: Self) -> T:
raise NotImplementedError
def _(x: object):

View file

@ -99,7 +99,7 @@ reveal_type(foo(b"")) # revealed: bytes
## Methods
```py
from typing import overload
from typing_extensions import Self, overload
class Foo1:
@overload
@ -126,6 +126,18 @@ foo2 = Foo2()
reveal_type(foo2.method) # revealed: Overload[() -> None, (x: str) -> str]
reveal_type(foo2.method()) # revealed: None
reveal_type(foo2.method("")) # revealed: str
class Foo3:
@overload
def takes_self_or_int(self: Self, x: Self) -> Self: ...
@overload
def takes_self_or_int(self: Self, x: int) -> int: ...
def takes_self_or_int(self: Self, x: Self | int) -> Self | int:
return x
foo3 = Foo3()
reveal_type(foo3.takes_self_or_int(foo3)) # revealed: Foo3
reveal_type(foo3.takes_self_or_int(1)) # revealed: int
```
## Constructor

View file

@ -1593,9 +1593,16 @@ impl<'db> Type<'db> {
})
}
(Type::TypeVar(_), _) if relation.is_assignability() => {
// The implicit lower bound of a typevar is `Never`, which means
// that it is always assignable to any other type.
// TODO: record the unification constraints
ConstraintSet::from(true)
}
// `Never` is the bottom type, the empty set.
// Other than one unlikely edge case (TypeVars bound to `Never`),
// no other type is a subtype of or assignable to `Never`.
(_, Type::Never) => ConstraintSet::from(false),
(Type::Union(union), _) => union.elements(db).iter().when_all(db, |&elem_ty| {
@ -1632,6 +1639,22 @@ impl<'db> Type<'db> {
// be specialized to `Never`.)
(_, Type::NonInferableTypeVar(_)) => ConstraintSet::from(false),
(_, Type::TypeVar(typevar))
if relation.is_assignability()
&& typevar.typevar(db).upper_bound(db).is_none_or(|bound| {
!self
.has_relation_to_impl(db, bound, relation, visitor)
.is_never_satisfied()
}) =>
{
// TODO: record the unification constraints
typevar
.typevar(db)
.upper_bound(db)
.when_none_or(|bound| self.has_relation_to_impl(db, bound, relation, visitor))
}
// TODO: Infer specializations here
(Type::TypeVar(_), _) | (_, Type::TypeVar(_)) => ConstraintSet::from(false),
@ -5662,13 +5685,25 @@ impl<'db> Type<'db> {
],
});
};
let instance = Type::instance(db, class.unknown_specialization(db));
let upper_bound = Type::instance(
db,
class.apply_specialization(db, |generic_context| {
let types = generic_context
.variables(db)
.iter()
.map(|typevar| Type::NonInferableTypeVar(*typevar));
generic_context.specialize(db, types.collect())
}),
);
let class_definition = class.definition(db);
let typevar = TypeVarInstance::new(
db,
ast::name::Name::new_static("Self"),
Some(class_definition),
Some(TypeVarBoundOrConstraints::UpperBound(instance).into()),
Some(TypeVarBoundOrConstraints::UpperBound(upper_bound).into()),
// According to the [spec], we can consider `Self`
// equivalent to an invariant type variable
// [spec]: https://typing.python.org/en/latest/spec/generics.html#self
@ -6010,8 +6045,8 @@ impl<'db> Type<'db> {
partial.get(db, bound_typevar).unwrap_or(self)
}
TypeMapping::MarkTypeVarsInferable(binding_context) => {
if bound_typevar.binding_context(db) == *binding_context {
Type::TypeVar(bound_typevar)
if binding_context.is_none_or(|context| context == bound_typevar.binding_context(db)) {
Type::TypeVar(bound_typevar.mark_typevars_inferable(db, visitor))
} else {
self
}
@ -6695,8 +6730,17 @@ pub enum TypeMapping<'a, 'db> {
BindSelf(Type<'db>),
/// Replaces occurrences of `typing.Self` with a new `Self` type variable with the given upper bound.
ReplaceSelf { new_upper_bound: Type<'db> },
/// Marks the typevars that are bound by a generic class or function as inferable.
MarkTypeVarsInferable(BindingContext<'db>),
/// Marks type variables as inferable.
///
/// When we create the signature for a generic function, we mark its type variables as inferable. Since
/// the generic function might reference type variables from enclosing generic scopes, we include the
/// function's binding context in order to only mark those type variables as inferable that are actually
/// bound by that function.
///
/// When the parameter is set to `None`, *all* type variables will be marked as inferable. We use this
/// variant when descending into the bounds and/or constraints, and the default value of a type variable,
/// which may include nested type variables (`Self` has a bound of `C[T]` for a generic class `C[T]`).
MarkTypeVarsInferable(Option<BindingContext<'db>>),
/// Create the top or bottom materialization of a type.
Materialize(MaterializationKind),
}
@ -7637,6 +7681,43 @@ impl<'db> TypeVarInstance<'db> {
)
}
fn mark_typevars_inferable(
self,
db: &'db dyn Db,
visitor: &ApplyTypeMappingVisitor<'db>,
) -> Self {
// Type variables can have nested type variables in their bounds, constraints, or default value.
// When we mark a type variable as inferable, we also mark all of these nested type variables as
// inferable, so we set the parameter to `None` here.
let type_mapping = &TypeMapping::MarkTypeVarsInferable(None);
Self::new(
db,
self.name(db),
self.definition(db),
self._bound_or_constraints(db)
.map(|bound_or_constraints| match bound_or_constraints {
TypeVarBoundOrConstraintsEvaluation::Eager(bound_or_constraints) => {
bound_or_constraints
.mark_typevars_inferable(db, visitor)
.into()
}
TypeVarBoundOrConstraintsEvaluation::LazyUpperBound
| TypeVarBoundOrConstraintsEvaluation::LazyConstraints => bound_or_constraints,
}),
self.explicit_variance(db),
self._default(db).and_then(|default| match default {
TypeVarDefaultEvaluation::Eager(ty) => {
Some(ty.apply_type_mapping_impl(db, type_mapping, visitor).into())
}
TypeVarDefaultEvaluation::Lazy => self
.lazy_default(db)
.map(|ty| ty.apply_type_mapping_impl(db, type_mapping, visitor).into()),
}),
self.kind(db),
)
}
fn to_instance(self, db: &'db dyn Db) -> Option<Self> {
let bound_or_constraints = match self.bound_or_constraints(db)? {
TypeVarBoundOrConstraints::UpperBound(upper_bound) => {
@ -7867,6 +7948,18 @@ impl<'db> BoundTypeVarInstance<'db> {
)
}
fn mark_typevars_inferable(
self,
db: &'db dyn Db,
visitor: &ApplyTypeMappingVisitor<'db>,
) -> Self {
Self::new(
db,
self.typevar(db).mark_typevars_inferable(db, visitor),
self.binding_context(db),
)
}
fn to_instance(self, db: &'db dyn Db) -> Option<Self> {
Some(Self::new(
db,
@ -7972,6 +8065,31 @@ impl<'db> TypeVarBoundOrConstraints<'db> {
}
}
}
fn mark_typevars_inferable(
self,
db: &'db dyn Db,
visitor: &ApplyTypeMappingVisitor<'db>,
) -> Self {
let type_mapping = &TypeMapping::MarkTypeVarsInferable(None);
match self {
TypeVarBoundOrConstraints::UpperBound(bound) => TypeVarBoundOrConstraints::UpperBound(
bound.apply_type_mapping_impl(db, type_mapping, visitor),
),
TypeVarBoundOrConstraints::Constraints(constraints) => {
TypeVarBoundOrConstraints::Constraints(UnionType::new(
db,
constraints
.elements(db)
.iter()
.map(|ty| ty.apply_type_mapping_impl(db, type_mapping, visitor))
.collect::<Vec<_>>()
.into_boxed_slice(),
))
}
}
}
}
/// Error returned if a type is not awaitable.

View file

@ -491,6 +491,18 @@ fn is_subtype_in_invariant_position<'db>(
let base_bottom = base_type.bottom_materialization(db);
let is_subtype_of = |derived: Type<'db>, base: Type<'db>| {
// TODO:
// This should be removed and properly handled in the respective
// `(Type::TypeVar(_), _) | (_, Type::TypeVar(_))` branch of
// `Type::has_relation_to_impl`. Right now, we can not generally
// return `ConstraintSet::from(true)` from that branch, as that
// leads to union simplification, which means that we lose track
// of type variables without recording the constraints under which
// the relation holds.
if matches!(base, Type::TypeVar(_)) || matches!(derived, Type::TypeVar(_)) {
return ConstraintSet::from(true);
}
derived.has_relation_to_impl(db, base, TypeRelation::Subtyping, visitor)
};
match (derived_materialization, base_materialization) {

View file

@ -367,7 +367,9 @@ impl<'db> Signature<'db> {
let plain_return_ty = definition_expression_type(db, definition, returns.as_ref())
.apply_type_mapping(
db,
&TypeMapping::MarkTypeVarsInferable(BindingContext::Definition(definition)),
&TypeMapping::MarkTypeVarsInferable(Some(BindingContext::Definition(
definition,
))),
);
if function_node.is_async && !is_generator {
KnownClass::CoroutineType
@ -1549,7 +1551,9 @@ impl<'db> Parameter<'db> {
annotated_type: parameter.annotation().map(|annotation| {
definition_expression_type(db, definition, annotation).apply_type_mapping(
db,
&TypeMapping::MarkTypeVarsInferable(BindingContext::Definition(definition)),
&TypeMapping::MarkTypeVarsInferable(Some(BindingContext::Definition(
definition,
))),
)
}),
kind,