[ty] Add functions for revealing assignability/subtyping constraints (#20217)

This PR adds two new `ty_extensions` functions,
`reveal_when_assignable_to` and `reveal_when_subtype_of`. These are
closely related to the existing `is_assignable_to` and `is_subtype_of`,
but instead of returning when the property (always) holds, it produces a
diagnostic that describes _when_ the property holds. (This will let us
construct mdtests that print out constraints that are not always true or
always false — though we don't currently have any instances of those.)

I did not replace _every_ occurrence of the `is_property` variants in
the mdtest suite, instead focusing on the generics-related tests where
it will be important to see the full detail of the constraint sets.

As part of this, I also updated the mdtest harness to accept the shorter
`# revealed:` assertion format for more than just `reveal_type`, and
updated the existing uses of `reveal_protocol_interface` to take
advantage of this.
This commit is contained in:
Douglas Creager 2025-09-03 16:44:35 -04:00 committed by GitHub
parent 200349c6e8
commit 77b2cee223
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 309 additions and 199 deletions

View file

@ -129,7 +129,7 @@ specialization. Thus, the typevar is a subtype of itself and of `object`, but no
(including other typevars).
```py
from ty_extensions import is_assignable_to, is_subtype_of, static_assert
from ty_extensions import reveal_when_assignable_to, reveal_when_subtype_of
class Super: ...
class Base(Super): ...
@ -137,23 +137,23 @@ class Sub(Base): ...
class Unrelated: ...
def unbounded_unconstrained[T, U](t: T, u: U) -> None:
static_assert(is_assignable_to(T, T))
static_assert(is_assignable_to(T, object))
static_assert(not is_assignable_to(T, Super))
static_assert(is_assignable_to(U, U))
static_assert(is_assignable_to(U, object))
static_assert(not is_assignable_to(U, Super))
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
reveal_when_assignable_to(T, T) # revealed: always
reveal_when_assignable_to(T, object) # revealed: always
reveal_when_assignable_to(T, Super) # revealed: never
reveal_when_assignable_to(U, U) # revealed: always
reveal_when_assignable_to(U, object) # revealed: always
reveal_when_assignable_to(U, Super) # revealed: never
reveal_when_assignable_to(T, U) # revealed: never
reveal_when_assignable_to(U, T) # revealed: never
static_assert(is_subtype_of(T, T))
static_assert(is_subtype_of(T, object))
static_assert(not is_subtype_of(T, Super))
static_assert(is_subtype_of(U, U))
static_assert(is_subtype_of(U, object))
static_assert(not is_subtype_of(U, Super))
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
reveal_when_subtype_of(T, T) # revealed: always
reveal_when_subtype_of(T, object) # revealed: always
reveal_when_subtype_of(T, Super) # revealed: never
reveal_when_subtype_of(U, U) # revealed: always
reveal_when_subtype_of(U, object) # revealed: always
reveal_when_subtype_of(U, Super) # revealed: never
reveal_when_subtype_of(T, U) # revealed: never
reveal_when_subtype_of(U, T) # revealed: never
```
A bounded typevar is assignable to its bound, and a bounded, fully static typevar is a subtype of
@ -167,40 +167,40 @@ from typing import Any
from typing_extensions import final
def bounded[T: Super](t: T) -> None:
static_assert(is_assignable_to(T, Super))
static_assert(not is_assignable_to(T, Sub))
static_assert(not is_assignable_to(Super, T))
static_assert(not is_assignable_to(Sub, T))
reveal_when_assignable_to(T, Super) # revealed: always
reveal_when_assignable_to(T, Sub) # revealed: never
reveal_when_assignable_to(Super, T) # revealed: never
reveal_when_assignable_to(Sub, T) # revealed: never
static_assert(is_subtype_of(T, Super))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(Sub, T))
reveal_when_subtype_of(T, Super) # revealed: always
reveal_when_subtype_of(T, Sub) # revealed: never
reveal_when_subtype_of(Super, T) # revealed: never
reveal_when_subtype_of(Sub, T) # revealed: never
def bounded_by_gradual[T: Any](t: T) -> None:
static_assert(is_assignable_to(T, Any))
static_assert(is_assignable_to(Any, T))
static_assert(is_assignable_to(T, Super))
static_assert(not is_assignable_to(Super, T))
static_assert(is_assignable_to(T, Sub))
static_assert(not is_assignable_to(Sub, T))
reveal_when_assignable_to(T, Any) # revealed: always
reveal_when_assignable_to(Any, T) # revealed: always
reveal_when_assignable_to(T, Super) # revealed: always
reveal_when_assignable_to(Super, T) # revealed: never
reveal_when_assignable_to(T, Sub) # revealed: always
reveal_when_assignable_to(Sub, T) # revealed: never
static_assert(not is_subtype_of(T, Any))
static_assert(not is_subtype_of(Any, T))
static_assert(not is_subtype_of(T, Super))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(Sub, T))
reveal_when_subtype_of(T, Any) # revealed: never
reveal_when_subtype_of(Any, T) # revealed: never
reveal_when_subtype_of(T, Super) # revealed: never
reveal_when_subtype_of(Super, T) # revealed: never
reveal_when_subtype_of(T, Sub) # revealed: never
reveal_when_subtype_of(Sub, T) # revealed: never
@final
class FinalClass: ...
def bounded_final[T: FinalClass](t: T) -> None:
static_assert(is_assignable_to(T, FinalClass))
static_assert(not is_assignable_to(FinalClass, T))
reveal_when_assignable_to(T, FinalClass) # revealed: always
reveal_when_assignable_to(FinalClass, T) # revealed: never
static_assert(is_subtype_of(T, FinalClass))
static_assert(not is_subtype_of(FinalClass, T))
reveal_when_subtype_of(T, FinalClass) # revealed: always
reveal_when_subtype_of(FinalClass, T) # revealed: never
```
Two distinct fully static typevars are not subtypes of each other, even if they have the same
@ -210,18 +210,18 @@ typevars to `Never` in addition to that final class.
```py
def two_bounded[T: Super, U: Super](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
reveal_when_assignable_to(T, U) # revealed: never
reveal_when_assignable_to(U, T) # revealed: never
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
reveal_when_subtype_of(T, U) # revealed: never
reveal_when_subtype_of(U, T) # revealed: never
def two_final_bounded[T: FinalClass, U: FinalClass](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
reveal_when_assignable_to(T, U) # revealed: never
reveal_when_assignable_to(U, T) # revealed: never
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
reveal_when_subtype_of(T, U) # revealed: never
reveal_when_subtype_of(U, T) # revealed: never
```
A constrained fully static typevar is assignable to the union of its constraints, but not to any of
@ -232,64 +232,64 @@ intersection of all of its constraints is a subtype of the typevar.
from ty_extensions import Intersection
def constrained[T: (Base, Unrelated)](t: T) -> None:
static_assert(not is_assignable_to(T, Super))
static_assert(not is_assignable_to(T, Base))
static_assert(not is_assignable_to(T, Sub))
static_assert(not is_assignable_to(T, Unrelated))
static_assert(is_assignable_to(T, Super | Unrelated))
static_assert(is_assignable_to(T, Base | Unrelated))
static_assert(not is_assignable_to(T, Sub | Unrelated))
static_assert(not is_assignable_to(Super, T))
static_assert(not is_assignable_to(Unrelated, T))
static_assert(not is_assignable_to(Super | Unrelated, T))
static_assert(is_assignable_to(Intersection[Base, Unrelated], T))
reveal_when_assignable_to(T, Super) # revealed: never
reveal_when_assignable_to(T, Base) # revealed: never
reveal_when_assignable_to(T, Sub) # revealed: never
reveal_when_assignable_to(T, Unrelated) # revealed: never
reveal_when_assignable_to(T, Super | Unrelated) # revealed: always
reveal_when_assignable_to(T, Base | Unrelated) # revealed: always
reveal_when_assignable_to(T, Sub | Unrelated) # revealed: never
reveal_when_assignable_to(Super, T) # revealed: never
reveal_when_assignable_to(Unrelated, T) # revealed: never
reveal_when_assignable_to(Super | Unrelated, T) # revealed: never
reveal_when_assignable_to(Intersection[Base, Unrelated], T) # revealed: always
static_assert(not is_subtype_of(T, Super))
static_assert(not is_subtype_of(T, Base))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(T, Unrelated))
static_assert(is_subtype_of(T, Super | Unrelated))
static_assert(is_subtype_of(T, Base | Unrelated))
static_assert(not is_subtype_of(T, Sub | Unrelated))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(Unrelated, T))
static_assert(not is_subtype_of(Super | Unrelated, T))
static_assert(is_subtype_of(Intersection[Base, Unrelated], T))
reveal_when_subtype_of(T, Super) # revealed: never
reveal_when_subtype_of(T, Base) # revealed: never
reveal_when_subtype_of(T, Sub) # revealed: never
reveal_when_subtype_of(T, Unrelated) # revealed: never
reveal_when_subtype_of(T, Super | Unrelated) # revealed: always
reveal_when_subtype_of(T, Base | Unrelated) # revealed: always
reveal_when_subtype_of(T, Sub | Unrelated) # revealed: never
reveal_when_subtype_of(Super, T) # revealed: never
reveal_when_subtype_of(Unrelated, T) # revealed: never
reveal_when_subtype_of(Super | Unrelated, T) # revealed: never
reveal_when_subtype_of(Intersection[Base, Unrelated], T) # revealed: always
def constrained_by_gradual[T: (Base, Any)](t: T) -> None:
static_assert(is_assignable_to(T, Super))
static_assert(is_assignable_to(T, Base))
static_assert(not is_assignable_to(T, Sub))
static_assert(not is_assignable_to(T, Unrelated))
static_assert(is_assignable_to(T, Any))
static_assert(is_assignable_to(T, Super | Any))
static_assert(is_assignable_to(T, Super | Unrelated))
static_assert(not is_assignable_to(Super, T))
static_assert(is_assignable_to(Base, T))
static_assert(not is_assignable_to(Unrelated, T))
static_assert(is_assignable_to(Any, T))
static_assert(not is_assignable_to(Super | Any, T))
static_assert(is_assignable_to(Base | Any, T))
static_assert(not is_assignable_to(Super | Unrelated, T))
static_assert(is_assignable_to(Intersection[Base, Unrelated], T))
static_assert(is_assignable_to(Intersection[Base, Any], T))
reveal_when_assignable_to(T, Super) # revealed: always
reveal_when_assignable_to(T, Base) # revealed: always
reveal_when_assignable_to(T, Sub) # revealed: never
reveal_when_assignable_to(T, Unrelated) # revealed: never
reveal_when_assignable_to(T, Any) # revealed: always
reveal_when_assignable_to(T, Super | Any) # revealed: always
reveal_when_assignable_to(T, Super | Unrelated) # revealed: always
reveal_when_assignable_to(Super, T) # revealed: never
reveal_when_assignable_to(Base, T) # revealed: always
reveal_when_assignable_to(Unrelated, T) # revealed: never
reveal_when_assignable_to(Any, T) # revealed: always
reveal_when_assignable_to(Super | Any, T) # revealed: never
reveal_when_assignable_to(Base | Any, T) # revealed: always
reveal_when_assignable_to(Super | Unrelated, T) # revealed: never
reveal_when_assignable_to(Intersection[Base, Unrelated], T) # revealed: always
reveal_when_assignable_to(Intersection[Base, Any], T) # revealed: always
static_assert(not is_subtype_of(T, Super))
static_assert(not is_subtype_of(T, Base))
static_assert(not is_subtype_of(T, Sub))
static_assert(not is_subtype_of(T, Unrelated))
static_assert(not is_subtype_of(T, Any))
static_assert(not is_subtype_of(T, Super | Any))
static_assert(not is_subtype_of(T, Super | Unrelated))
static_assert(not is_subtype_of(Super, T))
static_assert(not is_subtype_of(Base, T))
static_assert(not is_subtype_of(Unrelated, T))
static_assert(not is_subtype_of(Any, T))
static_assert(not is_subtype_of(Super | Any, T))
static_assert(not is_subtype_of(Base | Any, T))
static_assert(not is_subtype_of(Super | Unrelated, T))
static_assert(not is_subtype_of(Intersection[Base, Unrelated], T))
static_assert(not is_subtype_of(Intersection[Base, Any], T))
reveal_when_subtype_of(T, Super) # revealed: never
reveal_when_subtype_of(T, Base) # revealed: never
reveal_when_subtype_of(T, Sub) # revealed: never
reveal_when_subtype_of(T, Unrelated) # revealed: never
reveal_when_subtype_of(T, Any) # revealed: never
reveal_when_subtype_of(T, Super | Any) # revealed: never
reveal_when_subtype_of(T, Super | Unrelated) # revealed: never
reveal_when_subtype_of(Super, T) # revealed: never
reveal_when_subtype_of(Base, T) # revealed: never
reveal_when_subtype_of(Unrelated, T) # revealed: never
reveal_when_subtype_of(Any, T) # revealed: never
reveal_when_subtype_of(Super | Any, T) # revealed: never
reveal_when_subtype_of(Base | Any, T) # revealed: never
reveal_when_subtype_of(Super | Unrelated, T) # revealed: never
reveal_when_subtype_of(Intersection[Base, Unrelated], T) # revealed: never
reveal_when_subtype_of(Intersection[Base, Any], T) # revealed: never
```
Two distinct fully static typevars are not subtypes of each other, even if they have the same
@ -299,58 +299,58 @@ the same type.
```py
def two_constrained[T: (int, str), U: (int, str)](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
reveal_when_assignable_to(T, U) # revealed: never
reveal_when_assignable_to(U, T) # revealed: never
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
reveal_when_subtype_of(T, U) # revealed: never
reveal_when_subtype_of(U, T) # revealed: never
@final
class AnotherFinalClass: ...
def two_final_constrained[T: (FinalClass, AnotherFinalClass), U: (FinalClass, AnotherFinalClass)](t: T, u: U) -> None:
static_assert(not is_assignable_to(T, U))
static_assert(not is_assignable_to(U, T))
reveal_when_assignable_to(T, U) # revealed: never
reveal_when_assignable_to(U, T) # revealed: never
static_assert(not is_subtype_of(T, U))
static_assert(not is_subtype_of(U, T))
reveal_when_subtype_of(T, U) # revealed: never
reveal_when_subtype_of(U, T) # revealed: never
```
A bound or constrained typevar is a subtype of itself in a union:
```py
def union[T: Base, U: (Base, Unrelated)](t: T, u: U) -> None:
static_assert(is_assignable_to(T, T | None))
static_assert(is_assignable_to(U, U | None))
reveal_when_assignable_to(T, T | None) # revealed: always
reveal_when_assignable_to(U, U | None) # revealed: always
static_assert(is_subtype_of(T, T | None))
static_assert(is_subtype_of(U, U | None))
reveal_when_subtype_of(T, T | None) # revealed: always
reveal_when_subtype_of(U, U | None) # revealed: always
```
A bound or constrained typevar in a union with a dynamic type is assignable to the typevar:
```py
def union_with_dynamic[T: Base, U: (Base, Unrelated)](t: T, u: U) -> None:
static_assert(is_assignable_to(T | Any, T))
static_assert(is_assignable_to(U | Any, U))
reveal_when_assignable_to(T | Any, T) # revealed: always
reveal_when_assignable_to(U | Any, U) # revealed: always
static_assert(not is_subtype_of(T | Any, T))
static_assert(not is_subtype_of(U | Any, U))
reveal_when_subtype_of(T | Any, T) # revealed: never
reveal_when_subtype_of(U | Any, U) # revealed: never
```
And an intersection of a typevar with another type is always a subtype of the TypeVar:
```py
from ty_extensions import Intersection, Not, is_disjoint_from
from ty_extensions import Intersection, Not, is_disjoint_from, static_assert
class A: ...
def inter[T: Base, U: (Base, Unrelated)](t: T, u: U) -> None:
static_assert(is_assignable_to(Intersection[T, Unrelated], T))
static_assert(is_subtype_of(Intersection[T, Unrelated], T))
reveal_when_assignable_to(Intersection[T, Unrelated], T) # revealed: always
reveal_when_subtype_of(Intersection[T, Unrelated], T) # revealed: always
static_assert(is_assignable_to(Intersection[U, A], U))
static_assert(is_subtype_of(Intersection[U, A], U))
reveal_when_assignable_to(Intersection[U, A], U) # revealed: always
reveal_when_subtype_of(Intersection[U, A], U) # revealed: always
static_assert(is_disjoint_from(Not[T], T))
static_assert(is_disjoint_from(T, Not[T]))
@ -647,14 +647,14 @@ The intersection of a typevar with any other type is assignable to (and if fully
of) itself.
```py
from ty_extensions import is_assignable_to, is_subtype_of, static_assert, Not
from ty_extensions import reveal_when_assignable_to, reveal_when_subtype_of, Not
def intersection_is_assignable[T](t: T) -> None:
static_assert(is_assignable_to(Intersection[T, None], T))
static_assert(is_assignable_to(Intersection[T, Not[None]], T))
reveal_when_assignable_to(Intersection[T, None], T) # revealed: always
reveal_when_assignable_to(Intersection[T, Not[None]], T) # revealed: always
static_assert(is_subtype_of(Intersection[T, None], T))
static_assert(is_subtype_of(Intersection[T, Not[None]], T))
reveal_when_subtype_of(Intersection[T, None], T) # revealed: always
reveal_when_subtype_of(Intersection[T, Not[None]], T) # revealed: always
```
## Narrowing

View file

@ -413,13 +413,13 @@ To see the kinds and types of the protocol members, you can use the debugging ai
from ty_extensions import reveal_protocol_interface
from typing import SupportsIndex, SupportsAbs, ClassVar, Iterator
# error: [revealed-type] "Revealed protocol interface: `{"method_member": MethodMember(`(self) -> bytes`), "x": AttributeMember(`int`), "y": PropertyMember { getter: `def y(self) -> str` }, "z": PropertyMember { getter: `def z(self) -> int`, setter: `def z(self, z: int) -> None` }}`"
# revealed: {"method_member": MethodMember(`(self) -> bytes`), "x": AttributeMember(`int`), "y": PropertyMember { getter: `def y(self) -> str` }, "z": PropertyMember { getter: `def z(self) -> int`, setter: `def z(self, z: int) -> None` }}
reveal_protocol_interface(Foo)
# error: [revealed-type] "Revealed protocol interface: `{"__index__": MethodMember(`(self) -> int`)}`"
# revealed: {"__index__": MethodMember(`(self) -> int`)}
reveal_protocol_interface(SupportsIndex)
# error: [revealed-type] "Revealed protocol interface: `{"__abs__": MethodMember(`(self) -> Unknown`)}`"
# revealed: {"__abs__": MethodMember(`(self) -> Unknown`)}
reveal_protocol_interface(SupportsAbs)
# error: [revealed-type] "Revealed protocol interface: `{"__iter__": MethodMember(`(self) -> Iterator[Unknown]`), "__next__": MethodMember(`(self) -> Unknown`)}`"
# revealed: {"__iter__": MethodMember(`(self) -> Iterator[Unknown]`), "__next__": MethodMember(`(self) -> Unknown`)}
reveal_protocol_interface(Iterator)
# error: [invalid-argument-type] "Invalid argument to `reveal_protocol_interface`: Only protocol classes can be passed to `reveal_protocol_interface`"
@ -439,9 +439,9 @@ do not implement any special handling for generic aliases passed to the function
reveal_type(get_protocol_members(SupportsAbs[int])) # revealed: frozenset[str]
reveal_type(get_protocol_members(Iterator[int])) # revealed: frozenset[str]
# error: [revealed-type] "Revealed protocol interface: `{"__abs__": MethodMember(`(self) -> int`)}`"
# revealed: {"__abs__": MethodMember(`(self) -> int`)}
reveal_protocol_interface(SupportsAbs[int])
# error: [revealed-type] "Revealed protocol interface: `{"__iter__": MethodMember(`(self) -> Iterator[int]`), "__next__": MethodMember(`(self) -> int`)}`"
# revealed: {"__iter__": MethodMember(`(self) -> Iterator[int]`), "__next__": MethodMember(`(self) -> int`)}
reveal_protocol_interface(Iterator[int])
class BaseProto(Protocol):
@ -450,16 +450,16 @@ class BaseProto(Protocol):
class SubProto(BaseProto, Protocol):
def member(self) -> bool: ...
# error: [revealed-type] "Revealed protocol interface: `{"member": MethodMember(`(self) -> int`)}`"
# revealed: {"member": MethodMember(`(self) -> int`)}
reveal_protocol_interface(BaseProto)
# error: [revealed-type] "Revealed protocol interface: `{"member": MethodMember(`(self) -> bool`)}`"
# revealed: {"member": MethodMember(`(self) -> bool`)}
reveal_protocol_interface(SubProto)
class ProtoWithClassVar(Protocol):
x: ClassVar[int]
# error: [revealed-type] "Revealed protocol interface: `{"x": AttributeMember(`int`; ClassVar)}`"
# revealed: {"x": AttributeMember(`int`; ClassVar)}
reveal_protocol_interface(ProtoWithClassVar)
class ProtocolWithDefault(Protocol):
@ -468,7 +468,7 @@ class ProtocolWithDefault(Protocol):
# We used to incorrectly report this as having an `x: Literal[0]` member;
# declared types should take priority over inferred types for protocol interfaces!
#
# error: [revealed-type] "Revealed protocol interface: `{"x": AttributeMember(`int`)}`"
# revealed: {"x": AttributeMember(`int`)}
reveal_protocol_interface(ProtocolWithDefault)
```
@ -2474,7 +2474,7 @@ class Foo(Protocol):
from stub import Foo
from ty_extensions import reveal_protocol_interface
# error: [revealed-type] "Revealed protocol interface: `{"x": AttributeMember(`int`; ClassVar)}`"
# revealed: {"x": AttributeMember(`int`; ClassVar)}
reveal_protocol_interface(Foo)
```

View file

@ -4168,6 +4168,24 @@ impl<'db> Type<'db> {
)
.into(),
Some(
KnownFunction::RevealWhenAssignableTo | KnownFunction::RevealWhenSubtypeOf,
) => Binding::single(
self,
Signature::new(
Parameters::new([
Parameter::positional_only(Some(Name::new_static("a")))
.type_form()
.with_annotated_type(Type::any()),
Parameter::positional_only(Some(Name::new_static("b")))
.type_form()
.with_annotated_type(Type::any()),
]),
Some(KnownClass::NoneType.to_instance(db)),
),
)
.into(),
Some(KnownFunction::IsSingleton | KnownFunction::IsSingleValued) => {
Binding::single(
self,

View file

@ -133,9 +133,6 @@ pub(crate) trait Constraints<'db>: Clone + Sized {
}
// This is here so that we can easily print constraint sets when debugging.
// TODO: Add a ty_extensions function to reveal constraint sets so that this is no longer dead
// code, and so that we verify the contents of our rendering.
#[expect(dead_code)]
fn display(&self, db: &'db dyn Db) -> impl Display;
}
@ -345,34 +342,6 @@ impl<'db> ConstraintSet<'db> {
}
}
}
// This is here so that we can easily print constraint sets when debugging.
// TODO: Add a ty_extensions function to reveal constraint sets so that this is no longer dead
// code, and so that we verify the contents of our rendering.
#[expect(dead_code)]
pub(crate) fn display(&self, db: &'db dyn Db) -> impl Display {
struct DisplayConstraintSet<'a, 'db> {
set: &'a ConstraintSet<'db>,
db: &'db dyn Db,
}
impl Display for DisplayConstraintSet<'_, '_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.set.clauses.is_empty() {
return f.write_str("0");
}
for (i, clause) in self.set.clauses.iter().enumerate() {
if i > 0 {
f.write_str(" ")?;
}
clause.display(self.db).fmt(f)?;
}
Ok(())
}
}
DisplayConstraintSet { set: self, db }
}
}
impl<'db> Constraints<'db> for ConstraintSet<'db> {
@ -411,7 +380,27 @@ impl<'db> Constraints<'db> for ConstraintSet<'db> {
}
fn display(&self, db: &'db dyn Db) -> impl Display {
self.display(db)
struct DisplayConstraintSet<'a, 'db> {
set: &'a ConstraintSet<'db>,
db: &'db dyn Db,
}
impl Display for DisplayConstraintSet<'_, '_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.set.clauses.is_empty() {
return f.write_str("0");
}
for (i, clause) in self.set.clauses.iter().enumerate() {
if i > 0 {
f.write_str(" ")?;
}
clause.display(self.db).fmt(f)?;
}
Ok(())
}
}
DisplayConstraintSet { set: self, db }
}
}

View file

@ -65,7 +65,7 @@ use crate::semantic_index::definition::Definition;
use crate::semantic_index::scope::ScopeId;
use crate::semantic_index::semantic_index;
use crate::types::call::{Binding, CallArguments};
use crate::types::constraints::Constraints;
use crate::types::constraints::{ConstraintSet, Constraints};
use crate::types::context::InferContext;
use crate::types::diagnostic::{
INVALID_ARGUMENT_TYPE, REDUNDANT_CAST, STATIC_ASSERT_ERROR, TYPE_ASSERTION_FAILURE,
@ -1188,6 +1188,10 @@ pub enum KnownFunction {
HasMember,
/// `ty_extensions.reveal_protocol_interface`
RevealProtocolInterface,
/// `ty_extensions.reveal_when_assignable_to`
RevealWhenAssignableTo,
/// `ty_extensions.reveal_when_subtype_of`
RevealWhenSubtypeOf,
}
impl KnownFunction {
@ -1253,6 +1257,8 @@ impl KnownFunction {
| Self::StaticAssert
| Self::HasMember
| Self::RevealProtocolInterface
| Self::RevealWhenAssignableTo
| Self::RevealWhenSubtypeOf
| Self::AllMembers => module.is_ty_extensions(),
Self::ImportModule => module.is_importlib(),
}
@ -1548,6 +1554,54 @@ impl KnownFunction {
overload.set_return_type(Type::module_literal(db, file, module));
}
KnownFunction::RevealWhenAssignableTo => {
let [Some(ty_a), Some(ty_b)] = overload.parameter_types() else {
return;
};
let constraints = ty_a.when_assignable_to::<ConstraintSet>(db, *ty_b);
let Some(builder) =
context.report_diagnostic(DiagnosticId::RevealedType, Severity::Info)
else {
return;
};
let mut diag = builder.into_diagnostic("Assignability holds");
let span = context.span(call_expression);
if constraints.is_always_satisfied(db) {
diag.annotate(Annotation::primary(span).message("always"));
} else if constraints.is_never_satisfied(db) {
diag.annotate(Annotation::primary(span).message("never"));
} else {
diag.annotate(
Annotation::primary(span)
.message(format_args!("when {}", constraints.display(db))),
);
}
}
KnownFunction::RevealWhenSubtypeOf => {
let [Some(ty_a), Some(ty_b)] = overload.parameter_types() else {
return;
};
let constraints = ty_a.when_subtype_of::<ConstraintSet>(db, *ty_b);
let Some(builder) =
context.report_diagnostic(DiagnosticId::RevealedType, Severity::Info)
else {
return;
};
let mut diag = builder.into_diagnostic("Subtyping holds");
let span = context.span(call_expression);
if constraints.is_always_satisfied(db) {
diag.annotate(Annotation::primary(span).message("always"));
} else if constraints.is_never_satisfied(db) {
diag.annotate(Annotation::primary(span).message("never"));
} else {
diag.annotate(
Annotation::primary(span)
.message(format_args!("when {}", constraints.display(db))),
);
}
}
_ => {}
}
}
@ -1608,6 +1662,8 @@ pub(crate) mod tests {
| KnownFunction::IsEquivalentTo
| KnownFunction::HasMember
| KnownFunction::RevealProtocolInterface
| KnownFunction::RevealWhenAssignableTo
| KnownFunction::RevealWhenSubtypeOf
| KnownFunction::AllMembers => KnownModule::TyExtensions,
KnownFunction::ImportModule => KnownModule::ImportLib,

View file

@ -1,15 +1,19 @@
//! Match [`Diagnostic`]s against assertions and produce test failure
//! messages for any mismatches.
use crate::assertion::{InlineFileAssertions, ParsedAssertion, UnparsedAssertion};
use crate::db::Db;
use crate::diagnostic::SortedDiagnostics;
use std::borrow::Cow;
use std::cmp::Ordering;
use std::ops::Range;
use colored::Colorize;
use ruff_db::diagnostic::{Diagnostic, DiagnosticId};
use ruff_db::files::File;
use ruff_db::source::{SourceText, line_index, source_text};
use ruff_source_file::{LineIndex, OneIndexed};
use std::cmp::Ordering;
use std::ops::Range;
use crate::assertion::{InlineFileAssertions, ParsedAssertion, UnparsedAssertion};
use crate::db::Db;
use crate::diagnostic::SortedDiagnostics;
#[derive(Debug, Default)]
pub(super) struct FailuresByLine {
@ -194,12 +198,17 @@ impl UnmatchedWithColumn for &Diagnostic {
/// Discard `@Todo`-type metadata from expected types, which is not available
/// when running in release mode.
#[cfg(not(debug_assertions))]
fn discard_todo_metadata(ty: &str) -> std::borrow::Cow<'_, str> {
fn discard_todo_metadata(ty: &str) -> Cow<'_, str> {
#[cfg(not(debug_assertions))]
{
static TODO_METADATA_REGEX: std::sync::LazyLock<regex::Regex> =
std::sync::LazyLock::new(|| regex::Regex::new(r"@Todo\([^)]*\)").unwrap());
TODO_METADATA_REGEX.replace_all(ty, "@Todo")
}
#[cfg(debug_assertions)]
Cow::Borrowed(ty)
}
struct Matcher {
@ -297,21 +306,53 @@ impl Matcher {
}
}
ParsedAssertion::Revealed(expected_type) => {
#[cfg(not(debug_assertions))]
let expected_type = discard_todo_metadata(&expected_type);
let expected_type = discard_todo_metadata(expected_type);
let expected_reveal_type_message = format!("`{expected_type}`");
let diagnostic_matches_reveal = |diagnostic: &Diagnostic| {
if diagnostic.id() != DiagnosticId::RevealedType {
return false;
}
let primary_message = diagnostic.primary_message();
let Some(primary_annotation) =
(diagnostic.primary_annotation()).and_then(|a| a.get_message())
else {
return false;
};
// reveal_type
if primary_message == "Revealed type"
&& primary_annotation == expected_reveal_type_message
{
return true;
}
// reveal_protocol_interface
if primary_message == "Revealed protocol interface"
&& primary_annotation == expected_reveal_type_message
{
return true;
}
// reveal_when_assignable_to
if primary_message == "Assignability holds"
&& primary_annotation == expected_type
{
return true;
}
// reveal_when_subtype_of
if primary_message == "Subtyping holds" && primary_annotation == expected_type {
return true;
}
false
};
let mut matched_revealed_type = None;
let mut matched_undefined_reveal = None;
let expected_reveal_type_message = format!("`{expected_type}`");
for (index, diagnostic) in unmatched.iter().enumerate() {
if matched_revealed_type.is_none()
&& diagnostic.id() == DiagnosticId::RevealedType
&& diagnostic
.primary_annotation()
.and_then(|a| a.get_message())
.unwrap_or_default()
== expected_reveal_type_message
{
if matched_revealed_type.is_none() && diagnostic_matches_reveal(diagnostic) {
matched_revealed_type = Some(index);
} else if matched_undefined_reveal.is_none()
&& diagnostic.id().is_lint_named("undefined-reveal")

View file

@ -45,15 +45,21 @@ type JustComplex = TypeOf[1.0j]
# Ideally, these would be annotated using `TypeForm`, but that has not been
# standardized yet (https://peps.python.org/pep-0747).
def is_equivalent_to(type_a: Any, type_b: Any) -> bool: ...
def is_subtype_of(type_derived: Any, type_base: Any) -> bool: ...
def is_assignable_to(type_target: Any, type_source: Any) -> bool: ...
def is_subtype_of(type_a: Any, type_b: Any) -> bool: ...
def is_assignable_to(type_a: Any, type_b: Any) -> bool: ...
def is_disjoint_from(type_a: Any, type_b: Any) -> bool: ...
def is_singleton(type: Any) -> bool: ...
def is_single_valued(type: Any) -> bool: ...
def is_singleton(ty: Any) -> bool: ...
def is_single_valued(ty: Any) -> bool: ...
# These are the same as above, but instead of returning _whether_ the property
# holds, it shows a diagnostic that describes under what constraints the
# property holds.
def reveal_when_assignable_to(type_a: Any, type_b: Any) -> None: ...
def reveal_when_subtype_of(type_a: Any, type_b: Any) -> None: ...
# Returns the generic context of a type as a tuple of typevars, or `None` if the
# type is not generic.
def generic_context(type: Any) -> Any: ...
def generic_context(ty: Any) -> Any: ...
# Returns the `__all__` names of a module as a tuple of sorted strings, or `None` if
# either the module does not have `__all__` or it has invalid elements.