Rename Red Knot (#17820)

This commit is contained in:
Micha Reiser 2025-05-03 19:49:15 +02:00 committed by GitHub
parent e6a798b962
commit b51c4f82ea
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
1564 changed files with 1598 additions and 1578 deletions

View file

@ -0,0 +1,433 @@
# Methods
## Background: Functions as descriptors
> Note: See also this related section in the descriptor guide: [Functions and methods].
Say we have a simple class `C` with a function definition `f` inside its body:
```py
class C:
def f(self, x: int) -> str:
return "a"
```
Whenever we access the `f` attribute through the class object itself (`C.f`) or through an instance
(`C().f`), this access happens via the descriptor protocol. Functions are (non-data) descriptors
because they implement a `__get__` method. This is crucial in making sure that method calls work as
expected. In general, the signature of the `__get__` method in the descriptor protocol is
`__get__(self, instance, owner)`. The `self` argument is the descriptor object itself (`f`). The
passed value for the `instance` argument depends on whether the attribute is accessed from the class
object (in which case it is `None`), or from an instance (in which case it is the instance of type
`C`). The `owner` argument is the class itself (`C` of type `Literal[C]`). To summarize:
- `C.f` is equivalent to `getattr_static(C, "f").__get__(None, C)`
- `C().f` is equivalent to `getattr_static(C, "f").__get__(C(), C)`
Here, `inspect.getattr_static` is used to bypass the descriptor protocol and directly access the
function attribute. The way the special `__get__` method *on functions* works is as follows. In the
former case, if the `instance` argument is `None`, `__get__` simply returns the function itself. In
the latter case, it returns a *bound method* object:
```py
from inspect import getattr_static
reveal_type(getattr_static(C, "f")) # revealed: def f(self, x: int) -> str
reveal_type(getattr_static(C, "f").__get__) # revealed: <method-wrapper `__get__` of `f`>
reveal_type(getattr_static(C, "f").__get__(None, C)) # revealed: def f(self, x: int) -> str
reveal_type(getattr_static(C, "f").__get__(C(), C)) # revealed: bound method C.f(x: int) -> str
```
In conclusion, this is why we see the following two types when accessing the `f` attribute on the
class object `C` and on an instance `C()`:
```py
reveal_type(C.f) # revealed: def f(self, x: int) -> str
reveal_type(C().f) # revealed: bound method C.f(x: int) -> str
```
A bound method is a callable object that contains a reference to the `instance` that it was called
on (can be inspected via `__self__`), and the function object that it refers to (can be inspected
via `__func__`):
```py
bound_method = C().f
reveal_type(bound_method.__self__) # revealed: C
reveal_type(bound_method.__func__) # revealed: def f(self, x: int) -> str
```
When we call the bound method, the `instance` is implicitly passed as the first argument (`self`):
```py
reveal_type(C().f(1)) # revealed: str
reveal_type(bound_method(1)) # revealed: str
```
When we call the function object itself, we need to pass the `instance` explicitly:
```py
C.f(1) # error: [missing-argument]
reveal_type(C.f(C(), 1)) # revealed: str
```
When we access methods from derived classes, they will be bound to instances of the derived class:
```py
class D(C):
pass
reveal_type(D().f) # revealed: bound method D.f(x: int) -> str
```
If we access an attribute on a bound method object itself, it will defer to `types.MethodType`:
```py
reveal_type(bound_method.__hash__) # revealed: bound method MethodType.__hash__() -> int
```
If an attribute is not available on the bound method object, it will be looked up on the underlying
function object. We model this explicitly, which means that we can access `__kwdefaults__` on bound
methods, even though it is not available on `types.MethodType`:
```py
reveal_type(bound_method.__kwdefaults__) # revealed: dict[str, Any] | None
```
## Basic method calls on class objects and instances
```py
class Base:
def method_on_base(self, x: int | None) -> str:
return "a"
class Derived(Base):
def method_on_derived(self, x: bytes) -> tuple[int, str]:
return (1, "a")
reveal_type(Base().method_on_base(1)) # revealed: str
reveal_type(Base.method_on_base(Base(), 1)) # revealed: str
Base().method_on_base("incorrect") # error: [invalid-argument-type]
Base().method_on_base() # error: [missing-argument]
Base().method_on_base(1, 2) # error: [too-many-positional-arguments]
reveal_type(Derived().method_on_base(1)) # revealed: str
reveal_type(Derived().method_on_derived(b"abc")) # revealed: tuple[int, str]
reveal_type(Derived.method_on_base(Derived(), 1)) # revealed: str
reveal_type(Derived.method_on_derived(Derived(), b"abc")) # revealed: tuple[int, str]
```
## Method calls on literals
### Boolean literals
```py
reveal_type(True.bit_length()) # revealed: int
reveal_type(True.as_integer_ratio()) # revealed: tuple[int, Literal[1]]
```
### Integer literals
```py
reveal_type((42).bit_length()) # revealed: int
```
### String literals
```py
reveal_type("abcde".find("abc")) # revealed: int
reveal_type("foo".encode(encoding="utf-8")) # revealed: bytes
"abcde".find(123) # error: [invalid-argument-type]
```
### Bytes literals
```py
reveal_type(b"abcde".startswith(b"abc")) # revealed: bool
```
## Method calls on `LiteralString`
```py
from typing_extensions import LiteralString
def f(s: LiteralString) -> None:
reveal_type(s.find("a")) # revealed: int
```
## Method calls on `tuple`
```py
def f(t: tuple[int, str]) -> None:
reveal_type(t.index("a")) # revealed: int
```
## Method calls on unions
```py
from typing import Any
class A:
def f(self) -> int:
return 1
class B:
def f(self) -> str:
return "a"
def f(a_or_b: A | B, any_or_a: Any | A):
reveal_type(a_or_b.f) # revealed: (bound method A.f() -> int) | (bound method B.f() -> str)
reveal_type(a_or_b.f()) # revealed: int | str
reveal_type(any_or_a.f) # revealed: Any | (bound method A.f() -> int)
reveal_type(any_or_a.f()) # revealed: Any | int
```
## Method calls on `KnownInstance` types
```toml
[environment]
python-version = "3.12"
```
```py
type IntOrStr = int | str
reveal_type(IntOrStr.__or__) # revealed: bound method typing.TypeAliasType.__or__(right: Any) -> _SpecialForm
```
## Error cases: Calling `__get__` for methods
The `__get__` method on `types.FunctionType` has the following overloaded signature in typeshed:
```pyi
from types import FunctionType, MethodType
from typing import overload
@overload
def __get__(self, instance: None, owner: type, /) -> FunctionType: ...
@overload
def __get__(self, instance: object, owner: type | None = None, /) -> MethodType: ...
```
Here, we test that this signature is enforced correctly:
```py
from inspect import getattr_static
class C:
def f(self, x: int) -> str:
return "a"
method_wrapper = getattr_static(C, "f").__get__
reveal_type(method_wrapper) # revealed: <method-wrapper `__get__` of `f`>
# All of these are fine:
method_wrapper(C(), C)
method_wrapper(C())
method_wrapper(C(), None)
method_wrapper(None, C)
# Passing `None` without an `owner` argument is an
# error: [no-matching-overload] "No overload of method wrapper `__get__` of function `f` matches arguments"
method_wrapper(None)
# Passing something that is not assignable to `type` as the `owner` argument is an
# error: [no-matching-overload] "No overload of method wrapper `__get__` of function `f` matches arguments"
method_wrapper(None, 1)
# Passing `None` as the `owner` argument when `instance` is `None` is an
# error: [no-matching-overload] "No overload of method wrapper `__get__` of function `f` matches arguments"
method_wrapper(None, None)
# Calling `__get__` without any arguments is an
# error: [no-matching-overload] "No overload of method wrapper `__get__` of function `f` matches arguments"
method_wrapper()
# Calling `__get__` with too many positional arguments is an
# error: [no-matching-overload] "No overload of method wrapper `__get__` of function `f` matches arguments"
method_wrapper(C(), C, "one too many")
```
## Fallback to metaclass
When a method is accessed on a class object, it is looked up on the metaclass if it is not found on
the class itself. This also creates a bound method that is bound to the class object itself:
```py
from __future__ import annotations
class Meta(type):
def f(cls, arg: int) -> str:
return "a"
class C(metaclass=Meta):
pass
reveal_type(C.f) # revealed: bound method Literal[C].f(arg: int) -> str
reveal_type(C.f(1)) # revealed: str
```
The method `f` can not be accessed from an instance of the class:
```py
# error: [unresolved-attribute] "Type `C` has no attribute `f`"
C().f
```
A metaclass function can be shadowed by a method on the class:
```py
from typing import Any, Literal
class D(metaclass=Meta):
def f(arg: int) -> Literal["a"]:
return "a"
reveal_type(D.f(1)) # revealed: Literal["a"]
```
If the class method is possibly unbound, we union the return types:
```py
def flag() -> bool:
return True
class E(metaclass=Meta):
if flag():
def f(arg: int) -> Any:
return "a"
reveal_type(E.f(1)) # revealed: str | Any
```
## `@classmethod`
### Basic
When a `@classmethod` attribute is accessed, it returns a bound method object, even when accessed on
the class object itself:
```py
from __future__ import annotations
class C:
@classmethod
def f(cls: type[C], x: int) -> str:
return "a"
reveal_type(C.f) # revealed: bound method Literal[C].f(x: int) -> str
reveal_type(C().f) # revealed: bound method type[C].f(x: int) -> str
```
The `cls` method argument is then implicitly passed as the first argument when calling the method:
```py
reveal_type(C.f(1)) # revealed: str
reveal_type(C().f(1)) # revealed: str
```
When the class method is called incorrectly, we detect it:
```py
C.f("incorrect") # error: [invalid-argument-type]
C.f() # error: [missing-argument]
C.f(1, 2) # error: [too-many-positional-arguments]
```
If the `cls` parameter is wrongly annotated, we emit an error at the call site:
```py
class D:
@classmethod
def f(cls: D):
# This function is wrongly annotated, it should be `type[D]` instead of `D`
pass
# error: [invalid-argument-type] "Argument to this function is incorrect: Expected `D`, found `Literal[D]`"
D.f()
```
When a class method is accessed on a derived class, it is bound to that derived class:
```py
class Derived(C):
pass
reveal_type(Derived.f) # revealed: bound method Literal[Derived].f(x: int) -> str
reveal_type(Derived().f) # revealed: bound method type[Derived].f(x: int) -> str
reveal_type(Derived.f(1)) # revealed: str
reveal_type(Derived().f(1)) # revealed: str
```
### Accessing the classmethod as a static member
Accessing a `@classmethod`-decorated function at runtime returns a `classmethod` object. We
currently don't model this explicitly:
```py
from inspect import getattr_static
class C:
@classmethod
def f(cls): ...
reveal_type(getattr_static(C, "f")) # revealed: def f(cls) -> Unknown
reveal_type(getattr_static(C, "f").__get__) # revealed: <method-wrapper `__get__` of `f`>
```
But we correctly model how the `classmethod` descriptor works:
```py
reveal_type(getattr_static(C, "f").__get__(None, C)) # revealed: bound method Literal[C].f() -> Unknown
reveal_type(getattr_static(C, "f").__get__(C(), C)) # revealed: bound method Literal[C].f() -> Unknown
reveal_type(getattr_static(C, "f").__get__(C())) # revealed: bound method type[C].f() -> Unknown
```
The `owner` argument takes precedence over the `instance` argument:
```py
reveal_type(getattr_static(C, "f").__get__("dummy", C)) # revealed: bound method Literal[C].f() -> Unknown
```
### Classmethods mixed with other decorators
```toml
[environment]
python-version = "3.12"
```
When a `@classmethod` is additionally decorated with another decorator, it is still treated as a
class method:
```py
from __future__ import annotations
def does_nothing[T](f: T) -> T:
return f
class C:
@classmethod
@does_nothing
def f1(cls: type[C], x: int) -> str:
return "a"
@does_nothing
@classmethod
def f2(cls: type[C], x: int) -> str:
return "a"
reveal_type(C.f1(1)) # revealed: str
reveal_type(C().f1(1)) # revealed: str
reveal_type(C.f2(1)) # revealed: str
reveal_type(C().f2(1)) # revealed: str
```
[functions and methods]: https://docs.python.org/3/howto/descriptor.html#functions-and-methods