[ty] Use declared attribute types as type context (#21143)

## Summary

For example:
```py
class X:
    x: list[int | str]

def _(x: X):
    x.x = [1]
```

Resolves https://github.com/astral-sh/ty/issues/1375.
This commit is contained in:
Ibraheem Ahmed 2025-10-31 11:48:28 -04:00 committed by GitHub
parent b93d8f2b9f
commit bb40c34361
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 304 additions and 107 deletions

View file

@ -185,12 +185,12 @@ Declared attribute types:
```py
class E:
e: list[Literal[1]]
a: list[Literal[1]]
b: list[Literal[1]]
def _(e: E):
# TODO: Implement attribute type context.
# error: [invalid-assignment] "Object of type `list[Unknown | int]` is not assignable to attribute `e` of type `list[Literal[1]]`"
e.e = [1]
e.a = [1]
E.b = [1]
```
Function return types:
@ -200,6 +200,41 @@ def f() -> list[Literal[1]]:
return [1]
```
## Instance attribute
```toml
[environment]
python-version = "3.12"
```
Both meta and class/instance attribute annotations are used as type context:
```py
from typing import Literal, Any
class DataDescriptor:
def __get__(self, instance: object, owner: type | None = None) -> list[Literal[1]]:
return []
def __set__(self, instance: object, value: list[Literal[1]]) -> None:
pass
def lst[T](x: T) -> list[T]:
return [x]
def _(flag: bool):
class Meta(type):
if flag:
x: DataDescriptor = DataDescriptor()
class C(metaclass=Meta):
x: list[int | None]
def _(c: C):
c.x = lst(1)
C.x = lst(1)
```
## Class constructor parameters
```toml
@ -226,3 +261,72 @@ A(f(1))
# error: [invalid-argument-type] "Argument to bound method `__init__` is incorrect: Expected `list[int | None]`, found `list[list[Unknown]]`"
A(f([]))
```
## Multi-inference diagnostics
```toml
[environment]
python-version = "3.12"
```
Diagnostics unrelated to the type-context are only reported once:
`call.py`:
```py
def f[T](x: T) -> list[T]:
return [x]
def a(x: list[bool], y: list[bool]): ...
def b(x: list[int], y: list[int]): ...
def c(x: list[int], y: list[int]): ...
def _(x: int):
if x == 0:
y = a
elif x == 1:
y = b
else:
y = c
if x == 0:
z = True
y(f(True), [True])
# error: [possibly-unresolved-reference] "Name `z` used when possibly not defined"
y(f(True), [z])
```
`call_standalone_expression.py`:
```py
def f(_: str): ...
def g(_: str): ...
def _(a: object, b: object, flag: bool):
if flag:
x = f
else:
x = g
# error: [unsupported-operator] "Operator `>` is not supported for types `object` and `object`"
x(f"{'a' if a > b else 'b'}")
```
`attribute_assignment.py`:
```py
from typing import TypedDict
class TD(TypedDict):
y: int
class X:
td: TD
def _(x: X, flag: bool):
if flag:
y = 1
# error: [possibly-unresolved-reference] "Name `y` used when possibly not defined"
x.td = {"y": y}
```

View file

@ -281,46 +281,3 @@ def _(flag: bool):
# we currently consider `TypedDict` instances to be subtypes of `dict`
f({"y": 1})
```
Diagnostics unrelated to the type-context are only reported once:
`expression.py`:
```py
def f[T](x: T) -> list[T]:
return [x]
def a(x: list[bool], y: list[bool]): ...
def b(x: list[int], y: list[int]): ...
def c(x: list[int], y: list[int]): ...
def _(x: int):
if x == 0:
y = a
elif x == 1:
y = b
else:
y = c
if x == 0:
z = True
y(f(True), [True])
# error: [possibly-unresolved-reference] "Name `z` used when possibly not defined"
y(f(True), [z])
```
`standalone_expression.py`:
```py
def f(_: str): ...
def g(_: str): ...
def _(a: object, b: object, flag: bool):
if flag:
x = f
else:
x = g
# error: [unsupported-operator] "Operator `>` is not supported for types `object` and `object`"
x(f"{'a' if a > b else 'b'}")
```

View file

@ -2924,12 +2924,12 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
for item in items {
let target = item.optional_vars.as_deref();
if let Some(target) = target {
self.infer_target(target, &item.context_expr, |builder| {
self.infer_target(target, &item.context_expr, |builder, tcx| {
// TODO: `infer_with_statement_definition` reports a diagnostic if `ctx_manager_ty` isn't a context manager
// but only if the target is a name. We should report a diagnostic here if the target isn't a name:
// `with not_context_manager as a.x: ...
builder
.infer_standalone_expression(&item.context_expr, TypeContext::default())
.infer_standalone_expression(&item.context_expr, tcx)
.enter(builder.db())
});
} else {
@ -3393,8 +3393,8 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
} = assignment;
for target in targets {
self.infer_target(target, value, |builder| {
builder.infer_standalone_expression(value, TypeContext::default())
self.infer_target(target, value, |builder, tcx| {
builder.infer_standalone_expression(value, tcx)
});
}
}
@ -3410,13 +3410,19 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
/// `target`.
fn infer_target<F>(&mut self, target: &ast::Expr, value: &ast::Expr, infer_value_expr: F)
where
F: Fn(&mut Self) -> Type<'db>,
F: Fn(&mut Self, TypeContext<'db>) -> Type<'db>,
{
let assigned_ty = match target {
ast::Expr::Name(_) => None,
_ => Some(infer_value_expr(self)),
};
self.infer_target_impl(target, value, assigned_ty);
match target {
ast::Expr::Name(_) => {
self.infer_target_impl(target, value, None);
}
_ => self.infer_target_impl(
target,
value,
Some(&|builder, tcx| infer_value_expr(builder, tcx)),
),
}
}
/// Make sure that the subscript assignment `obj[slice] = value` is valid.
@ -3568,30 +3574,68 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
target: &ast::ExprAttribute,
object_ty: Type<'db>,
attribute: &str,
value_ty: Type<'db>,
infer_value_ty: &dyn Fn(&mut Self, TypeContext<'db>) -> Type<'db>,
emit_diagnostics: bool,
) -> bool {
let db = self.db();
let ensure_assignable_to = |attr_ty| -> bool {
let assignable = value_ty.is_assignable_to(db, attr_ty);
if !assignable && emit_diagnostics {
report_invalid_attribute_assignment(
&self.context,
target.into(),
attr_ty,
value_ty,
attribute,
);
}
assignable
let mut first_tcx = None;
// A wrapper over `infer_value_ty` that allows inferring the value type multiple times
// during attribute resolution.
let pure_infer_value_ty = infer_value_ty;
let mut infer_value_ty = |builder: &mut Self, tcx: TypeContext<'db>| -> Type<'db> {
// Overwrite the previously inferred value, preferring later inferences, which are
// likely more precise. Note that we still ensure each inference is assignable to
// its declared type, so this mainly affects the IDE hover type.
let prev_multi_inference_state = mem::replace(
&mut builder.multi_inference_state,
MultiInferenceState::Overwrite,
);
// If we are inferring the argument multiple times, silence diagnostics to avoid duplicated warnings.
let was_in_multi_inference = if let Some(first_tcx) = first_tcx {
// The first time we infer an argument during multi-inference must be without type context,
// to avoid leaking diagnostics for bidirectional inference attempts.
debug_assert_eq!(first_tcx, TypeContext::default());
builder.context.set_multi_inference(true)
} else {
builder.context.is_in_multi_inference()
};
let value_ty = pure_infer_value_ty(builder, tcx);
// Reset the multi-inference state.
first_tcx.get_or_insert(tcx);
builder.multi_inference_state = prev_multi_inference_state;
builder.context.set_multi_inference(was_in_multi_inference);
value_ty
};
// This closure should only be called if `value_ty` was inferred with `attr_ty` as type context.
let ensure_assignable_to =
|builder: &Self, value_ty: Type<'db>, attr_ty: Type<'db>| -> bool {
let assignable = value_ty.is_assignable_to(db, attr_ty);
if !assignable && emit_diagnostics {
report_invalid_attribute_assignment(
&builder.context,
target.into(),
attr_ty,
value_ty,
attribute,
);
}
assignable
};
// Return true (and emit a diagnostic) if this is an invalid assignment to a `Final` attribute.
let invalid_assignment_to_final = |qualifiers: TypeQualifiers| -> bool {
let invalid_assignment_to_final = |builder: &Self, qualifiers: TypeQualifiers| -> bool {
if qualifiers.contains(TypeQualifiers::FINAL) {
if emit_diagnostics {
if let Some(builder) = self.context.report_lint(&INVALID_ASSIGNMENT, target) {
if let Some(builder) = builder.context.report_lint(&INVALID_ASSIGNMENT, target)
{
builder.into_diagnostic(format_args!(
"Cannot assign to final attribute `{attribute}` \
on type `{}`",
@ -3607,8 +3651,17 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
match object_ty {
Type::Union(union) => {
// TODO: We could perform multi-inference here with each element of the union as type context.
let value_ty = infer_value_ty(self, TypeContext::default());
if union.elements(self.db()).iter().all(|elem| {
self.validate_attribute_assignment(target, *elem, attribute, value_ty, false)
self.validate_attribute_assignment(
target,
*elem,
attribute,
&|_, _| value_ty,
false,
)
}) {
true
} else {
@ -3631,9 +3684,18 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
}
Type::Intersection(intersection) => {
// TODO: We could perform multi-inference here with each element of the union as type context.
let value_ty = infer_value_ty(self, TypeContext::default());
// TODO: Handle negative intersection elements
if intersection.positive(db).iter().any(|elem| {
self.validate_attribute_assignment(target, *elem, attribute, value_ty, false)
self.validate_attribute_assignment(
target,
*elem,
attribute,
&|_, _| value_ty,
false,
)
}) {
true
} else {
@ -3657,12 +3719,14 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
target,
alias.value_type(self.db()),
attribute,
value_ty,
pure_infer_value_ty,
emit_diagnostics,
),
// Super instances do not allow attribute assignment
Type::NominalInstance(instance) if instance.has_known_class(db, KnownClass::Super) => {
infer_value_ty(self, TypeContext::default());
if emit_diagnostics {
if let Some(builder) = self.context.report_lint(&INVALID_ASSIGNMENT, target) {
builder.into_diagnostic(format_args!(
@ -3674,6 +3738,8 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
false
}
Type::BoundSuper(_) => {
infer_value_ty(self, TypeContext::default());
if emit_diagnostics {
if let Some(builder) = self.context.report_lint(&INVALID_ASSIGNMENT, target) {
builder.into_diagnostic(format_args!(
@ -3685,7 +3751,10 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
false
}
Type::Dynamic(..) | Type::Never => true,
Type::Dynamic(..) | Type::Never => {
infer_value_ty(self, TypeContext::default());
true
}
Type::NominalInstance(..)
| Type::ProtocolInstance(_)
@ -3710,6 +3779,10 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
| Type::AlwaysFalsy
| Type::TypeIs(_)
| Type::TypedDict(_) => {
// TODO: We could use the annotated parameter type of `__setattr__` as type context here.
// However, we would still have to perform the first inference without type context.
let value_ty = infer_value_ty(self, TypeContext::default());
// First, try to call the `__setattr__` dunder method. If this is present/defined, overrides
// assigning the attributed by the normal mechanism.
let setattr_dunder_call_result = object_ty.try_call_dunder_with_policy(
@ -3811,7 +3884,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
place: Place::Defined(meta_attr_ty, _, meta_attr_boundness),
qualifiers,
} => {
if invalid_assignment_to_final(qualifiers) {
if invalid_assignment_to_final(self, qualifiers) {
return false;
}
@ -3819,6 +3892,8 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
if let Place::Defined(meta_dunder_set, _, _) =
meta_attr_ty.class_member(db, "__set__".into()).place
{
// TODO: We could use the annotated parameter type of `__set__` as
// type context here.
let dunder_set_result = meta_dunder_set.try_call(
db,
&CallArguments::positional([
@ -3844,7 +3919,12 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
dunder_set_result.is_ok()
} else {
ensure_assignable_to(meta_attr_ty)
let value_ty = infer_value_ty(
self,
TypeContext::new(Some(meta_attr_ty)),
);
ensure_assignable_to(self, value_ty, meta_attr_ty)
};
let assignable_to_instance_attribute = if meta_attr_boundness
@ -3857,12 +3937,16 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
} =
object_ty.instance_member(db, attribute)
{
if invalid_assignment_to_final(qualifiers) {
let value_ty = infer_value_ty(
self,
TypeContext::new(Some(instance_attr_ty)),
);
if invalid_assignment_to_final(self, qualifiers) {
return false;
}
(
ensure_assignable_to(instance_attr_ty),
ensure_assignable_to(self, value_ty, instance_attr_ty),
instance_attr_boundness,
)
} else {
@ -3896,7 +3980,11 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
qualifiers,
} = object_ty.instance_member(db, attribute)
{
if invalid_assignment_to_final(qualifiers) {
let value_ty = infer_value_ty(
self,
TypeContext::new(Some(instance_attr_ty)),
);
if invalid_assignment_to_final(self, qualifiers) {
return false;
}
@ -3909,7 +3997,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
);
}
ensure_assignable_to(instance_attr_ty)
ensure_assignable_to(self, value_ty, instance_attr_ty)
} else {
if emit_diagnostics {
if let Some(builder) =
@ -3937,13 +4025,19 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
place: Place::Defined(meta_attr_ty, _, meta_attr_boundness),
qualifiers,
} => {
if invalid_assignment_to_final(qualifiers) {
// We may have to perform multi-inference if the meta attribute is possibly unbound.
// However, we are required to perform the first inference without type context.
let value_ty = infer_value_ty(self, TypeContext::default());
if invalid_assignment_to_final(self, qualifiers) {
return false;
}
let assignable_to_meta_attr = if let Place::Defined(meta_dunder_set, _, _) =
meta_attr_ty.class_member(db, "__set__".into()).place
{
// TODO: We could use the annotated parameter type of `__set__` as
// type context here.
let dunder_set_result = meta_dunder_set.try_call(
db,
&CallArguments::positional([meta_attr_ty, object_ty, value_ty]),
@ -3963,7 +4057,9 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
dunder_set_result.is_ok()
} else {
ensure_assignable_to(meta_attr_ty)
let value_ty =
infer_value_ty(self, TypeContext::new(Some(meta_attr_ty)));
ensure_assignable_to(self, value_ty, meta_attr_ty)
};
let assignable_to_class_attr = if meta_attr_boundness
@ -3976,7 +4072,12 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
.expect("called on Type::ClassLiteral or Type::SubclassOf")
.place
{
(ensure_assignable_to(class_attr_ty), class_attr_boundness)
let value_ty =
infer_value_ty(self, TypeContext::new(Some(class_attr_ty)));
(
ensure_assignable_to(self, value_ty, class_attr_ty),
class_attr_boundness,
)
} else {
(true, Definedness::PossiblyUndefined)
};
@ -4008,7 +4109,9 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
.find_name_in_mro(db, attribute)
.expect("called on Type::ClassLiteral or Type::SubclassOf")
{
if invalid_assignment_to_final(qualifiers) {
let value_ty =
infer_value_ty(self, TypeContext::new(Some(class_attr_ty)));
if invalid_assignment_to_final(self, qualifiers) {
return false;
}
@ -4021,8 +4124,10 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
);
}
ensure_assignable_to(class_attr_ty)
ensure_assignable_to(self, value_ty, class_attr_ty)
} else {
infer_value_ty(self, TypeContext::default());
let attribute_is_bound_on_instance =
object_ty.to_instance(self.db()).is_some_and(|instance| {
!instance
@ -4064,6 +4169,8 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
Type::ModuleLiteral(module) => {
if let Place::Defined(attr_ty, _, _) = module.static_member(db, attribute).place {
let value_ty = infer_value_ty(self, TypeContext::new(Some(attr_ty)));
let assignable = value_ty.is_assignable_to(db, attr_ty);
if assignable {
true
@ -4080,6 +4187,8 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
false
}
} else {
infer_value_ty(self, TypeContext::default());
if emit_diagnostics {
if let Some(builder) =
self.context.report_lint(&UNRESOLVED_ATTRIBUTE, target)
@ -4098,22 +4207,35 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
}
}
#[expect(clippy::type_complexity)]
fn infer_target_impl(
&mut self,
target: &ast::Expr,
value: &ast::Expr,
assigned_ty: Option<Type<'db>>,
infer_assigned_ty: Option<&dyn Fn(&mut Self, TypeContext<'db>) -> Type<'db>>,
) {
match target {
ast::Expr::Name(name) => self.infer_definition(name),
ast::Expr::Name(name) => {
if let Some(infer_assigned_ty) = infer_assigned_ty {
infer_assigned_ty(self, TypeContext::default());
}
self.infer_definition(name);
}
ast::Expr::List(ast::ExprList { elts, .. })
| ast::Expr::Tuple(ast::ExprTuple { elts, .. }) => {
let assigned_ty = infer_assigned_ty.map(|f| f(self, TypeContext::default()));
if let Some(tuple_spec) =
assigned_ty.and_then(|ty| ty.tuple_instance_spec(self.db()))
{
let mut assigned_tys = tuple_spec.all_elements();
for element in elts {
self.infer_target_impl(element, value, assigned_tys.next().copied());
let assigned_tys = tuple_spec.all_elements().copied().collect::<Vec<_>>();
for (i, element) in elts.iter().enumerate() {
match assigned_tys.get(i).copied() {
None => self.infer_target_impl(element, value, None),
Some(ty) => self.infer_target_impl(element, value, Some(&|_, _| ty)),
}
}
} else {
for element in elts {
@ -4129,29 +4251,39 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
..
},
) => {
self.store_expression_type(target, assigned_ty.unwrap_or(Type::unknown()));
let object_ty = self.infer_expression(object, TypeContext::default());
if let Some(assigned_ty) = assigned_ty {
if let Some(infer_assigned_ty) = infer_assigned_ty {
let infer_assigned_ty = &|builder: &mut Self, tcx| {
let assigned_ty = infer_assigned_ty(builder, tcx);
builder.store_expression_type(target, assigned_ty);
assigned_ty
};
self.validate_attribute_assignment(
attr_expr,
object_ty,
attr.id(),
assigned_ty,
infer_assigned_ty,
true,
);
}
}
ast::Expr::Subscript(subscript_expr) => {
let assigned_ty = infer_assigned_ty.map(|f| f(self, TypeContext::default()));
self.store_expression_type(target, assigned_ty.unwrap_or(Type::unknown()));
if let Some(assigned_ty) = assigned_ty {
self.validate_subscript_assignment(subscript_expr, value, assigned_ty);
}
}
// TODO: Remove this once we handle all possible assignment targets.
_ => {
// TODO: Remove this once we handle all possible assignment targets.
if let Some(infer_assigned_ty) = infer_assigned_ty {
infer_assigned_ty(self, TypeContext::default());
}
self.infer_expression(target, TypeContext::default());
}
}
@ -4836,12 +4968,12 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
is_async: _,
} = for_statement;
self.infer_target(target, iter, |builder| {
self.infer_target(target, iter, |builder, tcx| {
// TODO: `infer_for_statement_definition` reports a diagnostic if `iter_ty` isn't iterable
// but only if the target is a name. We should report a diagnostic here if the target isn't a name:
// `for a.x in not_iterable: ...
builder
.infer_standalone_expression(iter, TypeContext::default())
.infer_standalone_expression(iter, tcx)
.iterate(builder.db())
.homogeneous_element_type(builder.db())
});
@ -5863,6 +5995,10 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
assert_eq!(previous, None);
}
MultiInferenceState::Overwrite => {
self.expressions.insert(expression.into(), ty);
}
MultiInferenceState::Intersect => {
self.expressions
.entry(expression.into())
@ -6430,7 +6566,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
is_async: _,
} = comprehension;
self.infer_target(target, iter, |builder| {
self.infer_target(target, iter, |builder, tcx| {
// TODO: `infer_comprehension_definition` reports a diagnostic if `iter_ty` isn't iterable
// but only if the target is a name. We should report a diagnostic here if the target isn't a name:
// `[... for a.x in not_iterable]
@ -6438,11 +6574,11 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
infer_same_file_expression_type(
builder.db(),
builder.index.expression(iter),
TypeContext::default(),
tcx,
builder.module(),
)
} else {
builder.infer_standalone_expression(iter, TypeContext::default())
builder.infer_standalone_expression(iter, tcx)
}
.iterate(builder.db())
.homogeneous_element_type(builder.db())
@ -10153,16 +10289,16 @@ enum MultiInferenceState {
#[default]
Panic,
/// Overwrite the previously inferred value.
Overwrite,
/// Store the intersection of all types inferred for the expression.
Intersect,
}
impl MultiInferenceState {
fn is_panic(self) -> bool {
match self {
MultiInferenceState::Panic => true,
MultiInferenceState::Intersect => false,
}
const fn is_panic(self) -> bool {
matches!(self, MultiInferenceState::Panic)
}
}